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FAULT-TOLERANT STABILIZATION
IN DISCRETE-TIME MULTIPLE-INTEGRATOR NETWORKS
WITH GENERAL INFORMATION SHARING

A. Locatelli, N. Schiavoni

ABSTRACT

The paper considers a network of agents with identical disetime
multiple-integrator dynamics. The agents share inforomaticcording to an
arbitrary topology. The information is relative to the statcorresponding
to some of the highest integration levels. With referencéhis setting, a
decentralized stabilization problem is faced, under tiéhé&r assumption that
faults may occur in the communication apparatuses of onewsral of the
agents. Necessary and sufficient solvability conditioresmesented for the
problem, together with formulas for a class of least-orégutators.

Key Words: Network control, decentralized control, fault-tolerarmntrol,
stabilization.

I. INTRODUCTION particular, we consider the possibility that: (i) one or
more agents become unable to transmit information on
Networks are systems composed of subsystems,neir states to the other agents; (ii) one or more agents
called agents, which share information useful for pecome unable to receive information on the states of
control. The relevant literature is very vast, and the other agents. We require that the closed-loop system
mainly concentrate on identical agents having single- \emains stable in all these events.
or multiple-integrator dynamics. Most of the papers In a continuous-time framework, this problem has
tackle consensus, synchronization, flocking and similar already been faced if2p, 23). The former paper makes
coordination problems (see, e.d}{17]). Otherpapers  yeference to double-integrator networks follows the lead
face stabilization and pole-placemen8F[20]. of [20], where fault-tolerance is not an explicit issue,
Within this general context, we consider a ang solves a fault-tolerant dominant-pole-placement
decentralized stabilization problem for a network of problem by means of a high-gain regulator. The latter
discrete-time multiple integrators. We assume that only consjders multiple-integrator networks, renounces to
the states corresponding to one or more of the highestget pole-placement and proposes low-gain regulators
integration levels of the control variables are available gpje to supply the system with fault-tolerant stability.
for measure. Then, the agents share pieces of this|y poth cases, the exchange of information among the
information according to an arbitrary topology. Further, agents pertains only to the states relative to the highest-
we also include a fault-tolerance condition in the qrger integral of the control variables. On the contrary,
statement21]. Specifically, we assume that faults may  the |ower-order integrals are not available for measure.
occur in the agents communication apparatuses. In Our solution technique has its roots in some

previous results of ours, concerning what is called
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of regulators whose dynamics are concentrated in onelet
or in a few nodes of the network. On the contrary,

we propose a class of least-order low-gain regulators, Ky, 0, = {k[ﬁl,ﬂz]i,j}

whose dynamics are distributed on the network. 0 , je . i#]
A central role in our fault-tolerant technique is Ko, ,9.0i,5 = 0 , i€ . JF

played by a necessary and sufficient condition for the ki . otherwise

existence of a diagonal matrix such that its product with
a given matrix is Hurwitz together with all its principal
submatrices 31]. This condition can be considered a
nontrivial extension of the classical sufficient condition
in [32] for the existence of a diagonal matrix such that

its product with a given matrix is Hurwitz (see also row or column is removed. Analogously, for any scalar
[33, 34). _ _ _ ~variablew, let's adopt the notation(y, 4,;(w) and
In the present discrete-time setting, the solution K9 (w) for a matrix function K (w). As usual, I,
of a stabilization problem cannot be attained by high- denotes ther x o identity matrix. Finally, leto(¢) be
gain regulators. Hence, there is no possibility to adopt any function such thatm,_,¢ o(¢)/¢ = 0
a strategy similar to the one oRZ?] in this context.
For this reason, reformulating the design technique of
[23] to control discrete-time networks is of particular Il. PROBLEM STATEMENT

interest. This has already partially been doned#g],[ We consider a network ofn identical agents

Whgrsl onlﬁ/ thebhlghest—orde(; |ntegrq: g‘; t?e control e internal dynamics are constituted by chaines of
variables have been assumed as available for measure, giscrete-time integrators. As a whole, it is described

Our aim here is generalizing this result. in the time-domain by
By following the line of R3], [35], we tackle

