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FAULT-TOLERANT STABILIZATION

IN DISCRETE-TIME MULTIPLE-INTEGRATOR NETWORKS

WITH GENERAL INFORMATION SHARING

A. Locatelli, N. Schiavoni

ABSTRACT

The paper considers a network of agents with identical discrete-time
multiple-integrator dynamics. The agents share information according to an
arbitrary topology. The information is relative to the states corresponding
to some of the highest integration levels. With reference tothis setting, a
decentralized stabilization problem is faced, under the further assumption that
faults may occur in the communication apparatuses of one or several of the
agents. Necessary and sufficient solvability conditions are presented for the
problem, together with formulas for a class of least-order regulators.

Key Words: Network control, decentralized control, fault-tolerant control,
stabilization.

I. INTRODUCTION

Networks are systems composed of subsystems,
called agents, which share information useful for
control. The relevant literature is very vast, and
mainly concentrate on identical agents having single-
or multiple-integrator dynamics. Most of the papers
tackle consensus, synchronization, flocking and similar
coordination problems (see, e.g., [1]-[17]). Other papers
face stabilization and pole-placement [18]-[20].

Within this general context, we consider a
decentralized stabilization problem for a network of
discrete-time multiple integrators. We assume that only
the states corresponding to one or more of the highest
integration levels of the control variables are available
for measure. Then, the agents share pieces of this
information according to an arbitrary topology. Further,
we also include a fault-tolerance condition in the
statement [21]. Specifically, we assume that faults may
occur in the agents communication apparatuses. In
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particular, we consider the possibility that: (i) one or
more agents become unable to transmit information on
their states to the other agents; (ii) one or more agents
become unable to receive information on the states of
the other agents. We require that the closed-loop system
remains stable in all these events.

In a continuous-time framework, this problem has
already been faced in [22, 23]. The former paper makes
reference to double-integrator networks follows the lead
of [20], where fault-tolerance is not an explicit issue,
and solves a fault-tolerant dominant-pole-placement
problem by means of a high-gain regulator. The latter
considers multiple-integrator networks, renounces to
get pole-placement and proposes low-gain regulators
able to supply the system with fault-tolerant stability.
In both cases, the exchange of information among the
agents pertains only to the states relative to the highest-
order integral of the control variables. On the contrary,
the lower-order integrals are not available for measure.

Our solution technique has its roots in some
previous results of ours, concerning what is called
regulator problem in the presence of actuator and
sensor faults [24]-[27]. It is not based on general-
purpose techniques for decentralized control design
[28]-[30], to be suitably extended to cope with the fault-
tolerance requirement. Indeed, they require the adoption
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of regulators whose dynamics are concentrated in one
or in a few nodes of the network. On the contrary,
we propose a class of least-order low-gain regulators,
whose dynamics are distributed on the network.

A central role in our fault-tolerant technique is
played by a necessary and sufficient condition for the
existence of a diagonal matrix such that its product with
a given matrix is Hurwitz together with all its principal
submatrices [31]. This condition can be considered a
nontrivial extension of the classical sufficient condition
in [32] for the existence of a diagonal matrix such that
its product with a given matrix is Hurwitz (see also
[33, 34]).

In the present discrete-time setting, the solution
of a stabilization problem cannot be attained by high-
gain regulators. Hence, there is no possibility to adopt
a strategy similar to the one of [22] in this context.
For this reason, reformulating the design technique of
[23] to control discrete-time networks is of particular
interest. This has already partially been done in [35],
where only the highest-order integral of the control
variables have been assumed as available for measure.
Our aim here is generalizing this result.

By following the line of [23], [35], we tackle
the decentralized fault-tolerant stabilization problem
outlined above, under the assumption that the states
corresponding to some (typically more than one) of
the highest integration levels are available for measure.
The necessary and sufficient solvability condition is the
same as that in [35], but the regulators turn out to be of
lower order. Indeed, the regulator order decreases as the
number of the states available for measure increases.

The paper is organized as follows. We formally
state the fault-tolerant stabilization problem in the
next section. Then, we solve it in Section III,
after reformulating it in a more convenient way.
Subsequently, we illustrate the design technique in
Section IV by means of an example. Finally, Section
V contains some concluding remarks. The proofs of the
main results are collected in the Appendix.

