
Recognition of User’s Activity for Adaptive Cooperative Assistance in
robotic surgery*

Federico Nessi, Elisa Beretta, Giancarlo Ferrigno, Elena De Momi

Abstract— During hands-on robotic surgery it is advisable
to know how and when to provide the surgeon with different
assistance levels with respect to the current performed activity.
Gesteme-based on-line classification requires the definition of
a complete set of primitives and the observation of large
signal percentage. In this work an on-line, gesteme-free activity
recognition method is addressed. The algorithm models the
guidance forces and the resulting trajectory of the manipulator
with 26 low-level components of a Gaussian Mixture Model
(GMM). Temporal switching among the components is modeled
with a Hidden Markov Model (HMM). Tests are performed
in a simplified scenario over a pool of 5 non-surgeon users.
Classification accuracy resulted higher than 89% after the
observation of a 300 ms-long signal. Future work will address
the use of the current detected activity to on-line trigger
different strategies to control the manipulator and adapt the
level of assistance.

I. INTRODUCTION
Hands-on robotic surgery, during which the surgeon di-

rectly controls the manipulator movement by means of
force application, is receiving greater acceptance both in
terms of reliability and of assistant acceptability [1], [2].
Using a cooperatively-controlled manipulator, the surgeon
is in charge of the procedure’s workflow conduction [3]
and can thus combine his/her decision making process and
experience with advantages provided by the robot (e.g. hand
tremor and fatigue reduction, etc.) [4]. Moreover, haptic-
based controllers allows force feedback enhancement [5]
or active constraints [6] increasing surgeon perception and
improving the safety of the contact with soft tissues.

These features can best assist the operator during the
execution of specific tasks. However, it is necessary that the
system knows how and when to provide different degrees
of assistance in order to get the best performance from
the shared human-robot control in the procedure [7]. For
example, highly compliant cooperative robots were proved to
enhance targeting tasks on soft tissues, but have pointed out
criticality in testing configuration due to possible unwanted
interaction [8]. Thus, a robot able to adapt its behavior in re-
sponse to the surgeon detected intention/activity can increase
the safety of the cooperation. Furthermore, a manipulator that
is able to recognize human’s non-verbal cues in order to infer
his/her intention can improve the intuitiveness of its usage
[9].
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In order to perform user’s activity recognition, a well-
known approach is based on Hidden Markov Models
(HMMs) [10]. Successfully applied to speech recognition,
HMMs are widely used also in handwriting [11] and gesture
recognition [12], as well as motion classification. The basic
assumption is that a motion action can be split into a set of
primitives, and higher-level activities are a defined temporal
series of those primitives.

Regarding hands-on robotic surgery, in [15] a feasibility
study was presented to investigate the possibility to discrim-
inate between activities performed using the JHU Steady-
Hand robot, e.g. during peg-in-hole insertions, with a HMM-
based classifier. Recognition of the primitives sequence was
proved to be reliable (accuracy of classification higher than
85%) but runtime classification was not addressed.

HMM-based runtime motion classification algorithms
were instead presented in the field of industrial cooperative
robotics [14]. The classifier was able to model complex tasks,
but proved to be reliable (i.e. more than 80% of correct
classifications) only when observing a wide signal percentage
(over 60%).

All the presented approaches are strongly affected by the
ability to provide a complete set of primitives (or gestemes).
A different approach was presented in [16] in the field
of video surveillance. Using 2-D trajectories of passing-by
pedestrians recorded by a camera system, low-level models
(i.e. displacements) describing an activity (i.e. trajectory) are
fitted with a Gaussian Mixture Model (GMM). This model
is then used to cluster incoming data and the output is
considered as the emission of a HMM that fully describes
each performed activity.

In this work, we assess a strategy to detect surgeon’s
activities during cooperation with a surgical robotic assistant,
exploiting a GMM-HMM based algorithm without the need
to define gestemes. Because of the nature of the hands on
cooperation, we model both 3-D driving forces and 3-D
resulting trajectories of the manipulator. Furthermore, our
algorithm is optimized for runtime recognition. The objective
is to provide the intraoperative detection of the current
activity, that can be exploited to automatically adapt the
manipulator’s dynamic behavior during human collaboration,
improving safety and guidance feeling.

II. MATERIALS AND METHODS
A. Activity Model

During hands-on robotics, user’s guidance can be de-
scribed by the human driving forces (f ) and the result-
ing trajectory of the end-effector (x). In particular, driv-



ing forces and end-effector trajectory can be expressed as
vectors of n-samples over time, i.e. f = (f1, . . . , fn) and
x = (x1, . . . ,xn). Defining the user’s current activity as a
variable a ∈ {1, . . . , A}, both f and x can be assumed to
depend on the current activity. Thus, vectors x and f can be
considered as a unique 6-dimensional vector d describing
the user’s action on the manipulator, i.e.

d = (d1, . . . ,dn) =

(
x
f

)T

. (1)

The use of both forces and end-effector trajectory is
motivated by the fact that the combination of the two should
be able to model user’s activity that do not produce end-
effector movement, e.g. exploitation of redundancy on a
specific manipulator.