Matrix Ky, g,) is o x o. Of course,Ky g = K. For
any set of integer#, of the same form ag; and,
above, leti{ ) denote theo — ky) x (0 — Ky) Matrix
obtained fromK after removing its rows and columns
with indices in the set). Conventionally, ifd = () no

the decentralized fault-tolerant stabilization problem w1(k+1) = x1(k) + z2(k)

outlined above, under the assumption that the states zo(k + 1) = x2(k) + x3(k)
corresponding to some (typically more than one) of : . (1)
the highest integration levels are available for measure. Tpo1(k+1) = :;n_1(k) + zn (k)

The necessary and sufficient solvability condition is the an(k+ 1) = 20 (k) + u(k)

same as that ir3p], but the regulators turn out to be of
lower order. Indeed, the regulator order decreases as the ~ Herewu(k) andz;(k), j € N :={1,2,...,n}, are
number of the states available for measure increases. m-dimensional vectorsu(k) collects all the control
The paper is organized as follows. We formally Variablesy;(k) collects thej-th state variables of all the
state the fault-tolerant stabilization problem in the @agents. Of courses;(k)is the(n —j + 1)-th (discrete-
next section. Then, we solve it in Section I, tme)integralofu(k). o _
after reformulating it in a more convenient way. We assume that only a partial information
Subsequently, we illustrate the design technique in on the state of the network is available to each
Section IV by means of an example. Finally, Section agent. Specifically, the-th agent knowy < n linear

. . combinations of the state of the network. Each one of
V contains some concluding remarks. The proofs of the them concerns only; (k), j € P = {1,2 1. that
main results are collected in the Appendix. Yi\v), J PRI N

_ is, thep highest-order integrals af(k). The coefficients
Notation. Let () denote the empty set, and, for any  of these combinations are the same forjatl P.

setd, let xy be its cardinality. For any x o matrix Thus, the flow of information throughout the
K, letk; ; be its (i, j) element. IfK is diagonal, the  network is described by

elements:; ; are denoted by; for simplicity. For any

two sets of integers y;j(k) = Gzj(k), j € P, ()
9y = {0110 < 90 < oand dy; # 91, Vi £ 5}, where theyj'(k)s arem-dlmensmnal vectors, and the
T m x m matrix G := {g; 5} is real and may be referred
U2 = {02: |0 < Jg; < cand dy; # 0o, Vi # j } to as the topology matrix.

(© 0000 John Wiley and Sons Asia Pte Ltd and Chinese AutomatitrGidSociety
Prepared using asjcauth.cls



A. Locatelli, N. Schiavoni: Fault-tolerant stabilization 3

Of course, the-th component ofi(k) is the input
of thei-th agent, whereas thieth components oj; (), )
j € P, are its output. L(2) = Ri(2)—————G = Dy (2)"'Np(2),

The model specified byl}, (2) generalizes those =) ; i )(Z — 1)n=att L&) Nee)
frequently adopted in the literature. See, for instance,
[20], [23], wheren = 2 andp = 1, and R3], [35], where where
n is arbitrary and agaip = 1. In the complex variable
domain it can be given the form

1 Np(z) =Y (2 —1)77'N;(2)G,
i(2) = mGU(Z)a JjeP, 3 j;D
Dp(z):=(z—1)"D(z2).

whereY;(z) andU (=) are theZz-transforms ofy, (k) and
u(k). Then, by letting

We assume that faults may occur in the
communication apparatuses of the agents. Specifically, Q(2) == Dp(2) — Ni(2), (6)
we suppose that an arbitrary set of agents may become

unable to transmit the information about their states forany(fr, fr) C M x M, the characteristic equation
to the other agents, and denote thls setfhyc M. of the positive feedback syster)( (58), (5b), is
Similarly, we suppose that an arbitrary set of agents

may become unable to receive the information about _
the states of the other agents and denote this set by det (Qiyr. 1(2)) = 0. 0
frRC M.

