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The starting point

• Spanwise wall forcing (oscillating wall, traveling waves, etc)
is very effective in reducing turbulent skin-friction drag:

W (x , t) = Acos(κxx −ωt)

• Large positive energy budget is possible
• Current knowledge (DNS, experiments) mostly comes from

data at low Re
• However, envisaged applications are at high Re !!



Drag reduction and Re
A power law decrease?

• Drag reduction R decreases with Re
• Earlier attempts assumed R ∝ Reγ

τ with γ =−0.2
• Recent discovery: γ = γ(A,κx ,ω)



Building a new database
Large, reliable, complete

• DNS of turbulent channel flow at CFR
• Reτ ≈ 200 and Reτ ≈ 1000
• Modest size of the computational domain (Lx = 1.4h,

Lz = 0.7h)

Large!

• More than 4,000 DNS datapoints



Building a new database
Large, reliable, complete

• DNS of turbulent channel flow at CFR
• Reτ ≈ 200 and Reτ ≈ 1000
• Modest size of the computational domain (Lx = 1.4h,

Lz = 0.7h)

Reliable!

• Control simulations (CFR, CPG) with larger domains
• Uncertainty



Building a new database
Large, reliable, complete

• DNS of turbulent channel flow at CFR
• Reτ ≈ 200 and Reτ ≈ 1000
• Modest size of the computational domain (Lx = 1.4h,

Lz = 0.7h)

Complete!

• 3-parameter study (A considered for the first time)



Results: global view
Map of drag reduction R
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Travelling waves at A+ = 12: outer scaling
Left: Reτ = 200. Right: Reτ = 1000
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Travelling waves at A+ = 12: inner scaling
Left: Reτ = 200. Right: Reτ = 1000
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Maximum R: outer vs inner scaling
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Maximum S and G
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What about the Re effect?
γ is not the best quantity to describe it
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Vertical shift of the mean velocity profile
Large-scale simulations at Reτ = 200
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The Prandtl – von Kármán friction law

Log law:

u+ =
1
κ

ln
(

y
δv

)
+ B

Defect law:
U+

c −u+ =
1
κ

ln
(y

δ

)
+ B1

Adding together and using U+
c = U+

b + 1/κ:√
2
Cf

=
1
κ

lnReτ + B + B1−
1
κ



A simple subtraction
Writing P-vK for flow with / without control

Reτ,0 and Cf ,0 without control, Reτ and Cf with control√
2
Cf
−
√

2
Cf ,0

=
1
κ

ln
Reτ

Reτ,0
+ ∆B +���∆B1

CFR: Cf = Cf ,0 (1−R) and Reτ = Reτ,0
√

1−R:

∆B =

√
2

Cf ,0

[
(1−R)−1/2−1

]
− 1

κ
ln(1−R)1/2

CPG: Reτ = Reτ,0:

∆B =

√
2

Cf ,0

[
(1−R)−1/2−1

]



Check at Reτ = 200
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Map of ∆B
A+

act = 12 at Reτ = 200 (left) and Reτ = 1000 (right)
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Change of ∆B from Reτ = 200 to Reτ = 1000
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An indipendent check
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Extrapolation to Reτ = 105

Assumption: ∆B at Reτ = 1000 remains constant
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Conclusions

• Drag reduction is not as simple as "percentage change of
Cf "

• A wall-based control scheme (like riblets, etc) is
characterized by its ∆B

• ∆B is constant with (not too low) Re
• Extrapolation to flight-level Re is possible



Oscillating wall at A+ = 12
Left: outer scaling. Right: inner scaling.
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Eduction and conditional analysis



Quadrant analysis

T+ = 75 T+ = 250 TW (DR) TW (DI)
−2

0

2

4

tot

Q1

Q2

Q3

Q4

∆
Q

i



The Prandtl – von Kármán friction law

Uc

uτ

=
1
κ

ln
[
Rec

uτ

uc

]
+ B + B1√

2
cf

=
1
κ

lnReτ + B + B1

Uc−Ub

uτ

=
1
κ√

2
Cf

=
1
κ

lnReτ + B + B1−
1
κ



Prandtl - von Karman (2)

Reτ,0 and Cf ,0 without control, Reτ and Cf with control√
2
Cf
−
√

2
Cf ,0

=
1
κ

ln
Reτ

Reτ,0
+ ∆B

With CFR Cf = Cf ,0 (1−R) and Reτ = Reτ,0
√

1−R:

∆B =

√
2

Cf ,0

[
(1−R)−1/2−1

]
− 1

κ
ln(1−R)1/2

With CPG Reτ = Reτ,0:

∆B =

√
2

Cf ,0

[
(1−R)−1/2−1

]


