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Abstract—The ability to detect concept drift, i.e., a structural 

change in the acquired datastream, and react accordingly is a 
major achievement for intelligent sensing units. This ability allows 
the unit for actively tuning the application to maintain high 
performance, changing online the operational strategy, detecting 
and isolating possible occurring faults to name a few tasks. In the 
paper we consider a just-in-time strategy for adaptation: the 
sensing unit reacts exactly when needed, i.e., when concept drift is 
detected. Change detection tests (CDTs), designed to inspect 
structural changes in industrial and environmental data, are here 
coupled with adaptive k-NN and SVM classifiers, and suitably 
retrained when the change is detected. Computational complexity 
and memory requirements of the CDT and the classifier, precious 
limited resources in embedded sensing, are taken into account in 
the application design. We show that a hierarchical CDT coupled 
with an adaptive resource-aware classifier is a suitable tool for 
processing and classifying sequential streams of data.   
 

Index Terms—Intelligent sensing, Active classifiers, Change 
detection tests, k-NN and SVM classifiers 

I. INTRODUCTION 
HE adjective intelligent associated with a sensing unit can 
be inflected differently, depending on the reference 

community. As such, it is somehow intended as the ability to 
make decisions, the capability to learn from external stimuli, 
and the potentiality to execute computational intelligence 
algorithms.  

The above definitions, explicitly or implicitly, rely on a 
computational framework receiving and processing incoming 
acquisitions to accomplish the requested task. We generally 
assume the stationarity hypothesis for data coming from an 
industrial or environmental process and, in turn, stationarity for 
the intelligent solution to be executed by the unit. In extreme 
cases, the assumption is so implicitly integrated in our 
algorithms that we even forget of its existence.   

However, the real world is time variant and the stationarity 
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assumption generally holds for short periods of time 
representing, da facto, a first-order hypothesis.  

In fact, ageing effects affecting the readout electronics of the 
transducer, soft and hard faults influencing the sensor unit, 
changes in the phenomenon under observation (e.g., a plant) 
introduce changes in the process generating the data. Such 
concept drift represents a violation of the stationarity 
hypothesis assumed during the design phase of the application 
solution with the consequence that the application performance 
decreases unless adaptive strategies are taken into account. 

Detecting concept drift and reacting to it is then of 
paramount importance in any industrial process and, from our 
perspective, one of the main features that an intelligent sensing 
unit should possess. Interestingly, our position is aligned with 
Piaget’s psychological theory of human cognition [1], where 
learning is described as a constant effort to maintain or achieve 
balance between prior and new knowledge. As pointed out in 
[2], when new knowledge cannot be accommodated under 
existing schema because of severe conflict (i.e., 
non-stationarity), the need is to restructure the application to 
create new schemata that supplement or replace the prior 
knowledge base. 

In the following, we consider an operational framework 
where a model describing the incoming data is unavailable and 
the application must be learned from the data themselves. 
Moreover, we opt for an active approach, i.e., we envisage the 
presence of a Change detection Test (CDT) inspecting 
incoming data (or derived features) to discover if new data 
underwent concept drift, react when the change is detected and 
update the application afterwards. 

[35] follows this framework by proposing a mechanism 
where a sensor detects and responds to changes. Each sensor 
builds a linear model for the incoming data and adapts the 
sampling frequency (reaction aspect) if the new data cannot be 
locally explained by the model anymore (change detection 
aspect). There, detection can be easily cast within a CDT setup 
by inspecting the residual between model prediction and 
incoming data. A different approach investigating changes in 
the Nyquist frequency with a CDT has been proposed in [36] 
for energy-eager sensors: again the sampling frequency is 
adapted in real time to reduce the energy consumption of the 
sensing unit.  

Clearly, by considering a CDT-based solution we construct a 
general approach whose validity is well behind that of a 
specific application, chosen in the sequel of classification type 
for its relevance in industrial applications. Assessing the quality 
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of the outcome product [3], validating a sensor [4], and 
designing a fault diagnosis system with the fault identification 
ability [5] are some immediate examples of industrial 
applications requiring classification systems. The focus is then 
more on applications requiring the inspection of changes 
affecting the sensing datastream and its impact on the classifier 
output than those affecting the relationship between sensing 
data and the output of the classifier only. The reference setup is 
that of figure 1 where the datastream provided by process P is 
fed into the classifier and inspected by the CDT. If a change in 
the datastream is detected the classifier is retrained/adapted 
provided that supervised data are made available. Also the CDT 
is reconfigured to detect further possible concept drift. If no 
change is detected both CDT and application do not require 
reconfiguration. The approach is hence sensor-centered since 
we inspect data coming from sensors to detect a possible 
change. 
  