Hence, all the operating conditions of the
network are described by the paifgr, fr) C M x
M. Of course( fr, fr) = (0, () represents the nominal
condition. Problem 1 Find a regulator R(z), of the form (5b)-

Equations 1), (2) or (3) represent the network in  (5d), such that, for all (fr, fr) C M x M, system (4),
nominal conditions. Nominal and faulty conditions can (5g) is stable, that is, all the roots of the characteristic

Now, we are in the right position to state our
stabilization problem.

be considered at the same time by substitutB)guith equation (7) lie inside the open unit disk.
1 O
Yi() = oy CuramU2),

Notice that we require that the networ®,(when
controlled by the decentralized regulatéi,(is stable

Our aim is controlling the above network by means whiche\_/er fthe sets_of agents _unable to transmit and/or
of a decentralized regulator. In other words, we are [0 réceive information on their states may be. Hence,

interested in regulators composedrefiocal elements, ~ @ regulator solving Probleni actually supplies the
the i-th of which is applied to the-th agent. These control system J), (58 with a real fault-tolerance

(fr,frR) CMxM, jeP. 4)

regulators are described by property.
Probleml is a generalization of the problem dealt
Uz) = Z R;i(2)Y;(2), (5a) with in [35], where only the casg = 1 is considered.
jeP
Rj(2) := D(2)7'N;(2), (5b)
N;(2) = diag {nj1(2),nj2(2), ... ,njm(2)}, (5C) 1. PROBLEM REF(_)I_IIQMNULATION AND
D(2) = diag {d1(2), da(2), ... dm(2)},  (5d) SOLUTIO
where R;(z), j € P, is proper, thel + p polynomials We now introduce the new Probleznand state its
di(2), n1i(2), n2;(2), ..., npi(2) do not have common equivalence with Probleth(Lemmal). Then, we study
factors, and thd,(z)s are monicj € M. the solvability of Problem2 (Lemmas2-4). Finally,

The loop transfer function of the positive feedback we give a necessary and sufficient condition for the
system 8), (59), (5b) obtained by cutting the loop at solvability of Probleml and supply explicit formulas
U(z),is for the regulator (Theorer).
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3.1. Problem reformulation 3.2. Problem solution
First' we Observe that, for any Coumﬁr’ fR) C We Obsel‘ve that a regulatd%(Z) can SOIVe the
M x M, Problem?2 only if the order of each;(z) is at least

n — p. Indeed, consider the cage= M\ {i}. Then,

det = (2, fr, (2), (8 (12) becomesy;(z) = 0. A necessary condition for this
¢ (Q[fT’fR](Z)) x (2 fr, I7) H wilz), (8) equation to have all roots lying inside the open unit disk

1ot is that all the roots of the equation
where
wi(s) == wi(s+1) :=
X (27 fTa fR) = det (Q(fTUfR)(Z)) ) (ga) = Sndi(s + 1) - Z Sj_lnji(s + 1)9&1 =0
wi(z) == Qi) (2) = Jjep
=(z—1)"di(z) — Z(z — 1) ni(2) g4, have negative real part. However, if the degree of
jEP d;(z) is less tham — p, this is impossible, because the
i € frU fr. (9b) coefficient ofs™ 7 in w;(s) is 0.

In view of the results in 48], the network is
stabilizable for any singlef ¢ M by means of a
decentralized regulator tuned to thatif and only if
Gy is nonsingular, which means that the network has
no fixed modes (at = 1). However, Problen® calls
for a single decentralized regulator which stabilizes

Equations §)-(9) can easily be proved by recalling
(6) and the zero-non-zero pattern 6f;,. s,;. Hence,
the characteristic equatiory)( of system 4), (5) is
equivalent to the set of equations

_ the network for allf ¢ M. Hence, we expect tighter
=0 10

Xz fT’_fR) ’ (10) solvability conditions for it.

wi(2) =0, 4 € frU fr. (11) Afirst result is the necessary condition given in the

forthcoming lemma, where we make use of the matrix

Equation (0) is the characteristic equation of 7 hich retains only the diagonal entries@f namely,

the controlled subnetwork composed of the agents not
involved in faults. Further,1(1) are the characteristic
equations of the single controlled agents whose

transmitting and/or receiving apparatuses are faulty. | emma2 Problem 2 admits a solution only if
Now, for any givenf C M, we define the equation

é = G[MM] = diag{gm, 92,2, .- 7g'rn,m}- (13)

det (G(p)) det (G()) >0, Vfc M. (14)

det (Q(f)(z)) =0. (12) ( )
O

Then, we consider the following problem.