Notation. Let ∅ denote the empty set, and, for any
set ϑ, let κϑ be its cardinality. For anyσ × σ matrix
K, let ki,j be its (i, j) element. IfK is diagonal, the
elementski,i are denoted byki for simplicity. For any
two sets of integers

ϑ1 := {ϑ1i |0 < ϑ1i ≤ σ andϑ1i 6= ϑ1j , ∀i 6= j } ,

ϑ2 := {ϑ2i |0 < ϑ2i ≤ σ andϑ2i 6= ϑ2j , ∀i 6= j } ,

let

K[ϑ1,ϑ2] :=
{
k[ϑ1,ϑ2]i,j

}

k[ϑ1,ϑ2]i,j :=





0 , j ∈ ϑ1 , i 6= j
0 , i ∈ ϑ2 , j 6= i .
ki,j , otherwise

Matrix K[ϑ1,ϑ2] is σ × σ. Of course,K[∅,∅] = K. For
any set of integersϑ, of the same form asϑ1 andϑ2

above, letK(ϑ) denote the(σ − κϑ)× (σ − κϑ) matrix
obtained fromK after removing its rows and columns
with indices in the setϑ. Conventionally, ifϑ = ∅ no
row or column is removed. Analogously, for any scalar
variablew, let’s adopt the notationsK[ϑ1,ϑ2](w) and
K(ϑ)(w) for a matrix functionK(w). As usual,Iσ
denotes theσ × σ identity matrix. Finally, leto(ζ) be
any function such thatlimζ→0 o(ζ)/ζ = 0

II. PROBLEM STATEMENT

We consider a network ofm identical agents,
whose internal dynamics are constituted by chaines of
n discrete-time integrators. As a whole, it is described
in the time-domain by

x1(k + 1) = x1(k) + x2(k)
x2(k + 1) = x2(k) + x3(k)

... ·
xn−1(k + 1) = xn−1(k) + xn(k)

xn(k + 1) = xn(k) + u(k)

(1)

Hereu(k) andxj(k), j ∈ N := {1, 2, . . . , n}, are
m-dimensional vectors:u(k) collects all the control
variables,xj(k) collects thej-th state variables of all the
agents. Of course,xj(k) is the(n− j + 1)-th (discrete-
time) integral ofu(k).

We assume that only a partial information
on the state of the network is available to each
agent. Specifically, thei-th agent knowsp ≤ n linear
combinations of the state of the network. Each one of
them concerns onlyxj(k), j ∈ P := {1, 2, . . . , p}, that
is, thep highest-order integrals ofu(k). The coefficients
of these combinations are the same for allj ∈ P .

Thus, the flow of information throughout the
network is described by

yj(k) = Gxj(k), j ∈ P , (2)

where theyj(k)s arem-dimensional vectors, and the
m×m matrixG := {gi,h} is real and may be referred
to as the topology matrix.
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Of course, thei-th component ofu(k) is the input
of thei-th agent, whereas thei-th components ofyj(k),
j ∈ P , are its output.

The model specified by (1), (2) generalizes those
frequently adopted in the literature. See, for instance,
[20], [23], wheren = 2 andp = 1, and [23], [35], where
n is arbitrary and againp = 1. In the complex variable
domain it can be given the form

Yj(z) =
1

(z − 1)n−j+1
GU(z), j ∈ P , (3)

whereYj(z) andU(z) are theZ-transforms ofyj(k) and
u(k).

We assume that faults may occur in the
communication apparatuses of the agents. Specifically,
we suppose that an arbitrary set of agents may become
unable to transmit the information about their states
to the other agents, and denote this set byfT ⊂ M.
Similarly, we suppose that an arbitrary set of agents
may become unable to receive the information about
the states of the other agents and denote this set by
fR ⊂ M.

Hence, all the operating conditions of the
network are described by the pairs(fT , fR) ⊂ M×
M. Of course,(fT , fR) = (∅, ∅) represents the nominal
condition.

