Efficient Evaluation of Process Stability in Milling with
Spindle Speed Variation by using Chebyshev
Collocation Method

Abstract

Chatter is a vibrational problem affecting machining operations, which may
cause bad surface quality and damages to the machining system. In the
last decades, several techniques for avoiding chatter onset were developed.
Among other techniques, the continuous modulation of spindle speed dur-
ing the cutting process (also called Spindle Speed Variation SSV) has been
demonstrated to be very effective for avoiding chatter onsct. However, spin-
dle speed modulation parameters should be adequately optimized before
machining, in order to allows one to achicve a real advantage when using
this strategy for maximizing the material removal rate. In this perspective,
chatter prediction algorithms play a crucial role, since they allow a preven-
tive evaluation of process stability. State of the art algorithms for chatter
prediction in milling with SSV are characterized by extremely long compu-
tation times, which are not acceptable for industrial applications. In this
paper, an innovative and fast algorithm for chatter prediction in milling with
SSV, based on the Chebyshev Collocation Method, is presented. The algo-
rithm was successfully compared with a state of the art algorithm the Semi
Discretization Method in different experimental configurations and cutting
conditions. The results showed that the new method is generally more accu-
rate and from ten to one thousand times faster than the Semi Discretization
Method.
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1. Introduction

Static deflections and relative dynamic vibrations between tool and work-
piece during machining play a crucial role, since they may strongly affect
dimensional accuracy and surface quality of the machined parts, hindering
the achicvement of some important manufacturing production targets.

Chatter is a vibrational problem affecting machining processes such as
milling. It consists of anomalous dynamic vibrations which considerably
deteriorate surface quality. Moreover, it may cause excessive tool wear rate
and it may damage machine tool components. For these reasons, it should
be absolutely avoided.

Chatter can be classified as primary or secondary. Primary chatter typ-
ically occurs at low spindle rotational speeds, and it is mainly due to the
friction between the tool and the chip/workpiece on contact surfaces [1][2] or
to other physical mechanisms [3].

However, the most common cause for chatter onset especially for medium
and high spindle speeds is the secondary chatter, which is mainly due to the
regencrative effect [4]. In milling, it is the influence of the undulation left
on the workpiece by the previous tooth passage on the actual uncut chip
thickness acting on the tooth passing through the same angular position.

Several strategies have been developed in the last decades for addressing
this difficult problem. They can be roughly classified as:

e strategies based on a priort selection of an optimal, stable combination
of cutting parameters by using chatter prediction methods [5][6];

e passive chatter suppression strategics, aiming at avoiding the phe-
nomenon by including special mechanical components into the kine-
matic chain composed of machine tool, workpiece and tooling systemn,
such as tool adaptors with high stiffness and damping [7], cutters with
uncven teeth spacing [8] and other devices [9];

e semi-active chatter suppression strategies, aiming at disturbing chatter
onsct by continuously modulating the geometry of the cutting tool
[10], the modal parameters of the tooling system [11] or kinematic
parameters (for instance the spindle speed as in the Spindle Speed
Variation approach);

e active chatter suppression techniques aiming at reducing tooling system



vibrations [12] or workpicee vibrations [13] by using feedback control
loops involving sensors and actuators;

e other strategies based on fast chatter detection and automatic selection
of new cutting parameters [14], or hybrid combinations of the afore
mentioned approaches.

The idea of modulating spindle speed for enhancing the stability of the
cutting process can be first attributed to the pioneering work of Stoferle ot
al. in 1972 [1b]. In the following years this approach was further investi-
gated, but most research works were focused on the turning process, as in
the milestone work of Sexton and Stone [16]. Because of the considerably
greater mathematical complexity necessary for describing milling operations
with Spindle Speed Variation, first important contributions for understand-
ing the milling case appeared only in the nineties, see for instance Tsao et
al. [17].

Experimental results obtained in recent decades demonstrated that this
approach does significantly enhance the stability of the cutting process, allow-
ing greater material removal rates and thus a higher productivity. Neverthe-
less, SSV can be successtully implemented only with relatively light spindles,
when the available spindle torque is quite high and when the fundamental fre-
quency of the spindle speed modulation required by the machining operation
is compatible with spindle drive dynamics [18].

However, a successful application of 5SSV does strongly relv on chatter
prediction algorithms, which should be capable of preliminarily evaluating
process stability for a given combination of cutting conditions and SSV pa-
rameters. Therefore, the development of accurate and computationally offi-
cient methods for chatter prediction is crucial. In this paper, an innovative
chatter prediction method for evaluating the stability of milling operations
with SSV will be presented. Firstly, an overview of chatter prediction meth-
ods for machining operations with continuous spindle speed modulation will
be illustrated. Afterwards, a dvnamic model of milling will be introduced,
as well as the criteria for stability evaluation and the innovative Chebyshev
Collocation Method used for domain discretization. Eventually, a quantita-
tive comparison between the proposed algorithm and the Semi Discretization
Method will be carried out in terms of memory consunmption and elaboration
time, for a fixed level of accuracy of the parameter characterizing process
stability.



2. Review on chatter prediction algorithms

Main result of chatter prediction algorithms are the stability lobes, which
are obtained by evaluating process stability at different cutting parameter
combinations (typically, different combinations of spindle speed and depth
of cut), sce Figure 1. It is worth noting that stability lobe minima arc
considerably increased when SSV is applied, in comparison to Constant Speed
Machining. This vibration mitigation strategy allows to achieve a greater
depth of cut without reducing any other cutting parameter hence assuring
a greater material removal rate. Moreover, the position of the stability lobes
with respect to spindle speed is greatly affected. and stability lobe borders
become more jagged, when SSV is applied.

In order to perform process stability and to compute the stability lobes,
different approaches were developed in recent decades. These approaches
arc generally quite complex since the milling process is modelled by a set of
Delay Differential Equations DDEs with time periodic coeflicients, as de-
scribed in the next section. Unfortunately, no analytical closed form solution
for the determination of the stability borders is available, unless some strong
simplifications are assumed, which are detrimental for the prediction accu-
racy [5]. Accordingly, approximated numerical methods for studying process
stability have to be applied. Basically, they can be classified as direct time
domain integrations, frequency domain methods and DDEs-based methods,
as illustrated in Table 1.

Direct time domain integration produces very reliable predictions since
it takes into account complex phenomena such as the offective uematics of
milling, the loss of contact between active teeth and workpiece and many
others [19][20]. which arc usually neglected by the linear analysis of stability.
Unfortunately, this approach is in general very time consuming. In compari-
son to constant speed machining, even higher elaboration times are necessary
for studying the SSV case, since integration has to he carried out on a longer
time horizon in order to cope with the longer excitation period caused by
spindle speed modulation [21][22]. Moreover, it is usually not easy to eval-
nate whether the system is stable or not, due to vibrational beatings which
may arisc in these conditions. For these reasons, direct numerical integration
is not feasible for practical industrial applications.

Alternatively, frequency domain and DDEs-based methods are very promis-
ing, since they are capable of estimating process stability from system dy-
namic behavior without computing the time evolution of the system trajec-



Table 1: Overview of chatter prediction algorithms for stability evaluation

chining operations with continuous Spindle Speed Variation.
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Figure 1: Examples of stability lobes obtained by considering different experimental
configurations and spindle speed regimes. Specifically, figures above — a) and b) —
refer to 10% down milling configuration with tool diameter D = 12.7, Z, = 2 teeth
and aluminum workpiece [31], while figures below — ¢) and d) — refer to a new
experimental configuration introduced by the authors, i.e. 50% down milling con-
figuration, with D = 80 mm, Z; = 6 teeth and Ck45 workpicee. Stability diagrams
obtained with Constant Speed Machining (CSM) — a) and ¢) — are compared to
the stability diagrams obtained with sinusoidal Spindle Speed Variation (SSV) —
b) and d) — with RV A = 0.3 and RV F = 1/3, see section 3. Stability lobes are
computed by applying the new algorithm on a rectangular grid with 200 levels
of spindle speed n and 100 levels of depth of cut a,. Red points correspond to
the cutting parameter combinations considered for the evaluation of the numerical
convergence of the proposed algorithm, see section 6.

tory.