Now, we tackle the sufficiency issue. The first step

is constituted by Lemma. It has its roots in our results
in [25, 27], and supplies an explicit expression®fz),
under the assumption that a suitable diagonal mafrix
can be found. To this aim, we define theollowing
m X m matrices:

Problem 2 Find a regulator R(z), of the form (5b)-
(5d), such that, for all f c M, the roots of (12) lie
inside the open unit disk. O

The relationships between Problerhsand 2 are

i (n—j+1)(n—j+2) .
very tight. Clearly, {0) and (L1) of Problemi reduce to ®(e) == (5 B )Im, j€P\{p}, (15a)
(12) of Problem2 for f = frU fr and f = M\ {i},
i € fr U fr, respectively. Viceversalp) of Problem2 A . iGE
reduces to {0) of Problem1 if fr U fz = f. Hence, — Y(2.6):= (= PONCE e I
j=1

these observations directly lead us to the following

lemma. (15b)

Lemma 3 Problem 2 admits a solution if there exists

Lemmal A regulator R(z), of the form (Sh)-(5d), an m x m real diagonal matrix V such that, for all
solves Problem 1 if and only if it solves Problem 2. [ f € M, thematrices GV, are Hurwitz.
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Further, under this condition, there exists £ > 0 Lemma4 An m x m real diagonal matrix V' there
such that, for all € (0, £), the regulator exists such that, for all f C M, the matrices G )V
_ are Hurwitzif and only if (14) holds.
R(z):=V [‘1’1(5) Oa(e) o Ppoale) ‘I’(Z’f':l)g Further, if (14) holds, then there exists 7 > 0 such
(16) that, for all f ¢ M and for all 7 € (0,7), the matrices
solves Problem 2. O

=G ()G T (s (), where
The regulator R(z) of the lemma is actually

decentralized, sincé’, the ®;(c)s and ¥(z,¢) are T(7) = diag {7, 7%,..., 7™}, (17)
diagonal. Further, the regulator is low-gain, in the sense p5ye distinct real negative eigenvalues. 0
that its d.c. gain goes to zero together with The

order of the local regulator®;(z) is n — p which, as It is now clear that, for any < (0, 7), the matrix
already noticed, is the least one for Probl2ito admit ~

a solution. In particular, the regulator dynamics are V= -GT(r) (18)

concentrated on the transfer functidriz,c) between ¢ the properties required in Lemn@ As a
Yy (2) an_dU(z),whereasthe transfer functions between consequence, the necessary conditidd) (is also
Yj(2), j € P\{p}, and U(z) are nondynamic, as  ggicient for the existence of a solution to Problem

given by ®;(c). Further, trivial, but cumbersome, , Thys the combination of Lemmas4 supplies
gzrcv‘:i‘#:::%n: show that the transfer functidsl) can e proof of our main result, stated in the following

theorem.
n—p+1
U(z,¢) = (z:p H (z—14¢&+ o(sj))> V. Theorem 1 Problem 1 admits a solution if and only if
j=2

- - det (Gp)det (Gp) >0, Vfc M. (19
Thus,¥(z, e) hasm(n — p) finite real transmission et (Gip) de ( (f)) / (19)

zeros. They are located inside the open unit disk, and Further, under this condition there exist 7 > 0 and
the distances from =1 of m of them have order of () > ¢ such that, for all € (0,7) and for all ¢ €

magnitudes?, j = 2,3,...,n —p+ 1. (0,&()), the regulator (13), (15)-(18) solves Problem
Lastly, two extreme, yet meaningful, cases are 1 O
worth considering. The first is = n, which means that
all the state variables are available for measure. In this ~ Itis worth noticing that the necessary and sufficient
case, the functionl6h) becomes solvability condition ((9) depends only on the topology
matrix G. On the contrary, it is independend ofand
U(z,¢) = elm, p, and in fact it coincides with the condition given in

so that the regulatorL§) is nondynamic. The second [39] for the casep = 1. However, the regulator1@),
case isp = 1, which means only; (k) is available for ~ (19)-(18) depends om, and its order decreases when

measure. The corresponding regulator is increases. For any fixed the order is the least possible
one.
1 — g 2GtD) Further, we observe that, for dlfr, fr) € M x
R(z) = 1 Z(Z* nreTE |V M, the closed-loop system¥) (58), (13), (15)-(18)
j=1

enjoys a generalized form of the unconditional stability

The importance of Lemma is strictly related  property, defined ing7], in the sense that any reduction
to the subproblem of the existence and actual of ¢ with respect to a given value belonging to the
determination of matri¥’. Some particular cases have interval (0,(7)), 7 € (0,7), determines a newR(z)
been dealt with in36], where it has been shown that which still solves Problen.