Equations (1), (2) or (3) represent the network in
nominal conditions. Nominal and faulty conditions can
be considered at the same time by substituting (3) with

Yj(z) =
1

(z − 1)n−j+1
G[fT ,fR]U(z),

(fT , fR) ⊂ M×M, j ∈ P . (4)

Our aim is controlling the above network by means
of a decentralized regulator. In other words, we are
interested in regulators composed ofm local elements,
the i-th of which is applied to thei-th agent. These
regulators are described by

U(z) =
∑

j∈P

Rj(z)Yj(z), (5a)

Rj(z) := D(z)−1Nj(z), (5b)

Nj(z) := diag {nj1(z), nj2(z), . . . , njm(z)} , (5c)

D(z) := diag {d1(z), d2(z), . . . , dm(z)} , (5d)

whereRj(z), j ∈ P , is proper, the1 + p polynomials
di(z), n1i(z), n2i(z), . . . , npi(z) do not have common
factors, and thedi(z)s are monic,i ∈ M.

The loop transfer function of the positive feedback
system (3), (5a), (5b) obtained by cutting the loop at
U(z), is

L(z) :=
∑

j∈P

Rj(z)
1

(z − 1)n−j+1
G = DL(z)

−1NL(z),

where

NL(z) :=
∑

j∈P

(z − 1)j−1Nj(z)G,

DL(z) := (z − 1)nD(z).

Then, by letting

Q(z) := DL(z)−NL(z), (6)

for any(fT , fR) ⊂ M×M, the characteristic equation
of the positive feedback system (4), (5a), (5b), is

det
(
Q[fT ,fR](z)

)
= 0. (7)

Now, we are in the right position to state our
stabilization problem.

Problem 1 Find a regulator R(z), of the form (5b)-
(5d), such that, for all (fT , fR) ⊂ M×M, system (4),
(5a) is stable, that is, all the roots of the characteristic
equation (7) lie inside the open unit disk.

�

Notice that we require that the network (3), when
controlled by the decentralized regulator (5), is stable
whichever the sets of agents unable to transmit and/or
to receive information on their states may be. Hence,
a regulator solving Problem1 actually supplies the
control system (3), (5a) with a real fault-tolerance
property.

Problem1 is a generalization of the problem dealt
with in [35], where only the casep = 1 is considered.

III. PROBLEM REFORMULATION AND
SOLUTION

We now introduce the new Problem2, and state its
equivalence with Problem1 (Lemma1). Then, we study
the solvability of Problem2 (Lemmas2-4). Finally,
we give a necessary and sufficient condition for the
solvability of Problem1 and supply explicit formulas
for the regulator (Theorem1).
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3.1. Problem reformulation

First, we observe that, for any couple(fT , fR) ⊂
M×M,

det
(
Q[fT ,fR](z)

)
= χ (z, fT , fR)

∏

i∈fT∪fR

ωi(z) , (8)

where

χ (z, fT , fR) := det
(
Q(fT∪fR)(z)

)
, (9a)

ωi(z) := Q(M\{i})(z) =

= (z − 1)ndi(z)−
∑

j∈P

(z − 1)j−1nji(z)gi,i,

i ∈ fT ∪ fR. (9b)

Equations (8)-(9) can easily be proved by recalling
(6) and the zero-non-zero pattern ofG[fT ,fR]. Hence,
the characteristic equation (7) of system (4), (5) is
equivalent to the set of equations

χ (z, fT , fR) = 0, (10)

ωi(z) = 0, i ∈ fT ∪ fR. (11)

Equation (10) is the characteristic equation of
the controlled subnetwork composed of the agents not
involved in faults. Further, (11) are the characteristic
equations of the single controlled agents whose
transmitting and/or receiving apparatuses are faulty.

Now, for any givenf ⊂ M, we define the equation

det
(
Q(f)(z)

)
= 0. (12)

Then, we consider the following problem.

Problem 2 Find a regulator R(z), of the form (5b)-
(5d), such that, for all f ⊂ M, the roots of (12) lie
inside the open unit disk. �

The relationships between Problems1 and 2 are
very tight. Clearly, (10) and (11) of Problem1 reduce to
(12) of Problem2 for f = fT ∪ fR andf = M\ {i},
i ∈ fT ∪ fR, respectively. Viceversa, (12) of Problem2
reduces to (10) of Problem1 if fT ∪ fR = f . Hence,
these observations directly lead us to the following
lemma.