Following [16], the vector d is produced by a sequence
of increments, with respect to the current action, i.e.

dt = dt−1 +∆dt (2)

and increments ∆dt at time t can be modeled as

∆dt = Tzt +C1/2
zt ·wt (3)

thus being the emission of a probability distribution (low-
level model) labeled zt ∈ {1, . . . ,M} and characterized by
the Tzt mean and Czt covariance matrices. Vector wt is
the sample of a zero-mean and identity covariance Gaussian
random vector, i.e. wt ∼ N (0, I). Thus, model (2) is
fully characterized by M low-level models describing the
increments, defined by the T = (T1, . . . ,TM ) and C =
(C1, . . . ,CM ) matrices and one at the time responsible of
the emission of the current displacement ∆dt.

Under this assumption, the vector of increments over time
∆d = (∆d1, . . . ,∆dt) characteristic of each activity a is the
sequence of emissions of low-level models z = (z1, . . . , zt).
This is equal to consider the ∆d vector as a sample of a
M -state continuous HMM in which the z-th state emission
probability density is characterized by one of the T and
C matrices. The transition matrix Ba of the HMM thus
represents the model of the high-level user’s activity a, i.e.
p(z|a) = p(z|Ba).

B. Training

Data used in the training process is composed by a set
of trajectories and guidance forces for all the activities that
need to be described. Each couple of signals is labeled, thus
it is know a priori the activity that have generated each data.

Following again the approach presented in [16], we esti-
mate each low-level model z directly from the ∆d computed
over the complete set of training data, i.e. from training
trajectories and forces of all the considered activities, as

∆d̂t = dt − dt−1 (4)

Each element in the ∆d̂ is considered as a sample of a
M -mixtures GMM θ in which the emission density param-
eters T̂z and Ĉz of each component z estimates one of the

Fig. 1. Example of a user performing a mapping procedure over a brain
phantom with the help of a hands on controlled manipulator. The three
identified activities are underlined as possible steps of the procedure.

T and C matrices. The optimal M number of components
for the mixture model (i.e. the number of low-level models)
is computed in an unsupervised way using the algorithm
presented in [17]. The method is able to suppress redundant
components starting from an initialization with an over-
estimated number of gaussians.

A M -states continous HMM is then trained for each
activity a. We estimate the Ba transition matrix using a
modified version of the Baum-Welch algorithm in which the
emission probability density parameters of each state z were
imposed to T̂z and Ĉz [14], [16].

The training algorithm is implemented in MATLAB envi-
ronment (R2014b, MathWorks).

C. Classification of current activity

In this work we are interested in runtime recognition of
performed activity, thus we need to deal with classification of
incomplete set of data. For each new chunk of data d∗ the
classifier computes the class-conditional likelihood of d∗,
that is p(d∗|θ,Ba), for each trained HMM, i.e. for each
modeled activity a using the forward-backward algorithm. At
each time the activity that maximizes the class-conditional
likelihood on the available chunk of data is classified as the
current activity.

The runtime classification algorithm is implemented in
C/C++ language inside the Robotic Operating System1

(ROS). Every iteration, the algorithm computes p(d∗|θ,Ba)
for each activity model over data buffered in an array with
First In First Out (FIFO) logic that is refreshed with new data
incoming from the robot controller, deploying a full-parallel
implementation based on multi-core hardwares.

1www.ros.org



D. Experimental scenario and validation

The proposed activity recognition algorithm was experi-
mentally tested on a LWR4+ (Kuka, Augsburg, Germany),
a 7 degrees-of-freedom redundant manipulator with flexible
joints, inside a scenario that addresses hands on robotic
assistance for open-skull neurosurgical procedures [18], [8].

Since the procedure encompasses simple targeting ges-
tures, three exemplary activities were identified (as reported
in Figure 1), i.e.

• pointing, when approaching the patient’s brain during
targeting task;

• wandering, when moving the manipulator in space
without a specific target;

• idle, when not moving the manipulator.

each one possibly requiring activation/deactivation of dif-
ferent control modalities.

1) Model training: A dataset (i.e. both trajectory x and
forces f ) of 30 trials performed by one expert user for each
activity was recorded (200 Hz) and processed off-line to
model θ and train each HMM.

