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The starting point

Spanwise wall forcing (oscillating wall, traveling waves, etc)
is very effective in reducing turbulent skin-friction drag:

W(x,t) = Acos (kxx — wt)

Large positive energy budget is possible

Current knowledge (DNS, experiments) mostly comes from
data at low Re

However, envisaged applications are at high Re !!



Drag reduction and Re

A power law decrease?

e Drag reduction R decreases with Re
o Earlier attempts assumed R o Re! with y=—0.2
e Recent discovery: y = y(A, kx, ®)



Building a new database

Large, reliable, complete

e DNS of turbulent channel flow at CFR
e Re;~ 200 and Re; ~ 1000

e Modest size of the computational domain (Lx = 1.4h,
L, =0.7h)

Large!
e More than 4,000 DNS datapoints



Building a new database

Large, reliable, complete

e DNS of turbulent channel flow at CFR
e Re, ~ 200 and Re; ~ 1000
e Modest size of the computational domain (Ly = 1.4h,

L, =0.7h)
Reliable!

e Control simulations (CFR, CPG) with larger domains
¢ Uncertainty



Building a new database

Large, reliable, complete

e DNS of turbulent channel flow at CFR
e Re;~ 200 and Re; ~ 1000

e Modest size of the computational domain (Lx = 1.4h,
L, =0.7h)

Complete!

e 3-parameter study (A considered for the first time)



Results: global view
Map of drag reduction R
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Travelling waves at At = 12: outer scaling
Left: Re; = 200. Right: Re; = 1000




Travelling waves at At = 12: inner scaling
Left: Re; = 200. Right: Re; = 1000
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Maximum R: outer vs inner scaling
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What about the Re effect?

v is not the best quantity to describe it
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Vertical shift of the mean velocity profile

Large-scale simulations at Re; = 200
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The Prandtl — von Karman friction law

Log law:
ut=Lin <y> +B
K oy

Uj—u*:%ln (%)+B1

Adding together and using U = U, +1/x:

Defect law:
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A simple subtraction

Writing P-vK for flow with / without control

Re. o and Cy( without control, Re; and Cy with control

Ref
|2 N ~+ 0B+ AB;
Cr Cfo

CFR: Cf=Cro(1—R) and Re; = Re;ov1—

AB= /sz [(1 —R)—‘/Z_q —1K|n(1 _R)'/?

CPG: Re; = Re.:




AB

Check at Re; = 200
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Map of AB

A}, =12 at Re; = 200 (left) and Re; = 1000 (right)
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Change of AB from Re; =200 to Re; = 1000




AB

An indipendent check
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Extrapolation to Re; = 10°

Assumption: AB at Re; = 1000 remains constant
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Conclusions

Drag reduction is not as simple as "percentage change of
Cfll

A wall-based control scheme (like riblets, etc) is
characterized by its AB

AB is constant with (not too low) Re
Extrapolation to flight-level Re is possible



Oscillating wall at A" =12

Left: outer scaling. Right: inner scaling.
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Eduction and conditional analysis
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The Prandtl — von Karman friction law
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Prandtl - von Karman (2)

Re; o and C; without control, Re; and Cy with control
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With CFR C; = Cro(1— R) and Re; = Re; ov'1 -
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With CPG Re; = Re.:

AB= @[(1 —R)’1/2—1]