Lemma 1 A regulator R(z), of the form (5b)-(5d),
solves Problem 1 if and only if it solves Problem 2. �

3.2. Problem solution

We observe that a regulatorR(z) can solve the
Problem2 only if the order of eachRi(z) is at least
n− p. Indeed, consider the casef = M\ {i}. Then,
(12) becomesωi(z) = 0. A necessary condition for this
equation to have all roots lying inside the open unit disk
is that all the roots of the equation

ω̄i(s) := ωi(s+ 1) :=

= sndi(s+ 1)−
∑

j∈P

sj−1nji(s+ 1)gi,i = 0

have negative real part. However, if the degree of
di(z) is less thann− p, this is impossible, because the
coefficient ofsn−p in ω̄i(s) is 0.

In view of the results in [28], the network is
stabilizable for any singlef ⊂ M by means of a
decentralized regulator tuned to thatf if and only if
G(f) is nonsingular, which means that the network has
no fixed modes (atz = 1). However, Problem2 calls
for a single decentralized regulator which stabilizes
the network for allf ⊂ M. Hence, we expect tighter
solvability conditions for it.

A first result is the necessary condition given in the
forthcoming lemma, where we make use of the matrix
G̃ which retains only the diagonal entries ofG, namely,

G̃ := G[M,M] = diag{g1,1, g2,2, . . . , gm,m}. (13)

Lemma 2 Problem 2 admits a solution only if

det
(
G(f)

)
det
(
G̃(f)

)
> 0, ∀f ⊂ M. (14)

�

Now, we tackle the sufficiency issue. The first step
is constituted by Lemma3. It has its roots in our results
in [25, 27], and supplies an explicit expression ofR(z),
under the assumption that a suitable diagonal matrixV
can be found. To this aim, we define thep following
m×m matrices:

Φj(ε) :=
(
ε

(n−j+1)(n−j+2)
2

)
Im, j ∈ P \ {p} , (15a)

Ψ(z, ε) :=

(
1

zn−p

n−p+1∑

j=1

(z − 1)n−p+1−jε
j(j+1)

2

)
Im.

(15b)

Lemma 3 Problem 2 admits a solution if there exists
an m×m real diagonal matrix V such that, for all
f ⊂ M, the matrices G(f)V(f) are Hurwitz.
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Further, under this condition, there exists ε̄ > 0
such that, for all ε ∈ (0, ε̄), the regulator

R(z) := V
[
Φ1(ε) Φ2(ε) · · · Φp−1(ε) Ψ(z, ε)

]

(16)
solves Problem 2. �

The regulatorR(z) of the lemma is actually
decentralized, sinceV , the Φj(ε)s and Ψ(z, ε) are
diagonal. Further, the regulator is low-gain, in the sense
that its d.c. gain goes to zero together withε. The
order of the local regulatorsRi(z) is n− p which, as
already noticed, is the least one for Problem2 to admit
a solution. In particular, the regulator dynamics are
concentrated on the transfer functionΨ(z, ε) between
Yp(z) andU(z), whereas the transfer functions between
Yj(z), j ∈ P \ {p}, and U(z) are nondynamic, as
given by Φj(ε). Further, trivial, but cumbersome,
computations show that the transfer function (15b) can
be written as

Ψ(z, ε) :=

(
ε

zn−p

n−p+1∏

j=2

(
z − 1 + εj + o(εj)

)
)
V.

Thus,Ψ(z, ε) hasm(n− p) finite real transmission
zeros. They are located inside the open unit disk, and
the distances fromz = 1 of m of them have order of
magnitudeεj, j = 2, 3, . . . , n− p+ 1.

Lastly, two extreme, yet meaningful, cases are
worth considering. The first isp = n, which means that
all the state variables are available for measure. In this
case, the function (15b) becomes

Ψ(z, ε) = εIm,

so that the regulator (16) is nondynamic. The second
case isp = 1, which means onlyx1(k) is available for
measure. The corresponding regulator is

R(z) =

(
1

zn−1

n∑

j=1

(z − 1)n−jε
j(j+1)

2

)
V.