Frequency domain methods were first introduced by Altintas et al. in
1995 for studying the stability of conventional milling operations performed
at constant spindle speed [30]. The concept of this method is to expand the
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dynamic model of the system into a Fourier series and to assume that the
perturbation of system vibrations with respect to forced vibrations he a peri-
odic trajectory, which does neither extinguish nor diverge. Thus, for a given
spindle speed n, the most conscrvative value of depth of cut ay, ., satisfying
these assumptions is considered as the critical depth of cut corresponding to
the stability borders.

In 2000, Jarayam et al. developed the Multi-Frequency Method (MFM)
to analyze the turning process with SSV [24]. In this advanced approach,
more harmonics were included in the calculations by taking into account the
cffects of spindle speed modulation for improving the accuracy of results. A
couple of years later Sastry et al. [25] presented a Multi-Frequency Method
for solving the milling process with SSV, although it was based on some
strong simplifications which limited the applicability and accuracy of the
method. A further refinement of the Multi-Frequency Method for studying
the milling case was recently proposed by Zatarain et al. |22, who managed
to treat more general spindle speed perturbations by overcoming most of
the drawbacks affecting previous works. However, the achievement of the
desired level of accuracy requires a careful calibration of several parameters,
and the computations can be very time-consuming. Besides, this method is
very complicated and difficult to reproduce because of poor implementation
dctails found in the litcrature.

A radically different analytical perspective was adopted by the Semi Dis-
cretization Method (SDM) developed by Insperger et al. in 2004 [31] for
constant speed milling: the stability analysis is accomplished by discretizing
the original set of Delay Differential Equations in the time domain in order
to assemble a special matrix called the monodromy matrix representing
the dynamic transition of the system between one fundamental period and
the following one. Afterwards, process stability is evaluated by computing
the so called spectral radius, which is approximated by the maximum mod-
ulus of monodromy matrix cigenvalues. In general, the greater the number
of time subintervals used for DDEs discretization, the more accurate is the
estimate of spectral radius. However, a very large number of discretization
subintervals may be required for achieving the desired accuracy, hindering
the application of this method for practical purposes.

An extension of this method for studying the milling process with SSV
was recently developed by Seguy et al. [28], who approximated the modulated
time delay between subsequent teeth by means of stepwise constant trends.
The approach is very promising, nevertheless its numerical convergence to
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the theoretical solution was not adequately investigated.

According to the qualitative comparison carried out by Zatarain et al.
[22], there is in general a good agreement between the stability lobes pre-
dicted by MFM and those predicted by SDM. However, some important
discrepancies were also detected, which were likely to be due to convergence
issucs not discussed by the authors.

The only semi-quantitative comparison between the two methods can be
found in [5] for constant speed milling operations, where the authors reported
that MIFM was approximately two times faster than SDM.

A novel approach for achicving a considerably faster convergence of the
approximated solution of DDEs to the theoretical one is the Chebyshev Col-
location Method described by Bucler in 2004 [32] and applied in milling by
Butcher et al. in 2005 [33].

A numerical comparison between this approach and SDM was presented
by Kuljanic et al.[34] by analyzing different milling operations performed
at constant spindle speed. TFor a given level of accuracy, the Chebyshev
Collocation Method proved to be from ten to one thousand times faster than
SDM.

Although the mathematics underlying both MFM and SDM can be ap-
plied to 2DoF models, it is worth noting that they were almost exclusively
tested on 1DoF numerical examples, as evidenced in Table 1.

In this paper, a 2DoF dyvnamic model of the cutting process based on
Delay Differential Equations expressed in the angle domain, together with
an innovative extension of the DDE stability criteria and of the Chebyshev
Collocation Method for efficient analysis of milling operations with Spindle
Speed Variation is presented. Finally, the numerical performance of the new
method is suceessfully compared to that of SDM.

3. Milling Dynamics

Chatter prediction methods are hased on the joint analysis of machining
system dynamics, cutting forees and cutter-workpicee dynamic interaction,

3.1. Machining system dynamics

The spindle - spindle adaptor -tooling system is modeled as a Jeffcott
rotor [35] rotating at constant speed n around its main axis and vibrating
along the two directions orthogonal to cutter axis of an inertial, non rotating
coordinate frame, see Figure 2. Also, the system is usually considered rigid
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in the axial and torsional directions. Accordingly, only transverse tool tip
vibrations in the working plane QXY are relevant, and are described by

[ t, (jo) } B { Woa () Wy (ju0) ] [ el } 1)

L (jw) o Wye (jw) Wy (jw) | jw)
ulie) W(ji) F(jw)

where Wj; are the direct transfer functions and W;; are the cross transfer
functions. In most cases of practical interest, cross transfer functions are
negligible while direct transfer functions are both approximated by a single
mass-spring-damper system [36][37]. However, direct transfer functions are in
general composed of several modes of vibrations [38], which can be modeled
as follows

M;

. . Uy ( jw) G?j_,;‘; .
Wi (jw) = —— = : — , i=ay (2)
F (jw) ; (e /i ) + 2654 (e fewnige) + 1

where (7; 4 is the zero frequency gain, wy; 4 is the natural pulsation and &; ;.
is the damping cocfficient of the kyp, mode of vibration acting along dircction
i. For the sake of simplicity, the workpicce is considered to be rigid.

3.2, Cutting force model

Cutting forces depend on several factors, such as cutting parameters,
workpiece material, cutter geometry and milling process geometry. Let us
consider a cutter with Z; cqually-spaced cutting inserts and with generic
cutting cdge lead angle y. Let the nose radius r. be negligible in comparison
to the depth of cut @, Under this hypothesis, local cutting edge geometry is
approximately constant along the engaged cutting edge. In order to model
the cutting forces it is necessary to recall the instantancous chip thickness
acting on the j” tooth h;(t) and the length of the engaged (main) cutting
edge

"

. (3)
sin y
where £ is the working cutting edge angle. The shearing and ploughing
cutting force model can be adopted for the main cutting force Fi; and for
the perpendicular cutting force F.y ; acting on the j** tooth, as follows
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Figure 2: Reference scheme for relative tool-workpicee vibrations

Foj (t) =2 kool (£) b+ kepb (1)
E:.’V,j (f) = kr:.f\"shj (t] b + k‘(:.V_{Jb

where k., (w = ¢, ¢N) arc the shearing coefficients modelling the cffeet of
chip pressure on the normal rake face while k,, (w = ¢, ¢N) are the ploughing
coefficients modelling the friction between the machined surface and the main
cutting edge, respectively [38][39].

3.3. Cutter-workpiece dynamic interaction

Let € be the angular spindle speed expressed in rad/s. Under constant

spindle speed conditions,
2rn 2w

=60 ~ T (5)
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n being the (constant) spindle speed expressed in rpm and 7" the (constant)
spindle revolution period. Let us introduce the time delay between subse-
quent teeth 7. Under the hypothesis of constant speed machining and an
cqually spaced teeth cutter, the time delay 7 is given by

T 60 (6)

T == —

Zf_ an
where Z; is the teeth number.

Let us now introduce the angular pitch (angular delay) A¢p, between
subsequent teeth, which is always (both with constant and variable speed
machining) given by

27

Ap, = —

z Zt

provided that the teeth are equally spaced.

Let us consider the feed motion angle of the first tooth ¢, ; for represent-
ing the angular position of the whole cutter

(7)

Then, the feed motion ¢, ; of the 4t tooth can be expressed by

Under general SSV conditions we have a generic spindle speed behavior €(f)
which is assumed to be T¢,—periodic.

As assumed by several authors [21][27][28], the ratio of the effective spin-
dle speed modulation period 7Y, to the nominal time delay 7 or to the nominal
spindle revolution period T can be approximated by a rational number with
sufficient accuracy, as follows

L
= _— withP LeN (10)

P

No teethrunout : 75/7
With teeth runout 7%, /T

Thus, it is possible to find an integer multiple Tq of the effective spindle mod-
ulation period 77, which is concurrently an integer multiple of the nominal
time delay 7 or of the nominal spindle revolution period 7, i.c.