 
Fig. 1. The envisaged methodology. The “classifier” word can be substituted 
with the more general “application” one. 

 
A different scenario, say more classifier-centered, would 

also inspect changes affecting the relationship assigning a class 
to the inputs. If this is the case, the above approach can be 
applied to the classification error datastream to be intended now 
as a virtual sensor. Interested readers can refer to [37] for a 
comprehensive analysis. 

The paper extends conference paper [19] in several ways. 
First in reviewing the existing literature so as to provide a more 
complete and comprehensive analysis, second, in also 
considering the ICI (Intersection of Confidence Intervals)-CDT 
family recently made available in the literature, third, in 
providing a complete experimental setup where computational 
complexity and memory usage of resources-aware classifiers 
are contrasted. 

The structure of the paper is as follows. Section II presents 
the related work. Section III introduces briefly the CUSUM and 
ICI-based family of CDTs by providing advantages and 
disadvantages as well as their validity range. Aspects related to 
the design of an adaptive active JIT are given in section IV 
where attention is devoted to computational and memory usage 
issues. Finally, the experimental section V shows under which 
conditions a solution should be preferred than the other.    

II. RELATED WORK 
The section introduces the related work on CDTs and 

adaptive classifiers which can fit within a “detect and react” 
framework to be executed in embedded system. 

A. Change detection tests 
While there exists a large literature mostly based on 

statistical tests proposing parametric solutions for concept drift 
assessment, fewer results are available for non-parametric tests. 
In the parametric class we find classic textbook tests, e.g., the 
Student t-test and the Fisher f-test [6], addressing changes 
affecting the mean and the variance of the features, respectively. 
A conjunct test on mean and variance requires a more 
elaborated analysis, e.g., see [7], where a regression 
technique-based test is proposed. 

It must be immediately pointed out that parametric tests 
require knowledge of the probability density functions and/or 
priors on concept drift [6].  

Nonparametric tests are more flexible tools, which do not 
require unreasonable hypotheses [8]. For instance, the 
Mann–Whitney U-test [9] and the Wilcoxon test [10] are 
nonparametric tests designed to detect a single change point 
and cannot provide a sequential use, as sensing datastreams 
require.  Differently, Mann– Kendall [11] and CUSUM [12] are 
widely used tests adequate for a sequential analysis as the 
recently introduced ICI test [13] and the recurrent Lepage one 
[34] are. Section II focuses on the ICI-CDT and CUSUM 
families for their effectiveness and flexibility, like the CI 
(Computational Intelligence)-CUSUM CDT is able to host 
features provided by other CDTs, e.g., Mann-Kendall. That 
said, it is worth point out that any CDT can be used within the 
suggested adaptive framework. 

 

B. Resource-aware Adaptive Classifiers 
As previously pointed out, here we couple the CDT test with 

a reference classification application. The computational 
intelligence literature suggests many models: Radial Basis 
Functions (RBF), Feed-forward Neural Networks (FF-NN), 
k-NN, Support Vector Machines (SVM) and a plethora of 
hybrid solutions; reference [14] covers them all.  

However, at a more careful analysis, the computational 
complexity of many models does not scale well with the 
number of training samples. As a consequence, an online 
training phase required by the “reacting to change” 
mechanisms becomes prohibitive for sensing units 
characterized by limited resources, in terms of computational 
ability and memory (both RAM and flash). 

Without the pretention to be exhaustive, Table I presents 
some figures for embedded architectures used in wireless 
sensor networks whose processors are also popular within the 
industry. Energy consumption is another hot topic, particularly 
delicate when the sensing unit is battery powered (despite the 
fact that energy harvesting mechanisms might be available). To 
keep under control power consumption, duty cycle mechanisms, 
adaptive sampling and CPU clock management solutions must 
be envisaged [15]. It is clear that embedded Hw resources do 
not allow the designer for considering CPU and memory eager 
solutions and resources-aware algorithms should be designed 
instead.   

Passive classifiers, i.e., classification systems continuously 
updating the classifier, such as those based on ensembles [16] 
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and possibly operating incrementally, e.g., [2], do not consider 
the computational complexity or the memory requirement as a 
constraint. As such, they cannot be considered, in general, as a 
viable solution unless very simple strategies are envisaged. 

 
TABLE I: COMPARISON AMONG SOME OFF-THE-SHELF EMBEDDED 

SOLUTIONS (ENABLING THE WSN TECHNOLOGY).  
 