The importance of Lemma3 is strictly related
to the subproblem of the existence and actual
determination of matrixV . Some particular cases have
been dealt with in [36], where it has been shown that
if G is triangular (besides being nonsingular) or else
diagonally dominant, then it can simply be setvi :=
−gi,i/|gi,i|.

A much more powerful result can be stated by a
direct application of a general algebraic theorem of ours
[31], concerning what is called stabilization by scaling
(see [32]-[34]). Here, we specialize it in the following
lemma, with specific reference to the case at hand. Its
proof is given in [23].

Lemma 4 An m×m real diagonal matrix V there
exists such that, for all f ⊂ M, the matrices G(f)V(f)

are Hurwitz if and only if (14) holds.
Further, if (14) holds, then there exists τ̄ > 0 such

that, for all f ⊂ M and for all τ ∈ (0, τ̄), the matrices
−G(f)G̃(f)T(f)(τ), where

T(τ) := diag
{
τ, τ2, . . . , τm

}
, (17)

have distinct real negative eigenvalues. �

It is now clear that, for anyτ ∈ (0, τ̄), the matrix

V := −G̃T(τ) (18)

has the properties required in Lemma3. As a
consequence, the necessary condition (14) is also
sufficient for the existence of a solution to Problem
2. Thus, the combination of Lemmas1-4 supplies
the proof of our main result, stated in the following
theorem.

Theorem 1 Problem 1 admits a solution if and only if

det
(
G(f)

)
det
(
G̃(f)

)
> 0, ∀f ⊂ M. (19)

Further, under this condition there exist τ̄ > 0 and
ε̄(·) > 0 such that, for all τ ∈ (0, τ̄) and for all ε ∈
(0, ε̄(τ)), the regulator (13), (15)-(18) solves Problem
1. �

It is worth noticing that the necessary and sufficient
solvability condition (19) depends only on the topology
matrix G. On the contrary, it is independend ofn and
p, and in fact it coincides with the condition given in
[35] for the casep = 1. However, the regulator (13),
(15)-(18) depends onp, and its order decreases whenp
increases. For any fixedp, the order is the least possible
one.

Further, we observe that, for all(fT , fR) ⊂ M×
M, the closed-loop system (4), (5a), (13), (15)-(18)
enjoys a generalized form of the unconditional stability
property, defined in [37], in the sense that any reduction
of ε with respect to a given value belonging to the
interval (0, ε̄(τ)), τ ∈ (0, τ̄), determines a newR(z)
which still solves Problem1.

We finally point out that the regulator (13), (15)-
(18) solving Problem1 can be designed according
to the following two-step procedure: (i) find a
sufficiently small positiveτ such that the matrices
−G(f)G̃(f)T(f)(τ), f ⊂ M, are Hurwitz (its existence
is guaranteed by Lemma4); (ii) find a sufficiently small
positive ε such that all the roots of (12), f ⊂ M, lie
inside the open unit disk (its existence is guaranteed by
Lemma3).
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Table 1. The magnitudes of the eigenvalues of the controlled
network whenp = 1.

fT = ∅
fR = ∅

fT = {1}
fR = {1}

fT = {2}
fR = {4}

fT = {2, 3}
fR = {2, 3}

|λ1| 0.2074 0.5115 0.7036 0.5745
|λ2| 0.7036 0.5115 0.7036 0.5745
|λ3| 0.7036 0.7036 0.7036 0.7036
|λ4| 0.7036 0.7036 0.7036 0.7036
|λ5| 0.7036 0.7036 0.7036 0.7036
|λ6| 0.7957 0.7036 0.7036 0.7036
|λ7| 0.9083 0.8534 0.7036 0.8124
|λ8| 0.9083 0.8534 0.7036 0.8124
|λ9| 0.9969 0.9969 0.9970 0.9969
|λ10| 0.9970 0.9970 0.9970 0.9970
|λ11| 0.9970 0.9970 0.9970 0.9970
|λ12| 0.9970 0.9970 0.9970 0.9970

IV. ILLUSTRATIVE EXAMPLE

In order to illustrate our results, we consider a
network where the agents are connected in a cyclic way,
that is, each one of them shares information with its two
neighbors. In particular, we choosen = 2, m = 4 and
the topology matrix

G =




3 1 0 1
1 3 1 0
0 1 3 1
1 0 1 3


 ,

which fulfils condition (19). Then, simple computations
show that matrices−G(f)G̃(f)T(f)(τ), f ⊂ M, are
Hurwitz for all positiveτ . We setτ = 1.