_ { Lt (notecth runout) with P,.L € N (11)

To = PTo = LT  (with teeth runout)
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Accordingly, when expressed in the angular domain the function Q(yp) is
Ayg-periodic, where the angular period Apq can be thought as a multiple
of the fundamental angular period Ay, or of one revolution period 25 by
means of the same integer L, that is

LA, (notecth runout
Apq g{ #: ) (12)

L2 (with teeth runout)

Only feasible spindle speed modulations are considered here. Accordingly,
spindle speed modulation is assumed to be continuous and with piecewise
continuous first derivative (i.e. stepwise C'), and such that the resulting
spindle speed is always positive, i.e.

1
Q)= 2@ >0 v (13)
dt
which is essential for the time to angle transformation described in the fol-

lowing.
When sinusoidal spindle speed modulation is considerced, as in section 6,
it can be expressed in the following form

Q) =+ RVA. Qycos (RVEF - Qo) (14)

where {1 is the nominal, average spindle speed, IV A is the amplitude mod-
ulation cocfiicient and RV F' is the frequency modulation cocfficient. In most
practical cases of interest, both coefficients range in the interval [0,0.3].
Anyway, it must be pointed out that the proposed algorithm is capable
of treating other types of spindle speed modulations (such as triangular-like
and random-like), without requiring any further simplification.
The instantancous feed motion angle of the cutter is given by

o (1) =g (D) = p(to) + / (o) do (15)

which is continuous, with continuous first derivative, and stepwise C!. Be-
sides, it is monotonically increasing thanks to Equation (13) and thus invert-
ible, i.e. the function

t=1t(p) (16)

is well defined: it represents the time evolution with respect to the reference
feed motion angle . In order to model the engagement of each tooth in the
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workpicce, the window function g; is introduced, as follows

1 lt Yin < sz < Pout

(O elsewhere (A7)

95 =9;(p) =g(ey) = {
being ;. and ¢, the entrance and exit angles, respectively, recalling that
©.; € [0.2x] is the feed motion angle of the j"* tooth given by Equation (9).

Let us further define

(s (0)=sin(w.) =sin(p—(j —1)Aw.)
{alo)=sinlon) =l — (= Do (18)
¢ (@) = cos (@) =cos (v — (7 — 1) Ag;)

In general, the theoretical instantaneous chip thickness h;q acting on the
4% tooth can be approximated by

hio () = g; () [z (¢) 55 (@) sinx (19)
where v
fo3 (9) = 5T () +6; (20)

being 7 the time delay between subsequent teeth, v, the linear feed speed
expressed in mm/min, and J; the radial runout expressed in mm given by
the difference

8 =7) = Tjm (21)

where r; is the radius of the j tooth. Tt should be recalled that

zt

> 5;=0 (22)

1

When spindle speed is constant, the time delay is given by Equation (6).
On the contrary, when SSV is applied, the modulated time delay can be
derived from Equation (16), as follows

(@) = t(p) =ty — Az) (23)

which is a piecewise C?, Apq-periodic function of the feed motion angle.
Hence, for a general SSV application the period of the “static” instanta-
neous chip thickness f;o(¢) is Apq instead of 27.
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By also considering tool tip vibrations, one should add

B ()= Tyole) + o ()8 (0] s (9) — s (0 — Ag)] +

Awpg—periodic 27 —periodic rngnncmtivn perturbhation
195 ()¢ ()] [uy () —uy (9 — Ap2)] = hjolp) + hys(9)
2w —periodic regenerative perturbation Agqg—periodic  perturbation

(24)
where h;s is the perturbation due to the interference between the current
vibration (u(y)) and on the undulation left on the machined surface by the
previous tooth passage (u(y — Ag.)), namely the regenerative effect.

The lincarization of cutting forces with respeet to the “static”, periodic
chip thickness hjq yields

Fw,j [‘15') = F ( 70 (‘t?)) + 3;2 ol (h'gfl ( )) h;o ( ) = Fw,j[) (&9) + Fw.jﬁ (&9) ’

Apa—periodic  perturbation

(25)
where the first term is due to the nominal chip thickness, while the force
perturbation derives from the regenerative effect. The resultant cutting force
can be obtained by adding the contributions /. ; projected along the X and
Y axces, taking into account the instantancous feed motion angles w.;, as
follows,

w=c¢cN

(26)
Fy(p) = 22 (Fej(#) 55 (0) = Fonj (#9) ¢ ()

Accordingly, it is possible to decompose the resultant into

R R R@ R -

= Folp) + Filp) (ulg)—ulp-Ap)) (27
——— S

Apn—periodic Ay, or 27 —
vector periodicmatrix

Fo(0) = 3 (R (9)6s (9) — Fovy (9) 5, ()
_Z
Y

where Fy is the “C;tdji( 7 contribution due to the nominal chip thickness and
Fs is the “dynamic” term due to the regenerative effeet. The matrix F) is
A, or 2aperiodic, depending on whether teeth radial run-out is negligible
or not, respectively. In both cases, it has to be recalled that the angular
period Aggq is an integer multiple of such a period.

14



Accordingly, both terms Fy and F} can be considered Apgperiodic. An
example of “static” cutting force trends in the time and frequency domains
obtained with constant speed and with spindle speed modulation is shown
in Figure 3. In comparison with CSM, SSV causcs a gencral redistribution
of spectral energy between a larger number of harmonics, tending towards a
white noise behavior, reducing the probability of exciting system mechanical
resonances by means of very high spectral peaks of the nominal cutting forees.

Let us consider a state space form (in the time domain) equivalent to

Equation (1), i.e.
1 A

{ r;_(fl (t) = Awq (f) =+ BWF (t) (28)
u(t) = Cwy(t)
where q is the state vector (with d state variables), Aw, Bw, Cw are the
state space matrices representing a time realization of the transfer function
W (jw), F is the input (force) veetor and u is the output (displacement)
vector of the tool tip at time t. Time realization is chosen such that tool tip
vibrations along X and Y directions can be directly derived from the first
two state space variables, that is

{ Uz =41 (29)

Uy = (2

This is achieved when the output matrix of the adopted time realization is

100 -0
cw_[o 1o - U]

This choice is particularly important in order to allow monodromy matrix
size reduction before cigenvalue computation.

(30)

Let us now focus on the independent variable substitution
t— (31)

by using the well-defined function #(y) of Equation (16).
After substitution of (27) into the system (28), the following system of
Delay Differential equations - DDIs can be obhtained

(Aw + BwF'1 (p) Cw) a () + (-BwF'1 (p) Cw) d (¢ — Ap.) +

o + BwFo (¢)
N
Bwo

u(y¢) = Cwq(yp) -
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Figure 3: Behavior of “static” feed force in the time and frequency domains during
constant spced machining ((a) and (b)) and when SSV is applied ((¢) and (d)).
End-mill eutter with D = 12.7 mm, Z; = 2 teeth; down milling with radial im-
mersion az,/D = 50%:; spindle speed € = 10000 rpm, depth of cut ¢, = 1 mm,
nominal feed per tooth f, = 0.1 mm, radial runout §; = [0.01, —0.01] mm; cutting
force cocflicients k., = 600 MPa, k., = 200 MPa, k., = ky, = (. SSV parameters:
RVA=03, RVF =1/3.

Let us now express the derivative with respect to time in the following
form

dq dqdg
a2 33
dt  dy df (33)

similarly to the method originally proposed by Tsao et al. in 1993 [17], who
applied this transformation for studying machining processes when SSV is in-
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volved. However, they only applied this approach to single degree of freedom
models, which were not adequate for describing the complex dynamics of
milling processes. Later this transformation was also adopted by Pakdemirli
ct al. [40] and by Yang ct al. [10], but their analysis was again limited to
single degree of freedom models, which gave satisfactory results only in the
simple case of turning.

Let us define the function

Vo) = o 31
¢ (L))

which is the reciprocal of the instantancous spindle speed expressed with
respect to the reference feed motion angle .