if & is triangular (besides being nonsingular) or else We finally point out that the regulatofi.§), (15)-
diagonally dominant, then it can simply be set:= (18) solving Probleml can be designed according
—gi.i/19i.4- to the following two-step procedure: (i) find a

A much more powerful result can be stated by a sufficieNntIy small positiver such that the matrices
direct application of a general algebraic theorem of ours —G (G )T (4)(7), f C M, are Hurwitz (its existence
[31], concerning what is called stabilization by scaling is guaranteed by Lemm; (i) find a sufficiently small
(see B2]-[34]). Here, we specialize it in the following  positive e such that all the roots oflQ), f c M, lie
lemma, with specific reference to the case at hand. Itsinside the open unit disk (its existence is guaranteed by
proof is given in R3]. Lemmas3).
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Table 1. The magnitudes of the eigenvalues of the controlled Table 2. The magnitudes of the eigenvalues of the controlled

network wherp = 1. network wherp = 2.
‘ H fr=10 H fr={1} H fr=A{2} H fr=A{2,3} ‘ ‘ H Jr=0 H fr=A{1} H fr=A{2} H fr=A{2,3}
frR=10 fr=1{1} fr=1{4} fr=1{2,3} frR=10 fr={1} fr={4} fr=1{2,3}
Ml || 0.2074 0.5115 0.7036 0.5745 Ml || 0.1528 0.1528 0.1528 0.1528
Az 0.7036 0.5115 0.7036 0.5745 Az 0.1528 0.1528 0.1528 0.1528
[As| 0.7036 0.7036 0.7036 0.7036 [As] 0.6277 0.3989 0.1528 0.2373
| | 07036 0.7036 0.7036 0.7036 Nl || 09330 0.7045 0.1528 0.5429
sl || 0.7036 0.7036 0.7036 0.7036 Dl || 0.9823 0.9826 0.9828 0.9827
Dol || 0.7957 0.7036 0.7036 0.7036 Dol || 0.9828 0.9828 0.9828 0.9828
A7 0.9083 0.8534 0.7036 0.8124 A7 0.9828 0.9828 0.9828 0.9828
[As| 0.9083 0.8534 0.7036 0.8124 [As| 0.9830 0.9829 0.9828 0.9829
Dol | 0.9969 0.9969 0.9970 0.9969
ol || 0.9970 0.9970 0.9970 0.9970
| | 0.9970 0.9970 0.9970 0.9970
[Asa] || 09970 0.9970 0.9970 0.9970 dynamics, which share information on their states
according to an arbitrary topology. Specifically, the
IV. ILLUSTRATIVE EXAMPLE information pertains to some of the highest integrals of

the control variable. The network had to be controlled

In order to illustrate our results, we consider a py a decentralized regulator. The design objective
network where the agents are connected in a cyclic way, consisted in stabilizing the closed-loop system in a
the_lt is, each one ofthem shares information with its tWo ¢4, jt-tolerant fashion, that is, even in the presence
neighbors. In particular, we choose=2, m =4 and ¢ taits in the communication apparatuses of some
the topology matrix agents. Within this frame, we have derived a necessary

31 01 and sufficient solvability condition as well as explicit
1 3 10 formulas for a class of least-order regulators.

G = 01 3 1]° Among the possible matter for future work,
1 01 3 we mention the following issues: (i) exploring the

possibility of optimizing the network dynamic behavior,

in some sense to be specified; (ii) extending the
presented results to the case where the agents have
internal dynamics different from that considered here,

controlled network, because each local regulator hastypically with eigenvglugs on ar bitrary _points of the
order 1. It turns outé ~ 0.065. Thus, we complete boundary of the unit circle; (iii) applying the here
the design by setting — 0.055. Table 1 collects the ~ @PProach to consensus problems.
magnitudes of the closed-loop system eigenvalues in
nominal and in three faulty conditions. Stability is .
obtained in all cases. Appendix: Proofs

For comparison, we now let= 2, which leads to
ans-th order controlled network, since the regulator is Proof of Lemmaz2.
nondynamic. It turns out ~ 0.134. Thus, we complete
the design by setting = 0.13. Table 2 collects the
magnitudes of the closed-loop system eigenvalues in
nominal and in the faulty conditions considered before.
Again, stability is obtained in all cases. We remark
that the magnitudes of the dominant eigenvalues are
now significantly less than in the previous case. This

which fulfils condition (L9). Then, simple computations
show that matrices-G ;)G yT(s)(7), fC M, are
Hurwitz for all positiver. We setr = 1.