We first let p = 1, which leads to a12-th order
controlled network, because each local regulator has
order 1. It turns out ε̄ ' 0.065. Thus, we complete
the design by settingε = 0.055. Table 1 collects the
magnitudes of the closed-loop system eigenvalues in
nominal and in three faulty conditions. Stability is
obtained in all cases.

For comparison, we now letp = 2, which leads to
an8-th order controlled network, since the regulator is
nondynamic. It turns out̄ε ' 0.134. Thus, we complete
the design by settingε = 0.13. Table 2 collects the
magnitudes of the closed-loop system eigenvalues in
nominal and in the faulty conditions considered before.
Again, stability is obtained in all cases. We remark
that the magnitudes of the dominant eigenvalues are
now significantly less than in the previous case. This
outcome corresponds to the fact that the information
available to the regulator concerns both the first and
double integrals of the control variable.

V. CONCLUSIONS

The paper has considered a discrete-time network
composed of agents with multiple-integrator internal

Table 2. The magnitudes of the eigenvalues of the controlled
network whenp = 2.

fT = ∅
fR = ∅

fT = {1}
fR = {1}

fT = {2}
fR = {4}

fT = {2, 3}
fR = {2, 3}

|λ1| 0.1528 0.1528 0.1528 0.1528
|λ2| 0.1528 0.1528 0.1528 0.1528
|λ3| 0.6277 0.3989 0.1528 0.2373
|λ4| 0.9330 0.7045 0.1528 0.5429
|λ5| 0.9823 0.9826 0.9828 0.9827
|λ6| 0.9828 0.9828 0.9828 0.9828
|λ7| 0.9828 0.9828 0.9828 0.9828
|λ8| 0.9830 0.9829 0.9828 0.9829

dynamics, which share information on their states
according to an arbitrary topology. Specifically, the
information pertains to some of the highest integrals of
the control variable. The network had to be controlled
by a decentralized regulator. The design objective
consisted in stabilizing the closed-loop system in a
fault-tolerant fashion, that is, even in the presence
of faults in the communication apparatuses of some
agents. Within this frame, we have derived a necessary
and sufficient solvability condition as well as explicit
formulas for a class of least-order regulators.

Among the possible matter for future work,
we mention the following issues: (i) exploring the
possibility of optimizing the network dynamic behavior,
in some sense to be specified; (ii) extending the
presented results to the case where the agents have
internal dynamics different from that considered here,
typically with eigenvalues on arbitrary points of the
boundary of the unit circle; (iii) applying the here
approach to consensus problems.

Appendix: Proofs

Proof of Lemma 2.

Assume thatR(z) solves Problem2, so that
all the roots of (12), f ⊂ M, lie inside the open
unit disk. Hence, sincedi(z), i ∈ M, is monic, then
det
(
Q(f)(z)

)
is monic, and it is necessary that (see

[38], pp. 97, 98)

det
(
Q(f)(1)

)
=

= det
(
G(f)

) ∏

i∈M\{f}

(−n1i(1)) > 0, ∀f ⊂ M. (20)

Consider now the particular case wheref := M\ {i},
i ∈ M. Then, condition (20) becomes

− gi,in1i(1) > 0, ∀i ∈ M, (21)

c© 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls



A. Locatelli, N. Schiavoni: Fault-tolerant stabilization 7

which means thatgi,i andn1i(1) have opposite signs.
Hence, (20), (21) supply

det
(
G(f)

) ∏

i∈M\{f}

gi,i > 0, ∀f ⊂ M,

which coincides with (14) in view of (13). �

Proof of Lemma 3.