2) Runtime validation: During runtime validation, 5 non-
surgeon users were asked to perform targeting toward 5
arbitrary points over a brain phantom with the help of the
manipulator. Each task started with the robot in a fixed posi-
tion and users were instructed to follow a specific sequence
of actions (i.e. idle, wandering, pointing, idle, pointing,
wandering, idle) and to bring the robot back to the starting
position at the end. To provide ground-truth regarding current
performed action, user were provided with a button to press
when switching from one activity to another. The classifier
was run at 20 Hz over 50 samples long buffer (i.e. 250 ms of
signal) on a dual-core Intel Xeon@2.66 GHz processor. The
sample accuracy esample, i.e. the percentage of samples in
the classification that share the same label with the ground-
truth [15], were computed over the complete set of trials for
each user.

III. RESULTS AND DISCUSSION

A. Model training

The results of the different activity models training is
shown in Figure 2. The unsupervised algorithm used fitted
the data with a mixture of 26 Gaussian distributions (M =
26). A projection over the xy plane (with respect to the base
of the manipulator) of both fitted data and GMM components
is shown in Figure 2a. Estimated transition matrices Ba are
shown for each modeled activity in Figure 2b. The idle matrix
shows how one state acts as an attraction well, representing
the emission of the zero-displacement Gaussian distribution
(i.e. the stopped robot). On the other hand, the pointing
matrix is similar to a diagonal matrix, showing this activity
can be assumed as generated by a single low-level model
(i.e. represents a linear trajectory). Conversely. the wandering
activity shows a more sparse matrix, underlying the random
nature of the movement.

Fig. 2. Results of the model fitting for the three activities. The upper picture
represents a 2-D projection of the displacements and of the 26-components
GMM that is used to fit the data. The lower picture represents the transition
matrix Ba for the three trained HMM, i.e. from left to right, idle, wandering,
pointing.

TABLE I
SAMPLE ACCURACY DURING VALIDATION

User 1 User 2 User 3 User 4 User 5
Accuracy 0.9126 0.8928 0.8921 0.8971 0.8990

B. Runtime validation

A typical segmentation of user’s activity during each trial
is represented in Figure 3. The overall sample accuracy
esample for each user is reported in Table I. The percentage
of correctly classified samples is over 89% for every user.
In fact, as shown in Figure 3a most of the misclassifications
occurred during the activity changes due to the algorithm’s
reaction time. These results are comparable with off-line
gesteme-based classifiers, i.e. classification over a complete
set of data for each activity [15]. Gesteme-based online
classifiers showed an accuracy higher than 80% only when
observing more than the 60% of the activity [14].

Because of the small part of the signal observed (i.e. 50
samples), the algorithm shows fast response (∼300 ms for
each user, Figure 3b) to sudden changes but some classifi-
cation errors occurred even far from the activity transitions.

In Table II the confusion matrix computed among all
the trials from users is shown. The algorithm can better
identify when the robot is stopped (i.e. idle, ∼93% accuracy)
than during actual manual guidance (i.e. pointing, ∼88% of
accuracy and wandering, ∼86% of accuracy). In particular,



Fig. 3. Typical segmentation of a user’s targeting task is reported in (a).
Algorithm reaction to a transition is reported in (b). Red line represents
provided ground-truth regarding current activity, while blue spots represent
algorithm classification.

TABLE II
CONFUSION MATRIX DURING RUNTIME VALIDATION

Classification
True Activity pointing wandering idle

pointing 0.8824 0.0819 0.0357
wandering 0.0668 0.8660 0.0672

idle 0.0145 0.0478 0.9377

misclassification between wandering and pointing resulted to
be higher than 8%.

IV. CONCLUSIONS

In this paper we presented the first results in user’s activity
recognition during hands-on robotic surgery obtained with
an algorithm that does not rely on primitives identification
to perform classification. The obtained accuracy in classifi-
cation exceeds 89% with a reaction time approximately of
∼300 ms.

It has to be stated that those results are obtained from tests
performed only on 5 non-surgeon subjects. A more in depth
study will need to evaluate the algorithm’s performances over
a pool of novice and expert surgeons.

Critical aspects not addressed by this paper were reaction
time to activities transition and size of the data buffer used
for classification. In particular, wide buffers should guarantee
a more robust classification during one single activity, with
slower response to a sudden transitions.

To overcome this problem, an Adaptive Windowing algo-
rithm will be implemented in future work, to classify over
short buffer when the distance between the winner model
likelihood and the others overcomes a threshold, increasing
the buffer size elsewhere. Moreover, runtime classification
could be exploited to trigger different control strategies on
the manipulator based on the current detected activity. For
example, a high-accuracy variable damping control applied
during pointing in contrast to a more compliant control
during wandering could enhance the cooperation feeling.
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