Then the system (32) can be rewritten as

6

=

[4

( 1 () Awy (p) a(e) + 4 () Bwi (¢) g (@ — Ap.) +
— —
da (¢) = Alp) B(y)
{ de T + ¥ () Bwao () (35)
N
Bo(e)
[ u(p) = Cwa(y)

where A and A are Apg-periodic dxd matrices and By is a Apq-periodic
dal column vector, where the period Agq is an integer multiple of the funda-
mental delay Ap,. Under the above assumptions, such matrices and vectors
are piccewise Ch.

It is important to notice that the original time delay 7(t) was timevarying
because of the continuous spindle speed modulation. On the contrary. a new
set of DDEs with fixed delay Ay, was obtained thanks to the time to angle
domain transformation. This result allows one to avoid the approximation of
the delayed term introduced by Seguy et al. [28] for adapting the Semi Dis-
cretization Method to milling operations with SSV, as illustrated in section
6. Howover, the most important conscquence of this transformation was the
possibility of a direct application of the Chebyshev Collocation Mcethod for
studying milling operations perturbed by general spindle speed modulations.

Accordingly, for the sake of comparison both the Semi Discretization
Method and the Chebyshev Collocation Method will be applied on the same
dynamic model (35) expressed in the angle coordinate.

The total vibration q(¢) is generally interpreted as the sum of “static”
forced vibrations due to By(y) and “dynamic” regenerative vibrations aris-
ing from the difference (q (¢) — q (¢ — Ap.)). In the simple case of constant
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speed machining, these terms can be studied separately by applying the su-
perposition principle. Here on the contrary this commonly adopted approach
is not feasible, since the period Agg is different from the fundamental pe-
riod Ag,. As a consequence, forced vibrations cannot be decoupled from the
regenerative vibrations, and the stability criteria have to be based on the
analysis of the system (35) taken as a whole.

4. Criteria for process stability evaluation

The general criteria for assessing the stability of a set of Delay Differential
Equations can be found in [32]. In this section, an innovative extension
of such criteria to Delay Differential Equations modelling complex milling
processes with SSV - including both the forced and regenerative terms - is
presented. In order to evaluate whether the system (35) is stable or not, let
us split the fundamental period of the spindle speed perturbation [0, Agg)]
into L intervals of equal span Ay, (or 27 in case of significant tecth runout,
sce Equation (12)), as illustrated in Figure 4a), whose endpoints are located
at

or=I1Ap,, 1=0,1,..,L (36)

where the {** interval endpoint ¢; has not to be confused with p=j, which is
the instantaneous feed motion angle of the j* tooth.
Let us further define

S[!] = [[?"ef—l; (ral]! [ = 11 L (37)

as the angle interval. From now on, subscripts enclosed between round
brackets will be used to denote quantities defined over intervals rather than
at single points.

Let us consider the linear, antonomous equation

{ D@ =Aaly).  ¢€Su (38)

lth,

q(7) = qu
Since A(y) is piecewise C', the fundamental solution exists such that
{ di,;@i\— =A()Paly). ©€Spy
(o) =1

where ®4 is an invertible dxd matrix of functions and 1 is the identity dxd
matrix [41].

(39)
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Figure 4: (a) Decomposition of angular domain into subintervals and monodromy opera-
tors; (b) sinusoidal spindle speed variation; (¢) periodic matrix coefficients; (d) state space
variables behavior. End-mill cutter with D = 12.7 mm, Z; = 2 tecth; down milling with
radial immersion ay /D = 10%; nominal spindle speed © = 10000 rpm, depth of cut a, = 1
mum, nominal feed per tooth [ = 0.1 mm, radial runout §; = [0.01, —0.01] mm; culting
force coefficients k.. = 600 MPa, &, = 200 MPa, k., = kyp = 0; modal parameters: sec
Table 3, [31]. S8V parameters:

Feed motion angle ¢ [rad/(2r)]

RVA=03 RVF=1/3.
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In order to study the dynamic evolution of the solution g, when the angle
(i.e., the time) tends to infinity, let us suppose that we know its behaviour

;fh

in the I angular interval Sy and we want to determine its behaviour in the

next subinterval Sgyqy. Thus we may write

aly) = {(I’A (9)ale) + @a(e) [ (@a @) B@a - Ap,)dd| +

+[@a () [2(@a () Bo@ad]: € Suvn) = [prois]
(40)
In order to simplify notation, let us denote the state space trajectory in the
(I+ 1)* interval as

quay =4d(p): Sgen — R (41)

Accordingly, the delayed state space trajectory q(¢ — Ag;), @ € S(.q) cor-
responds to g = q@). ¢ € Sy,

Let us denote the linear operator transforming the state space trajectory
q(y into the first term within square brackets on the right of Equation (40)
as

Ui+ € (Swy) — € (Seen) (42)

where C (9) is the space of R%valued continuous functions defined on the
interval S.

The second term within square brackets on the right of Equation (40)
will be simply denoted by w;,1). Therefore, Equation (40) can be rewritten
in more compact form as

qag+1 = Ugripae + W) (43)

In Figure 4, an example of system trajectory q including both static and
dynamic effects is shown. Sinusoidal spindle speed modulation illustrated
in Figure 4b) is respousible for the periodic behaviour of matrix coefficients
shown in Figure 4¢). Besides, spindle modulation causes the continuous mod-
ulation of system natural frequencies, when system vibrations are represented
in the angular domain, sce Figure 4d).

Let us now iteratively construct the whole solution in the spindle speed
modulation period [0, Apa] = [po, @], starting from its (known) history
dr) = g (), with ¢ € Sy = [p-1, 0]:

qm) = Upeam +wa (44)
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In the following interval Sig) we obtain

ae) = Uendn + we) = Uen (Uoogo +wo) twey =0
= UenUnpqo + Ueywo) + we |
At the LY iteration we find
qiy = U z-nqe-ny +wey =
= (Us-yy - Uup) ao+ . (46)

+(Utrr-n - Upnway + -+ U o Wi + win ) =
= Uno90) + (1)

where Uz o) stands for the product-composition (according to the order dis-
played in equation) of the L matrixes Uy, ;_1). This new matrix represents
the transition from S to Siyy. The sum between the other round brackets
is simply denoted by r(,.
In the perspective of continuing this procedure, it is now fundamental to
notice that
U(Mj_l) = U(},_L_,_p;;,_,r,_,_p_”, Vo, heZ (47)

thanks to the periodicity of ® 4 and B. Therefore one can obtain
U((h_+1]jd‘hj_,) = U(L._U) = Ug VheZ (48)

Matrix U, is the approximate global monodromy operator representing the
dynamic evolution of the system from Sy to S(p,. It will play a central role
in the following analysis of stahility.
Similarly,
Wiptnl) = W), Vp, helZ (49)

thanks to the periodicity of By. Accordingly,

L) =Ygy =r, YVheEZ (50)
by also taking into account the periodicity of U ;1) expressed by Equation
(47).

Thus we may write

ey = Ugqqr) + 1 = Uy (Upgey + 1‘) +r=
2
= Ugqq + (Ugr + 1)
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Again, by iterating

apry = Ugqp-1yry +1= qu(u) +Ryr (52)
where
h—1
R,=) U, (53)
=0

is the Neumann series associated to the operator U,. In order to evaluate
systemn stability, let us defermine the asymptotic behaviour of the system by
considering the limit h — oo, as follows

dr) = U qu) + Racr (54)
If both the linear operators U and R, are bounded in norm, then the
final trajectory qoory will be bounded for any given history ¢y and forced

vibration term r, hence the system is stable.
This can be achieved by requiring that

[UZqu]| = 0 Yau €€ (Sw) (55)
Let us introduce the spectral radius
p(Ug) =sup{[A[: A € o (Uy)} (56)

where U(Ug) is the spectrum of the operator Ug. It is possible to demonstrate
[39] that the condition (55) is satisfied if and only if

p(Uy) <1 (57)
Morcover, if this condition holds, the sum of the Neumann series R docs
also correspond to a bounded linear operator. In fact, according to operator

theory [42], for any continuous lincar map Uy

1
h

U,) = lim |U? 58
P( g) h—mo” g (J )
where ||- | is the chosen operator norm. This is well known as Gelfand’s
formula. Therefore, given
1—y¢
e=—7F P (59)
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it is possible to find M € N such that

[U" | <a=p+e<1,Vi>M = |U

| <a", Yh>M  (60)

Accordingly

‘ZU; <> |
i=0 i=0

i=M+1

M o0
|§ZHU;”+ Yo d<oo, O<a<l  (61)
=0 -
<00

Eventually, for the theorem of total convergence, the Neumann series con-
verges uniformly to a bounded, lincar operator R.