Assume that there existsV such thatG(f)V(f) is
Hurwitz, f ⊂ M, and defineR(z) according to (13),
(15)-(18). The proof consists in showing that the roots
of (12), f ⊂ M, are all inside the open unit disk when
ε is positive small.

Let define α(f) := m− κf and A(f) :=
{1, 2, . . . , α(f)}. Then, trivial, but cumbersome
computations show that (12) can be written in the form

π(f, z, ε) :=
∑

i∈{0}∪A(f)

(−1)i
(
zn−p(z − 1)n

)α(f)−i
×

×βi(f)r(z, ε)
i = 0, (22)

where β0(f) := 1, βi(f) is the sum of the principal
minors of orderi of G(f)V(f), i ∈ A(f), and

r(z, ε) := zn−p
∑

j∈P\{p}

(z − 1)j−1ε
(n−j+1)(n−j+2)

2 +

+

n−p+1∑

j=1

(z − 1)n−jε
j(j+1)

2 .

Observe that theβi(f)s are different from zero,
since theG(f)V(f)s are Hurwitz.

For ε = 0, (22) has nα(f) roots at z = 1, the
other (n− p)α(f) roots being atz = 0. Consider the
multivalued algebraic functionγ(f, ·), which gives
the roots of (22) as functions ofε. By continuity,
sufficiency is proved if it is shown that all the branches
γλα(f)+h(f, ·), λ ∈ Λ := {0, 1, . . . , n− 1}, h ∈ A(f),
of γ(f, ·) starting atz = 1 move towards the interior of
the unit disk for small positive values ofε. Set z :=
s+ 1 in (22) and consider the multivalued algebraic
function γ̄(f, ·) which gives the roots of

π(f, s+ 1, ε) = 0 (23)

as functions ofε. Then, the branchesγλψf+h(f, ·) move
towards the interior of the unit disk for small positive
values ofε if and only if the branches̄γλψf+h(f, ·)
move towards the open left-half of the complex plane
for small positive values ofε.

The Newton’s polygon (see, for instance, [39, 40])
associated to (23) is drawn in Fig.1. There, a cross
corresponds to any nonzero term of the equation which
is relevant to the construction of the diagram. This
figure shows that thenαf branches of̄γ(f, ·) starting
at s = 0 take on the form

γ̄λα(f)+h(f, ε) = ξλhε
λ+1 + o(ελ+1),

h ∈ A(f), λ ∈ Λ. (24)

In order to find theξλhs, we substitute (24) in (23).
By retaining only the dominant terms inε, we get

∑

i∈{0}∪A(f)

(−1)iβi(f)ξ
α(f)−i
0h = 0, h ∈ A(f), (25a)

ξλh + 1 = 0, h ∈ A(f), λ ∈ Λ \ {0} . (25b)

Then, (25a) shows that theξ0hs are the eigenvalues
of G(f)V(f), which is a Hurwitz matrix. Hence, the
roots (24), λ = 0, move towards the open left-half of
the complex plane for small positiveε. Further, in view
of (25b), also the roots (24), λ 6= 0, move towards the
open left-half of the complex plane for small positiveε.

The preceding discussion shows that, for anyf ⊂
M, there exists̄ε(f) > 0 such that, for allε ∈ (0, ε̄(f)),
the roots of (12) lie inside the open unit disk. Then, the
lemma follows by lettinḡε := minf⊂M ε̄(f). �

0 α 3α
(n−1)n

2
α n(n+1)

2
α

(n− 2)α

(n− 1)α

nα

α

ν

µ

Fig. 1. The Newton polygon associated with the equation (23): µ is the
power ofε, ν is the power ofs (the dependence ofα on f has
been dropped).
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Montréal, Québec, Canada, pp. 1231-1236
(2012).

36. Locatelli, A., R. Scattolini and N. Schiavoni,
”On the design of reliable robust decentralized
regulators for linear systems”,Large Scale
Systems, Vol. 10, pp. 95-113 (1986).

37. Campo, P.J. and M. Morari, ”Achievable closed-
loop properties of systems under decentralized
control: conditions involving the steady-state
gain”, IEEE Trans. Automat. Control, Vol. 39, pp.
932-943 (1994).
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