Unit 
Clock 

frequency 
MHz 

Power 
consumtion 

(operational) 

RAM 
memory 

Int/ext (B) 

Flash 
memory 

Int/ext (B) 
Mica Z 8 MHz 60 mW 4k/- 128/- 
Telos B 8 MHz 4 mW 10k/- 48k/ 1M 

Imote 2 13-416 MHz 31mW@13M 
992mw@416M 256k/32M 32M/- 

Start gate 400 MHz 1455 mW 64k/64M 32M/CF 
card 

Int stands for internal memory on the chip, external refers to the memory 
available at the board level. – stands for not applicable. 
 

Differently, active classification systems, e.g., those 
requesting a detection of a change to activate the 
reconfiguration mechanism, are intrinsically more sensitive to 
the computation issue since training is carried out only when 
really needed (we see the affinity with duty-cycling in CPUs). 

Among active classifiers we select the Just-In-Time (JIT) 
framework for its versatility and flexibility [17]. A JIT 
classifier always exploits, during its operational life, incoming 
labeled data. If the process is stationary, i.e., no concept drift 
has been detected by the CDT, new data are used to improve the 
accuracy performance of the classification system so that, 
asymptotically with the number of available samples, it tends to 
the optimal Bayes’s one in consistent classifiers. Conversely, 
when a change is detected the classifier needs to be updated by 
–conceptually- discarding obsolete data and be re-trained on 
new ones. A main feature of JIT classifiers is that abrupt 
concept drift always generate a classifier which asymptotically 
tends to the optimal one, provided that supervised samples are 
made available online (as in some industrial quality control 
analysis where an operator supervisions the process and 
inspects product samples for quality control). Of course, a 
temporary decrease in accuracy might be expected when the 
change is detected but, afterwards, the application reacts 
promptly so as to recover it. In the case of gradual concept drift 
(a drift type of change affecting the datastream), the CDT 
detects the change as a sequence of small abrupt changes. Here, 
the final performance depends on the ready availability of 
sampled couples as well as the drift rate (the higher the drift rate 
the lower the performance associated with the tracking ability). 
A solution to mitigate the gradual concept drift case has been 
suggested in [18].    

However, since detection of concept drift requires 
retrain/update the classifier so as to track non-stationarity, only 
classifiers characterized by a complexity-aware training and 
recall phases, e.g., k-NN and SVM machines, can be 
considered as building blocks for designing resource-aware 
classifiers. The classifier design must be carefully chiseled also 
to keep under control the consumption of available resources. 
This aspect is tackled in section IV. 

III. CHANGE DETECTION TESTS  
Denote by ( )x t  a sampled instance or a feature vector extracted 
from the sensor signal at time t, e.g., the mean, the variance, the 
coefficients of a polynomial fit, the coefficients of a linear time 
invariant dynamic system [31], the parameters of a reservoir 
network [33] or an Extreme learning machine [32] modeling 
the datastream and computed over a non-overlapping finite 
window open on the signal. In the following, the default 
domain of  is 1ℜ unless otherwise specified. By inspecting 

( )x t  over time we wish to identify whether a change occurred 
in the process generating ( )x t  or not and provide an estimate 

t  of the time instant 0t  the concept drift occurred.    
 

A. CUSUM-based CDT 
The CUSUM test [12] has been designed within the control 

community to detect changes in the probability density function 
(pdf) of ( )x t . The test assumes that ( )x t  is an independent and 
identically distributed (i.i.d) random variable drawn from a 
known pdf p

Θ0   parameterized in the parameter vector 

1 2{ , , , }λθ θ θΘ = … , =λ Θ . For instance, if the pdf is Gaussian 
the parameter vector contains the mean and the variance of the 
distribution. CUSUM assumes that, following concept drift, the 
parameter vector 0Θ changes to a known 1Θ  with new  

associated with a known pdf p
Θ1 . The method requires then to 

compute  
 

          R(t) = ln
p

Θ1 x τ( )( )
p

Θ0 x τ( )( )τ

t

∑                         (1) 

 
over the data set and evaluate the minimum value 

( )= ( ( ))1m t min Rt ττ≤ ≤ . CUSUM detects a change at time t  

when ( )- ( )>R t m t T , T being a threshold set by the user. The 
strong assumptions related to the availability of the pdfs as well 
as the parameter configurations 0Θ , 1Θ  and T limit the 
applicability of the CUSUM test which, however, is 
particularly appreciable for its effectiveness and simplicity.  