In short, when the spectral radius p is smaller than unity, the first term
on the right of Equation (54) vanishes, and ouly the forced vibration con-
tribution R r remains, representing the limit of system trajectory in the
intervals Sq.r).

This result is very important, because the stability analysis is reduced to
the study of the spectral radius, as in the constant speed machining case.

Nevertheless, while in the conventional case with constant spindle speed
the final vibrations .y (under stable cutting conditions) do only depend
on system dynamics (represented by matrix A and on the external periodic
forces (represented by vector By), here a subtle and implicit dependence
on the regencrative cffect (represented by B(y) (q (@) — a(9pAe;)) is still
present when ¢ — oo, which may give rise to vibrational beatings similar to
those illustrated in Figure be).

Such phenomena could be unacceptable in the perspective of achieving
the desired surface finish. Accordingly, new stability criteria based on the
analysis of both the spectral radius and the final vibrations could be con-
ceived for a better evaluation of the overall vibration volume characterizing
(nominally stable) cutting conditions.

For the sake of illustration, an example of tool tip vibrations in the time
and frequency domains is given in Figure 5, by considering a fixed experi-
mental configuration. When performing conventional milling with constant
spindle speed, the maximum depth of cut is about 1 mm, while 1.6 mm can
be removed by applying the SSV approach, with a theoretical improvemernt
of about 60%. Howcever, as mentioned before the effective applicability of
these conditions should be experimentally investigated, since the vibrational

23



beatings deriving from SSV may cause a poor surface quality. Neverthe-
less, this is beyond the scope of this paper, and it will be deferred to future
rescarch work.
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Figure 5: Tool tip vibration in the time and frequency domains, by applying CSM (constant
speed machining) and SSV, End-mill cutter with D = 12.7 mm, Z; = 2 tecth; down milling
with radial immersion ar, /D = 10%; nominal spindle speed £ = 9900 rpm, nominal feed
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kes = 600 MPa, ky; = 200 MPa, k., = knp = 0; modal parameters: see Table 3, [31]. 58V

parameters: RVA =03, RVF =1/3.

-150

-200

-280

@ Penodic peaks
@ Chatter paaks

250 400 by 1000 1250 1500 4750 2000
Frequency [Hz]

@ Penodic peaks
G @ Chatter peaks

280 400 780 1000 1250 1500 1750 2000
Frequency [Hz]

8 Penodic peaks
@ Chafter peaks

250 500 &0 1000 1250 1500 1760 2000
Frequency [Hz]

@ Penodic peaks
- ® Chatter peaks

250 00 TS0 1000 1250 10D 750 2000
Frequency [Hz]



5. Algorithms for domain discretization and stability assessment

Basically, both discretization methods compared in this paper approxi-
mate the infinite-dimensional monodromy operator U, defined in previous
section (see Equation (42)) with a finite-dimensional matrix U,. The stabil-
ity of the system depends on the largest matrix eigenvalue, according to the
following stability criterion

ma;{{|/\f|:)\i€0(ﬁg)}%’p<l (62)

where p is the spectral radius and A; are the eigenvalues of ﬂg. The main
difference between the Semi Discretization Method - SDM - and the Cheby-
shev Collocation Method - CCM - is the way the monodromy matrix t}g is
computed.

5.1. The Semi-Discretization Method - SDM
The Semi Discretization Method [31] can be summarized as follows:
e each (angle) interval Sy is split into m equally-spaced subintervals
Sy, defined as
S(i,h) = [©ih, %,h—l] (63)

where

Ch=@—h—= h=0,1,....m (64)
see Figure (6).

With these assumptions, increasing h implies a decrease of the feed
motion angle p.

e in each subinterval, A(y), B(y) and the delayed term q(¢ — Agp,) are
represented by their zeroth order approximation, as follows

Ap) = Im;;[a,n] {A(p)}

WES(Ln
B (¢) = mean {B(p)} when ¢ € Sgpy  (63)
PES(1 R '

a(e — A¢.) = 5 [q(@i—1n) + d(@r—1n-1)]

By considering the (constant) delayed term as a given input, the orig-
inal system (35) is reduced to a system of Ordinary Differential Equa-
tions - ODEs - within the considered subinterval S ), which can be
easily solved by classical techniques;
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e by iteratively solving the ODEs corresponding to cach subinterval, a
monodromy matrix ﬂ(;_]‘g) can be finally assembled, representing the
dynamic transition from Si_yy to Syy. Specifically, it transforms the
coluinn vector

T )
Vi—1),8DM = [qT (%CI—],K:U) u’ (#‘?’i—l 1 ] ut (991—1 :m.)] f66)
e d il d
dinitial (2m) samples of cutter axis position
conditionsforS [l for Zeroth Order Approximation
of the delayed term

representing the state of the system in Sy_;) into a new vector referring
to the following interval Sy).  The superseript T denotes veetor or
matrix transposition, as usual. The dimension of this column vector is

dim (V(g,l)!SDm) =d+2m (67)

e the monodromy matrixes Uy _qy, with [ ranging from unity to L, arc
eventually composed in the correct order to obtain the estimate of the
global monodromy matrix Uy, i.c.

Ijg = [j(f,,!‘-—1)0(f,—1__h—2] - IAJ(-;)__])IAJ(I,O) (68)

It is fundamental to notice that the dimension (number of rows =
number of columns) of the final (square) monodromy matrix is given
by Equation (67).

It has to be recalled that the delay expressed in angular coordinates
is constant, regardless of the spindle speed modulation. Therefore, it is
no longer necessary to approximate the modulated time delay by means of
stepwise constant trends, as doue by Scguy et al. for adapting the SDM to
the SSV case [2§].

In section 6, SDM will be applied on the system (35), as well as the new
method based on Chebyshev Collocation, in order to allow a strict and fair
comparison.
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5.2. Chebyshev Collocation Method
The new method proposed in this paper is based on the Chebyshev Col-
location Method [32][33], which can be summarized as follows:

» each (angle) interval Sy is split into /' subintervals on which A(yp)
and B(y) are of class C' (i.e. with continuous first derivative on the
whole subinterval), through the points

{(99.1-1 = 991—1,0,), Pr=11: YPi—12, -~ » PI=1,K-1, (5‘91—1,&' = @r)} (69)
located at the kinks (discontinuities) of A(yp) and B(y) and at the

endpoints of interval S.

e cach subinterval is further split into N uneven subsubintervals accord-
ing to the Chebyshev Collocation Algorithm, yielding

Yr—1,kei = ﬁ (@r-1—1 + Pio1p) + %CUS (%) (@11 — Pic15-1) (70)
k=1,...,K; i=0,1,...,N

see Figure (7).

i

e by applying the spectral methods based on Chebyshev Collocation [43]
a monodromy matrix Ug_1y is obtained, representing the dynamic
transition from S;_;) to Sy). Specifically, it transforms the column
vector

T T T T
V(-1),CCM = [u (955—1,1,0) e (lpx—],uv') e (991—1.;\’—1,0) e (\,‘f"!—l.h’—l,f\«')

~

2(N+1)(K —1) Chebyshev collocation points for polynomial interpolation of the delayed term

. ™ T T
T LA Ls )
q («,‘?z—l.h’,n) u (w—'l,K.l) e (M—'J,K,_a\»)]
e ~ e -
dinitial 2N Chebyshev collocation points for
conditions for S¢p polynomial interpolation of the delayed term

(71)
representing the state of the system in 51y into a new vector referring
to the following interval Sp. The dimension of this colummn vector is

dim (V(i—l).CGM) =2K (A‘r + l) +d—-2 (?2)

e the monodromy matrixes ﬁ(];}_’_jj, with [ ranging from unity to L, arc
eventually composed in the correct order to obtain the estimate of the
global monodromy matrix ﬂy, see Equation (68). Accordingly, the di-
mension (number of rows = number of columns) of the final monodromy
matrix is given by Equation (72).
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One main difference with respeet to SDM counsists in the fact that the
coefficients of A(y), B(y) and the delayed term q(¢ — Ayp.) are not con-
sidered constant inside each subinterval: they are indeed approximated by
interpolating Lagrange polynomials.