We first letp = 1, which leads to al2-th order

Assume thatR(z) solves Problem2, so that
all the roots of {2), fc M, lie inside the open
unit disk. Hence, sincé;(z), i € M, is monic, then
det (Q(5)(z)) is monic, and it is necessary that (see
[38], pp. 97, 98)

outcome corresponds to the fact that the information det (Q(f)(l)) =
available to the regulator concerns both the first and = det (G(f)) H (—n14(1)) >0, Vf C M. (20)
double integrals of the control variable. ieM\{f}

V. CONCLUSIONS Consider now the particular case where= M\ {i},

1 € M. Then, conditionZ0) becomes
The paper has considered a discrete-time network
composed of agents with multiple-integrator internal —giin1i(1) >0, Vie M, (21)
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A. Locatelli, N. Schiavoni: Fault-tolerant stabilization 7

which means tha#; ; andn,,(1) have opposite signs. The Newton’s polygon (see, for instanc@9[ 40])
Hence, 20), (21) supply associated toZ3) is drawn in Fig.1. There, a cross
corresponds to any nonzero term of the equation which
det (G(y)) H gii >0, Vf C M, is relevant to the construction of the diagram. This
i€ M\{f} figure shows that the«; branches ofy(f,-) starting

ats = 0 take on the form

which coincides with 14) in view of (13). O
Vaa()+n(fr€) = Eane™ +o(eX),

heA(f), A€ A. (24)

In order to find the S, we substituted) in (23).
By retaining only the dominant terms inwe get

Proof of Lemma 3.

Assume that there exists such thatG s V(s is
Hurwitz, f ¢ M, and defineR(z) according to {3),
(15)-(18). The proof consists in showing that the roots Z (—1)'B;(f) gzigf)fi =0, he A(f), (25a)
of (12), f ¢ M, are all inside the open unit disk when 7% 4
R Gene af)i=m—r; and  Af):= Gn+1=0,heA(f), AeA\{0}.  (25b)
{1,2,...,a(f)}. Then, ftrivial, but cumbersome Then, @59 shows that thé&,,,s are the eigenvalues
computations show thal ) can be written in the form  of GV, which is a Hurwitz matrix. Hence, the

roots @4), A =0, move towards the open left-half of

w(f,z,€) = Z (=1)" (2" P(z — 1)”)a(fH X the complex plane for small positive Further, in view
i€{0YUA(S) of (25b), also the roots44), A # 0, move towards the
< Bi(f)r(z, ) = 0, 22) open left-half of the complex plane for small positive

The preceding discussion shows that, for gny
M, there exists(f) > 0 such that, for alk € (0,2(f)),

where =1, 5 is the sum of the principal S o
fol) Bilf) PNCEIPAT e roots of £2) lie inside the open unit disk. Then, the

minors of order of G4 V(y),i € A(f), and

lemma follows by letting := min yc aq (f). O
r(z,e) :=2"""7 Z (2 — l)jfls(nij“)?(%jﬁ) ,
JEP\{r} no =
n—p+l o
VY e, 0
j=1 (n—2)a 4

Observe that thes;(f)s are different from zero,
since theG (4 V| y)s are Hurwitz.
For ¢ =0, (22) has na(f) roots atz =1, the a

other (n — p)a(f) roots being at: = 0. Consider the | X\ w

multivalued algebraic functiony(f,-), which gives ' T )
0 a 3 n—2 LN n(n;—l)a

the roots of 22) as functions ofe. By continuity,
sufficiency is proved if it is shown that all the branches Fig. 1. The Newton polygon associated with the equatis): (u is the
’YAa(f)-&-h(fa ,),' AEA = {07 1,....,n— 1}, h 'E A(f), Eg\gr?rd?cl;gbgdii the power ofs (the dependence ef on f has
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