Skin-friction drag reduction by spanwise forcing: the Reynolds-number effect

Maurizio Quadrio¹, Davide Gatti²

¹Politecnico di Milano ²Karlsruhe Institute of Technology

EDRFCM 2015, Cambridge, Mar 25, 2015

• Spanwise wall forcing (oscillating wall, traveling waves, etc) is very effective in reducing turbulent skin-friction drag:

 $W(x,t) = \mathbf{A}\cos\left(\mathbf{\kappa}_{\mathbf{X}}x - \boldsymbol{\omega}t\right)$

- Large positive energy budget is possible
- Current knowledge (DNS, experiments) mostly comes from data at low *Re*
- However, envisaged applications are at high Re !!

Drag reduction and Re

A power law decrease?

- Drag reduction R decreases with Re
- Earlier attempts assumed $R \propto Re_{\tau}^{\gamma}$ with $\gamma = -0.2$
- Recent discovery: $\gamma = \gamma(A, \kappa_x, \omega)$

Building a new database

Large, reliable, complete

- DNS of turbulent channel flow at CFR
- $Re_{ au} \approx 200$ and $Re_{ au} \approx 1000$
- Modest size of the computational domain ($L_x = 1.4h$, $L_z = 0.7h$)

Large!

• More than 4,000 DNS datapoints

Building a new database

Large, reliable, complete

- DNS of turbulent channel flow at CFR
- $Re_{ au} \approx 200$ and $Re_{ au} \approx 1000$
- Modest size of the computational domain ($L_x = 1.4h$, $L_z = 0.7h$)

Reliable!

- Control simulations (CFR, CPG) with larger domains
- Uncertainty

Building a new database

Large, reliable, complete

- DNS of turbulent channel flow at CFR
- $Re_{ au} \approx 200$ and $Re_{ au} \approx 1000$
- Modest size of the computational domain ($L_x = 1.4h$, $L_z = 0.7h$)

Complete!

• 3-parameter study (A considered for the first time)

Results: global view

Map of drag reduction R

Travelling waves at $A^+ = 12$: outer scaling Left: $Re_{\tau} = 200$. Right: $Re_{\tau} = 1000$

Travelling waves at $A^+ = 12$: inner scaling Left: $Re_{\tau} = 200$. Right: $Re_{\tau} = 1000$

Maximum R: outer vs inner scaling

Maximum S and G

What about the Re effect?

 γ is not the best quantity to describe it

Vertical shift of the mean velocity profile

Large-scale simulations at $Re_{\tau} = 200$

The Prandtl – von Kármán friction law

Log law:

$$u^+ = \frac{1}{\kappa} \ln\left(\frac{y}{\delta_v}\right) + B$$

Defect law:

$$U_c^+ - u^+ = rac{1}{\kappa} \ln\left(rac{y}{\delta}
ight) + B_1$$

Adding together and using $U_c^+ = U_b^+ + 1/\kappa$:

$$\sqrt{\frac{2}{C_f}} = \frac{1}{\kappa} \ln \frac{Re_\tau}{\kappa} + B + B_1 - \frac{1}{\kappa}$$

A simple subtraction

Writing P-vK for flow with / without control

 $Re_{\tau,0}$ and $C_{f,0}$ without control, Re_{τ} and C_{f} with control

$$\sqrt{\frac{2}{C_f}} - \sqrt{\frac{2}{C_{f,0}}} = \frac{1}{\kappa} \ln \frac{Re_{\tau}}{Re_{\tau,0}} + \Delta B + \Delta B_1$$

CFR: $C_f = C_{f,0}(1-R)$ and $Re_{\tau} = Re_{\tau,0}\sqrt{1-R}$:

$$\Delta B = \sqrt{\frac{2}{C_{f,0}}} \left[(1-R)^{-1/2} - 1 \right] - \frac{1}{\kappa} \ln (1-R)^{1/2}$$

CPG: $Re_{\tau} = Re_{\tau,0}$:

$$\Delta B = \sqrt{\frac{2}{C_{f,0}}} \left[(1 - R)^{-1/2} - 1 \right]$$

Check at $Re_{\tau} = 200$

$\begin{array}{l} \textbf{Map of } \Delta B \\ \textbf{A}_{act}^+ = \texttt{12 at } \textbf{R} \textbf{e}_{\tau} = \texttt{200 (left) and } \textbf{R} \textbf{e}_{\tau} = \texttt{1000 (right)} \end{array}$

Change of ΔB from $Re_{\tau} = 200$ to $Re_{\tau} = 1000$

An indipendent check

R

Extrapolation to $Re_{\tau} = 10^5$ Assumption: ΔB at $Re_{\tau} = 1000$ remains constant

Conclusions

- Drag reduction is not as simple as "percentage change of C_f"
- A wall-based control scheme (like riblets, etc) is characterized by its ΔB
- ΔB is constant with (not too low) Re
- Extrapolation to flight-level Re is possible

Oscillating wall at $A^+ = 12$

Left: outer scaling. Right: inner scaling.

Eduction and conditional analysis

Quadrant analysis

The Prandtl – von Kármán friction law

$$\frac{U_c}{u_\tau} = \frac{1}{\kappa} \ln \left[Re_c \frac{u_\tau}{u_c} \right] + B + B_1$$

$$\sqrt{\frac{2}{c_f}} = \frac{1}{\kappa} \ln Re_\tau + B + B_1$$

$$\frac{U_c - U_b}{u_\tau} = \frac{1}{\kappa}$$

$$\sqrt{\frac{2}{C_f}} = \frac{1}{\kappa} \ln Re_\tau + B + B_1 - \frac{1}{\kappa}$$

Prandtl - von Karman (2)

 $Re_{\tau,0}$ and $C_{f,0}$ without control, Re_{τ} and C_{f} with control

$$\sqrt{\frac{2}{C_f}} - \sqrt{\frac{2}{C_{f,0}}} = \frac{1}{\kappa} \ln \frac{Re_{\tau}}{Re_{\tau,0}} + \Delta B$$

With CFR $C_f = C_{f,0}(1-R)$ and $Re_{\tau} = Re_{\tau,0}\sqrt{1-R}$:

$$\Delta B = \sqrt{\frac{2}{C_{f,0}}} \left[(1-R)^{-1/2} - 1 \right] - \frac{1}{\kappa} \ln (1-R)^{1/2}$$

With CPG $Re_{\tau} = Re_{\tau,0}$:

$$\Delta B = \sqrt{\frac{2}{C_{f,0}}} \left[(1-R)^{-1/2} - 1 \right]$$