Moreover, it should be highlighted that domain discretization performed
by Chebyshev Collocation is irregular. Basically, this algorithm takes smaller
angle subintervals at the beginning and at the end of each interval Sgy and
where discontinuities of the coefficients of A(yp) or B(y) may be present due
to tooth entrance or exit, as shown in Figure 7. The uneven spacing charac-
terizing the Chebyshev Collocation assures a fast convergence of the Lagrange
polynomials to the effective curves, when the number of subintervals becomes
sufficiently high. The algorithm was developed in the MathWorks MATLAB
cnvironment, and it was adapted and improved from the ddec MATLAB
guite available on-line at [44].
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6. Evaluation of numerical convergence of the new method and
comparison to Semi Discretization Method

It is worth noting that both SDM and CCM discretization algorithms
generate the same predictions of system stability, provided that a suffi-
ciently large number of discretization subintervals is chosen for each algo-
rithm. Thus, the methods should be compared in terms of convergence to
the theoretical solution and of elaboration time for a desired level of accuracy.

For performing this comparison, a numerical Design of Experiments was
carried out. Specifically, several case studies taken from the literature were
selected and listed in Table 2.

For each machining system configuration, different cutting configurations
were examined, i.e. different relative positions between the tool and the work-
piece, such as for instance slotting and peripheral up and down milling. For
cach cutting configuration, different spindle speed regimes were investigated:
Constant Speed Machining (CSM) and SSV machining. Sinusoidal spindle
speed modulation was applied by testing different levels of amplitude and
frequency modulation coefficients BV A and BV F introduced in Equation
(14) and listed in Table 3. For a selected machining system, cutting configu-
ration and spindle speed regime, nine combinations of nominal spindle speed
depth of cut were also tested according to the levels outlined in Table 3.

For a given set of machining system parameters, SSV parameters and
cutting parameters the spectral radius convergence was finally evaluated.

This was made by first estimating the theoretical spectral radius g, by
using Chebyshev Collocation Method with a sufficiently high number of col-
location points.

Afterwards, spectral radius estimates p were computed for an exponen-
tially inereaging dimension of the monodromy matrix.

In order to assure a fair comparison between the novel approach and SDM,
the spectral radius behaviour was expressed with respect to the monodromy
matrix dimension (number of rows = number of columns), which is strictly
correlated with memory consumption.

For a given cutting process, the number of state space variables d of the
chosen dynamic model and the number of kinks K affecting the matrixes
A(yp) and B(g) are fixed. Therefore, in order to obtain the same dimension
of the monodromy matrix, the number of discretization subintervals m con-
sidered by SDM and the number of Chebyshev Collocation points N must
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Table 2: Experimental cases considered for evaluation of mumerical convergence.
(ml = mode 1; m2 = mode 2; N5 = not specified; SL = slotting; UP = up milling;
DW = down milling.)

New
. ) au-
Reference [31] [5] [25] [28] [45] [34] thors’
config.
Config. 1 2 3 4 5 6 T
0 (e
Ga [pm/N] | 0747 | 00103 | 00185 | stife | 0.137(m1), | 0.28 0.12
Modal ness) Ol(;g';]n(lrr)ﬂj
parame- Fna [Hz] 922 510 426 / 1449(1112) 274 300
ters
&[] 0011 | 004 | 003 /| 0123@D). | 0036 | 0055
0.0165(m2)
Gy [ppm/IN] 0.747 0.0210 0.211 0.314 0.106(m1), 0.28 0.12
0.0821(m2)
] ) 516(ml), .
(i ¥ v / B ¥ ¢
Fry [Hz] 922 802 381 25 | [iosmz) | 260 312
&y (] 0.011 0.05 0.02 0.05 | 0.0243(m1)] 0024 | 0121
0.0324(m2)
Tool ge- | Diameter | o | x5 | 1016 | 2 3175 50 50
ometry D [mm|
Teeth . . - .
number Z, 2 3 8 3 2 56 6
2017A
Material Al alloy | Al alloy | Al2024 (Al Al7T075 Ckd5 Ck45
‘Workpiece alloy)
E a( ~ : 2 =
Kos [N/mmz] 600 900 600 700 1319 1860 2000
b [N/mlnz] 200 270 a2z 200 140 T8 648 22 1000
Cutting Range = 1. 10 ] 10590 | 01225 | 0046 | 0126 | 0.1+2 | 0142
ar: ay [mm]
pararne- Ral]_ e
ters g h+25 5=+30 | 0.5+3.5 1=+12 116 0.9+3.1 | 0.3=0.7
n [krpm)]
100 SL:
Tool- | 4 mersion | 22U [ 5o up, | s0UP; | R UP: 8 | 50 UP; 5o | 100 SLs | 100 SL;
workpiece /D [%) 5 UP; =0 DW. | 50 DW DW DW 50 UP; | 50 UP;
config. aL ¢ 25 DW; | ° T ’ ' ’ 50 DW. | 50 DW.
5 DW.
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Table 3: DoE for evaluation of chatter prediction algorithms numerical convergence.

Factor Levels Values or range
Machining system configuration 7 See Table 2
T . Slotting (SL), up milling (UP), down
Milling type 3 milling (DW)
Toaol immersion in the workpicce 255 5+ 100 sce Table 2
SSV parameters RV A 3 0 (CSM), 0.1, 0.3
(sinusoidal
perturbation)
RVF 3 0 (CSM), 0.1, 1/3
Low, medinm and high, given by
eguor || e G0 ) b
4 o TaE , . - Hop min AU Uy mge &F0 LHE L e
Cutting parameters cut dp the considered depth of eut range and
h =1/4,2/4 and 3/4 respectively
Low, medinm and high: minimum,
Spindle 3 mean and maximum spindle speeds of

speed n

the range of interest for that
configuration, respectively




satisfy the following relation

Docy = dim (ﬁg,(:CM) = dim (ﬂg,Sl)M) = Dgpum (73)
yielding
2K(N+1)+d-2=2m+d (74)
which can be simplified to
T F AT 0 AN - D -
I\U\'—Q—l)—l:’n.{EE (75)

where D stands for the dimension of the generic monodromy matrix, and
the last approximation is valid when the number d of initial conditions is
negligible with respeet to the total number of subintervals.

In other words, Equation (75) was used for determining the number m of
subintervals used by SDM and the number of (N + 1) of Chebyshev Collo-
cation points adopted by CCM, for a given monodromy matrix dimension (d
and K fixed by the selected machining system and cutting conditions). By
so doing, spectral radius convergence rates obtained from the two algorithms
could be compared on equal memory consumption conditions.

In order to evaluate spectral radius accuracy, the absolute relative error
was computed, as follows
P P

Pth
For each algorithm, the minimun monodrmomy matrix dimension )., was
determined such that

Srel —

(76)

(D) < 0.1% VD > Dy (77)

For each machining system and cufting conditions and for a given mon-
odromy matrix dimension the corresponding spectral radius accuracy was
computed and rccorded, together with the claboration time required for as-
sembling the monodromy matrix and for estimating the spectral radius. This
time will be called single point claboration time in the following,.

The single point claboration time 7% corresponding to the minimum ma-
trix dimension for achieving the desired accuracy level Dy, was identified
and recorded.

Eventually, the two algorithms were compared both in terms of memory
consumption (D,;,) and single point elaboration time (T (Dpin))-
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Calculations were performed on a workstation equipped with two 6-core
Intel Xeon 3.46 GHz processors and 192 GB of RAM. Up to 12 points were
analyzed at the same time using Matlab parallelization in order to reduee
the overall computation time. The calculation was no further parallelized
at the level of the single point. Single point elaboration time was measured
separately, i.c. independently from other computations concurrently running.