To overcome the limits of CUSUM [20] suggested the 
CI-CUSUM CDT. The extended test, which assumes the i.i.d 
hypothesis now for a vector of features ( ) lx t ∈ℜ , does not 

require availability of p
Θ0  which is derived by invoking the 

central limit theorem. The parameter vector 0Θ  of the 
Gaussian pdf contains the mean and covariance matrix, while a 
PCA technique is considered to keep under control the size 
–and hence the computational complexity-, of the input features. 
The post-change parameter configuration 1Θ  can be generated 

so as to model the “we are not more in 0Θ ” case and a straight 
CUSUM test can be applied. Threshold T is set as the maximum 
value R(t)-m(t) estimated on the training set (or the test set if 

x t( )

( )x t
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many data are available). The estimate t  of the concept drift 
occurrence time is always an upper bound of the real one since 
the latency introduced by the detection method is induced by 
the windowing mechanisms needed to generate independent 
samples. 

For its effectiveness and simplicity the CI-CUSUM CDT is a 
good candidate for designing active adaptive classification 
solutions following the just-in-time framework. 

B. ICI-based CDT 
The ICI rule [21], [22] is a method for optimally regularizing 

data by means of a polynomial regression computed on 
adaptive supports. The ICI rule operates on not overlapping 

sequences of observations/features ruled by ( )( )2,( )= tz t G μ σ . 

[13] suggests to use features such as the mean and the pooled 
variance estimated from non overlapping sequences of ( )x t . 
Such features, thanks to the central limit theorem and an ad-hoc 
power transform for the estimated variance satisfy the gaussian 
hypothesis requested by the method. 

In its current version the ICI-CDT requires streams of data 
that are scalar and then proceeds sequentially with the analysis. 
However, when the envisaged problem is multivariate the 
method would request the estimate of the covariance matrix, a 
computationally intensive operation that requires availability of 
a large number of samples. A viable solution is to consider a 
diagonal covariance matrix: in this way signals are considered 
independent and the basic scalar ICI-CDT can be used. 
Interestingly, [23] introduces a variant of the CDT that provides 
a refinement procedure leading to an improved estimate for t .   

The ICI-CDT is particular sensitive to concept drift but also 
introduces structural false positives as time passes. It is clear 
that such a problem must be removed if we are designing an 
adaptive application for an industrial process even if false 
positives basically require the classifier and the CDT to be 
unnecessary retrained. A solution to the problem was obtained 
with a hierarchical version of the ICI-CDT as presented in the 
following section. 

C. Hierarchical CDT  
False positive reduction in concept drift detection can be 

addressed by considering a hierarchical CDT (H-CDT). The 
H-CDT test is composed of two levels. The first one runs a 
CDT test providing an alarm (either a real concept drift or a 
false positive detection) and t to the second level CDT. Based 
on t  the second level CDT partitions the datastream in two 
intervals characterizing the states of the process before and 
after the supposed change. Then, a multivariate hypothesis test 
based on the Hotelling’s T square statistic [6] is executed. 

The Hotelling test confutes or accepts the concept drift 
detection proposed by the first level CDT and its outcome is the 
final one. Basically, Hotelling verifies if the feature means (of 
sample mean and variance) before and after the change are the 
same (i.e., their statistical difference is null). 

Since the ICI-CDT is particularly effective in detecting 
changes and is characterized by a low-computational 
complexity, it is a perfect tool to detect concept drift when 

coupled with the Hotelling test to configure a H-CDT.  
 

Algorithm I: the Hierarchical CDT (H-CDT) 
 
Configure the first-level CDT on the training set 
while (1)  

acquire a new observation 
if (ICI-CDT detects concept drift) 

      Estimate the time of the change t  
if (Hotelling validates the change) concept drift detected 

    else re-learn the parameters of ICI-CDT 
endif 

endwhile 
 

The high level algorithm for the H-CDT is given in 
Algorithm I. Interestingly, the H-CDT allows the ICI-CDT to 
be reconfigured online after a false positive is detected so as to 
improve performance over time.   

IV. RESOURCE-AWARE ADAPTIVE JUST IN TIME CLASSIFIERS  
Let KB be the knowledge base of the classifier, namely the set 
of N couples { ( ), ( )}x t y t available at a given instant of time to 

characterize it. Consider inputs x t( ) ∈ ℜl  and, without loss 

of generality, outputs { }( ) 1,1y t ∈ − .  

A. Adaptive k-NN  
The k-nearest neighbor algorithm (k-NN) is a statistic 

classification method where the label to be assigned to the input 
sample is that of the majority of its k nearest neighbors. 