In the examples illustrated in Figure 8, it is clear that the spectral radius
estimate provided by the new method converged to the theoretical value hy
requiring a smaller matrix dimension with respect to SDM. In many cases
with S5V, SDM did not even reach the required accuracy with a monodromy
matrix dimension smaller than 1024. It is worth noting the extremely rapid
“exponential” convergence of the new algorithm, whose accuracy was only
limited by computer precision.

The new algorithm based on Chebyshev Collocation was much faster
than SDM, because it required a smaller monodromy matrix dimension to
achieve the desired accuracy and because it was on average faster for a fixed
monodromy mafrix dimension 2. In other words,

?I_CESL’TEB? 5}?}2:}: (D) } = Tr.com (Deommin) <€ Trspm (Dsnm min)

(78)
For instance, for computing the stability lobes of Figure 1 (based on a grid
of 200 spindle speed levels and 100 depth of cut levels) the following total
elaboration times were required: 6.7 min for la); 33.3 min for 1b); 10 min
for 1¢) and 126.7 min for 1d). On the other side, SDM would have required
from 35 to more than 1342 times longer elaboration times.

The numerical results obtained by performing the whole Design of Ex-
periments are summarized in Figure 9. It can be noticed that about 95%
of the investigated points required a smaller monodromy matrix dimension
- i.e. less memory consumption - to converge, when Chebyshev Collocation
was applied. In addition, 57.8% of the points did not converge when Semi
Discretization was applied with a monodromy matrix dimension smaller than
1024, whereas this pereentage was only 1.5% with the new algorithm.

Regarding the single point elaboration time, the new algorithm was faster
in 99.9% of cases. The geometric average of the ratio between computation
times was 199.
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Figure 8: Convergence of chatter prediction algorithms: a), b), ¢) and d) refer
to Insperger configuration [31] (10% down milling, D = 12.7 mm, Z; = 2 tceth,
aluminum workpicce, n = 5000 rpm, a, = 1.5 mm); ¢), f), g) and h) refer to
new authors’ configuration (50% down milling, D = 80 mm, Z; = 6 teeth, Ck45
workpiece, n = 300 rpm, a, = 1 mm). Sinusoidal SSV with RVVA = 0.3 and
RVF =1/3 is applied in b), d), f) and h).
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Figure 9: Overall comparison between Chebyshev Collocation and Semi Discretiza-
tion Method in terms of memory consumption and single point elaboration time,
by requiring 99.9% accuracy for spectral radius estimate
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From the analysis of the minimum monodromy matrix dimension Dacng min
with respect to different tool-workpiece configurations - see Figure 10 - it was
not, possible to derive a general rule.

However, SSV gencerally required a higher monodromy matrix dimension
with respect to the simpler case of CSM. As a consequence, the single point
claboration time Tg ¢y required by SSV was on average from two to three
orders of magnitude greater than that required by the corresponding casc
with CSM. This fact can be explained by rec’alhng that it is necessary to

compute geveral mor

y for building the global mon-

[n.

wdromy matrixes ,J(; —
odromy matrix Uq corresponding to a given mllhng configuration and cutting
condition when SSV is 111volved, whereas in the case of constant speed ma-

chining a single t](g!g_l) is sufficient for achieving the goal.



Conf. Tool-work. Required monodromy matrix dimension Single point elaboration time required by
#  immers. Deccwmmin for achieving 99.9% accuracy Chebyshev Collocation Method Te com [s)
100% SL 1 — — 1 -
10% UP - — om
1 10% DW - — -
5% UP = - — -
5% DW o o — e
50% UP ? [ —
2| sovow = e — o
|
g 50% UP £ | eCm—
50% DW % - — 10
R 8% UP E | o — -
8% DWW § | e — O]
5 50% UP Il - —— {+ ——
50% DW = ——————— - —
100% SL z | s — —
6 | 50%UP 5 -
50% DW O mmomm y:
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7 | 50%UP - L0
50% DW | om—— | ] | - | | |
100% SL —  ——
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1 10% DW — o o © —E— o
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100% SL — — — — — —
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50% DW - ‘
8 16 32 64 128 28 512 1024 10° 10 107 10° 10" 10 10°

Figure 10: Numcrical results in terms of memory consumption and single point
claboration time by applying the new algorithm and by requiring 99.9% accuracy
for spectral radius (SL=slotting, UP=up milling, DW=down milling).
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Eventually, the detailed comparison between the new algorithm and SDM
presented in Figure 11 confirmed the smaller memory consumption of the new
algorithin, especially when SSV was applied, except for a few cases mostly
referring to CSM. Anyhow, the new algorithim was from about one to threc
orders of magnitude faster than SDM in all cases, and greatest advantages
were on average obtained with SSV.

It was possible to conclude that the new algorithm assured significantly
better performances than SDM, allowing an efficient stability evaluation of
both CSM and S5V miilling operations.
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Figure 11: Comparison between the new algorithm based on Chebyshev Colloca-
tion Mechtod and SDM, by requiring 99.9% accuracy for spectral radius estimate
(SL=slotting, UP=up milling, DW=down milling).

42



7. Conclusions

A new algorithm for stability evaluation of milling operations with Spindle
Speed Variation (SSV) was developed and successfully compared with a state
of the art method.

The new method was based on a transformation of coordinates from the
time to angular domain, in order to obtain a set of Delay Differential Equa-
tions with fixed delay representing the milling process. Afterwards, the core
of the method was the application of the Chebyshev Caollocation Method for
domain discretization and assessment of system stability.

Stability criteria derived from the theory of Delay Differential Equations
were extended to milling operations with SSV. It was demonstrated that
process stability depends on the spectral radius associated with the obtained
monodromy operator representing the dynamic system evolution, as in the
casc of Constant Speed Machining (CSM). However, it was found out that
(nominal stable) forced vibrations may play a crucial role when assessing the
overall vibration volume affecting the cutting process, and hence important
technological outputs such as the machined surface quality. In this perspec-
tive, both the spectral radius and the final forced vibrations can be rapidly
estimated by the developed algorithm.

Both the new method and the state of the art method - Semi Discretiza-
tion Method - considered in this work generated the same predictions of
system stability, provided that a sufficiently large number of discretization
subintervals or collocation points was chosen for each algorithm. Thus, the
methods were comparced in terms of convergence to the theorctical solution
and of single point elaboration time for a given level of accuracy (99.9%),
by assuming the monodromy matrix dimension as main parameter during
comparison. For this purpose, several experiiental configurations, cutting
parameter combinations, as well as different spindle speed regimes (Constant
Speed Machining and Spindle Speed Variation) were tested.

When applying the new algorithm, about 95% of the investigated points
required less memory consumption to converge. In addition, in 57.8'% of cases
the Semi Discretization Method did not even converge to the theoretical
solution with a monodromy matrix dimension smaller than 1024, whercas
this percentage reduced to 1.5% when using the new algorithm.

Regarding the single point elaboration time, the new algorithm was faster
in 99.9% of cases. Specifically, it was from one to three orders of magnitude
taster than the Semi Discretization Method.
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It is worth noting that the greatest advantages both in terms of memory
consumption and single point elaboration time were obtained when con-
sidering milling operations with Spindle Speed Variation, with respect to
conventional milling operations performed at constant spindle speed.

In conclusion, the developed method allows an efficient evaluation of
milling process stability both with constant and modulated spindle speed,
overcoming the convergence problems which may affect the Semi Discretiza-
tion Method. Accordingly, the new algorithm is very appealing for industrial
applications where computation speed is of primary importance, in the per-
spective of preventive calibration of SSV parameters and for optimization of
the cutting process.

References

[1] I. Grabee, Chaotic dynamics of the cutting process, International Jour-

nal of Machine Tools and Manufacture, 28 (1988) 19-32

[2] J. Warminski, G. Litak, M.P. Cartmecll, R. Khanin, M. Wiercigroch,
Approximate analytical solutions for primary chatter in the non-linear
metal cutting model, Journal of Sound and Vibration, 259/4 (2003)
917-933

[3] J. Tlusty, Manufacturing Processes and Equipment, Prentice-Hall, En-
glewood Cliffs, NJ, (2000)

[4] G. Stepan, Delay-differential equation models for machine tool chatter,
Nonlinear Dynamics of Material Processing and Manufacturing, Ed.:
F.C. Moon, John Wiley and Sons, New York, (1998), 165-19

[5] Y. Altintas, G. Stepan, D. Merdol, Z. Dombovari, Chatter stability of
milling in frequency and discrete time domain, CIRP Journal of Manu-

facturing Science and Technology, 1 (2008) 35-44

[6] G. Totis, RCPM A new method for robust chatter prediction in milling,
International Journal of Machine Tools and Manufacture, 49 (2009) 273-
284

[7] M. Sortino, G. Totis, F. Prosperi, Modeling the dynamic properties of
conventional and high-damping boring bars, Mechanical Systems and
Signal Processing, 34 (2013) 340-352

44



[8]

[15]

[16]

[17]

E. Budak, An Analytical Design Method for Milling Cutters with Non-
constant Pitch to Increase Stability, part 2: Application, Journal of
Manufacturing Science and Engincering, Trans. ASME, 125 (2003) 35-
38

M. Weck, C. Brecher, Werkzeugmaschinen 5: Messtechnische Unter-
suchung und Beurteilung, dynamische Stabilitt, (2006), Springer-Verlag

F. Yang, B. Zhang. J. Yu, Chatter suppression with multiple time-
varying parameters in turning, Jjournal of Materiais Processing Tech-
nology, 141 (2003) 431-438

D. Mei, T. Konga, A.J. Shihb, Z. Chen, Magnetorheological fluid-
controlled horing bar for chatter suppression, J. Mater. Process. Tech-
nol., 209 (2009) 1861-1870.

J.I.. Dohner, J.P. Lauffer, T.D. Hinnerichs, N. Shankar, M. Regelbrugge,
C.M. Kwan, R. Xu, B. Winterb, Mitigation of Chatter Instabilities by
Active Structural Control, Journal of Sound and Vibration, 269 (2004)
197-211

C. Brecher, D. Manoharan, U. Ladra, H.-G. Kpken, Chatter suppression
with an active workpiece holder, Prod. Eng. Res. Devel., 4 (2010) 239-
245

N.J.M. van Dijk, E.J.J. Doppenberg, R.P.H. Faassen, N. van de Wouw,
J.A.J. Oosterling, H. Nijmeijer, Automatic in-process chatter avoidance
in the high speed milling process, ASME Journal of Dynamic Systems,
Measurement and Control, 132 (2010)

T. Stoferle, H. Grab, Vermceiden von Ratterschwingungen durch peri-
odische Drehzahlanderung, Werkstatt und Betrieb, 105 (1972) 727.

J.S. Sexton, B.J. Stone, The stability of machining with continuously
varying spindle speed, Annals of the CIRP, 27 (1978) 321-326.

T.C. Tsao, M.W: McCarthy, S.G. Kapoor, A new approach to stability
analysis of variable speed machining systems, International Journal of
Machine Tools and Manufacture, 33/6 (1993) 791-808

45



[18]

[22]

P. Albertelli, S. Musletti, M. Leonesio, G. Bianchi, M. Monno, Effective-
ness and feasibility of spindle speed variation in turning, Proceedings of
the 10th ATTeM Conference, Neaples, Ttaly, (2011)

M.X. Zhao, B. Balachandran, Dynamics and stability of milling process,
International Journal of Solid and Structures, 38 (2001) 2233-2248

M.L. Campomanes, Y. Altintas, An Improved Time Domain Simula-
tion for Dynamic Milling at Small Radial Immersions, Trans. ASME,
Manufacturing and Engineering and Science, 125 (2003) 29-3%8

T. Insperger, T. L. Schmitz, T. J. Burns, G. Stepan, Comparison of
analytical and numerical simulations for variable spindle speed turning,
Proceedings of IMECE(03: 2003 ASME International Mechanical Engi-
necering Congress, Washington, USA

M. Zatarain, I. Bediaga, J. Munoa, R. Lizarralde, Stability of milling
processes with continuons spindle speed variation: Analysis in the fre-
quency and time domains, and experimental correlation, CIRP Annals
- Manufacturing Techuology, 57 (2008) 379-384

E. Al-Regib, J. Ni, S.-H. Lee, Programming spindle speed variation
for machine tool chatter suppression, International Journal of Machine
Tools and Manufacture, 43 (2003) 1229-1240

S. Jayaram. S. G. Kapoor, R. E. DeVor, Analytical Stability Analysis
of Variable Spindle Speed Machining, ASME Journal of Manufacturing
Science and Engineering, 122 (2000) 391-397

S. Sastry, S. G. Kapoor, R. E. DeVor, Floquet Theory Based Approach
for Stability Analysis of the Variable Speed Face-Milling Process, ASME
Journal of Manufacturing Science and Engineering, 124 (2002) 10-17

A Yilmaz, E. Al-Regib, J. Ni, Machine Tool Chatter Suppression by
Multi-Level Random Spindle Speed Variation, ASME Journal of Man-
ufacturing Science and Engincering, 124 (2002) 208-216

T. Insperger, G. Stepan, Stability analysis of turning with periodic spin-
dle speed modulation via semidisceretization, Journal of Vibration and

Control, 10 (2004) 1835-1855

46



28]

32

[33]

S. Seguy, T. Insperger, L. Arnaud, G. Dessein, G. Peign, On the stability
of high-speed milling with spindle speed variation, Int. J. Adv. Manuf.
Technol., 48 (2010) 883-895

X. Long. B. Balachandran, Stability of Up-milling and Down-milling
Operations with Variable Spindle Speed, Journal of Vibration and Con-
trol, 16(7-8) (2010) 1151-1168

Y. Altintas, E. Budak, Analytical Prediction of Stability Lobes in

T. Insperger, G. Stpn, Updated semi-discretization method for periodic
delay-differential equations with discrete delay, International Journal for

Numerical Methods in Engineering, 61 (2004) 117-141.

E. Bueler, Chebyshev Collocation for Linear, Periodic, Ordinary and
Delay Differential Equations: a Posteriori Estimates, (2004), Cornell
University Library. http://arxiv.org/, math.NA /0409464

E.A. Butcher, P. Nindujarla, K. Bueler, Stability of Up- and Down-
Milling using Chebyshev Collocation Method, Proceedings of ASME
2005 International Design Engineering Technical Conferences and Com-
puters and Information in Engineering Conference IDETC/CIE 2005,

California, USA

E. Kuljanic, M. Sortino. G. Totis, Quick Chatter Prediction Method -
QCPM, an Innovative Algorithm for Chatter Prediction in Milling, 8th
AlTeM Conference, (2007), Montecatini Terme, Italy

G. Genta, Dynamics of Rotating Systems, (2005), Springer

J. Gradisek, M. Kalveram, T. Insperger. K. Weinert, G. Stepan, E.
Govekar, I. Grabec, On stability prediction for milling, International
Journal of Machine Tools and Manufacture, 45 (2005) 768-781

Y. Altintas, M. Weck, Chatter stability of metal cutting and grinding,
Annals of the CIRP, 53/2 (2004) 619-642

Y. Altintas, Manufacturing automation: Metal Cutting Mechanics, Ma-
chine Tool Vibrations, and CNC Design, (2000),Cambridge University
Press

47



[39]

[40]

[43]

44
43

G. Totis, Rescarch on the Dynamics of Milling, PhD Dissertation, 2008,
University of Udine
M. Pakdemirli, A.G. Ulsoy, Perturbation Analysis of Spindle Speed Vari-

ation in Machine Tool Chatter, Journal of Vibration and Control. 3
(1997) 261-278

E. Bueler, E. Butcher, Stability of periodic linear delay-differential equa-
tions and the Chebyshev approximation of fundamental solutions, UAF

Dept. of Mathematical Sciences Technical Report 2002-2003

V. Hutson, J.S. Pym, Applications of Functional Analysis and Operator
Theory, (1980), Academic Press, New York

L.N. Trefethen, Speetral Methods in MATLAB, (2000), SIAM Press,
Philadelphia

http://www.cs.ual.edu/

Y. Altintas, S. Engin, Generalized Modeling of Mechanics and Dynamics
of Milling Cutters, Annals of the CIRP, 50/1 (2001) 25-30

48