 
Algorithm II: JIT adaptive k-NN classifier 

Estimate k through LOO applied to training samples KB  
Configure the k-NN classifier and the CDT  
while (1) 
     if (new knowledge IKB is available) 
           KB=IKB KB;   
     endif 
     if  (CDT= nonstationary)            
         Remove obsolete knowledge from KB; 
         Estimate k by means of LOO applied to KB  
         Configure the CDT          
     endif 

Classification=k-NN(x, k, KB); 
 endwhile 

 
The k-NN classifier, e.g., see [24], is the simplest among the 

consistent classifiers (i.e., it asymptotically tends to the optimal 
Bayes classifier under mild hypotheses on k and N) since a 
proper training phase is not required. An euclidean distance is 
commonly used to compute the distance between two instance 
vectors. 

 Despite the fact that small values of k are generally used, in 
the practice one must be aware that when N increases similarly 
k has to (but less than N) to grant consistency. As such, for 
increasing values of N one needs to re-estimate k, e.g., as 
suggested in [17], [24].  



 
 

5

The adaptive JIT algorithm based on k-NN is given in 
Algorithm II, which is easy to follow (LOO stands for Leave 
One Out). The key points of the algorithm can be summarized 
as: a) if we are in a stationary condition and new information is 
coming then it must be exploited to asymptotically tend 
towards the optimal classifier; b) when a change is detected 
with a CDT obsolete information must be discarded; c) the 
CDT must be reconfigured on the new state. Again, the 
approach is conceptually aligned with Piaget’s theory. 

B. Adaptive SVM  
The SVM kernel classifier [25] is  

 

  ( ) ( )
1

( ) ,i i i

N

i

f x sgn x b sgn y K x x bω α
=

⎛ ⎞
= ⋅ + = +⎜ ⎟

⎝ ⎠
∑        (2) 

 
where parameters ω  (vector normal to the separating 
hyperplane) and b  (hyperplane offset) characterize the 
classifier. ω and b  are determined by solving the optimization 
problem  

min(1
2

ω
2
+C

i=1

N

∑ξ
i
)                                (3) 

subject to conditions ݕ௜൫ሺ߱ · ௜ሻݔ ൅ ܾ൯ ൒ 1 െ ௜ߦ , ௜ߦ ൒ 0 , 
i=1,…,N. 0C >  is a cost positive parameter, ߦ௜  the i-th slack 
variable and 

                    ( )
2

2

,
, i j

i j

x x
K x x exp

σ

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 

 

is a kernel function, here chosen to be a radial basis function 
parameterized in ߪ. Parameters C and ߪ significantly influence 
the performance of the classifier and can be selected through 
K-fold cross-validation [26]. 

(3) can be cast in a dual form [25] leading to coefficients iα  
which, when different from zero, identify the Support Vectors 
(SVs). SVs fully describe the classification problem given the 
available data and can be intended as pivot points to the 
classification method. Since the number d of SVs is smaller or 
equal (rare event) than N, we recommend to consider the SVs 
instead of the N couples in the KB to classify new instances. 
The use of SVs saves memory. To apply something similar to 
k-NN we should use condensing techniques [27] which, 
however, are very expensive in terms of requested 
computation.  

Important for our algorithm, each supervised sample x୧, y୧ 
satisfies the Karush-Kuhn-Tucker (KKT) condition [25] 

 
௜ߙ ൌ 0  

 ֜
௜ሻݔ௜݂ሺݕ  ൒ 1; 

0 i Cα< < ( ) 1 i iy f x⇒ = ; 

  i Cα = ⇒ ( ) 1i iy f x ≤  

We comment that samples satisfying the KKT conditions do 
not change the SVs and, as such, the structure of the classifier. 
It follows that, within an incremental learning strategy, only 
those samples violating the KKT condition should be kept for 

improvement and stored, the others removed. Of course, if 
outliers can be present, they should be identified in advance and 
discarded.  

A JIT classifier based on SVs must then require that only 
those new samples violating the KKT must be added to the 
incremental knowledge base (IKB). Since insertion of a new 
sample in the SV set represents a perturbation to the method in 
stationary conditions, we need to merge KB with IKB and 
re-train the SVM when the size of IKB is above a threshold Th 
(sophisticated methods might think of evaluating the novel 
information content associated in IKB before retraining the 
classifier).  

Differently, when concept drift is detected, data contained in 
KB become obsolete, hence negatively impacting on 
performance. As such they must be removed and only the most 
recent ones kept. The final algorithm of a SVM-based active 
classifier is given in Algorithm III. 
 
Algorithm III: JIT adaptive SVM classifier 
 
Configure the test CDT and train classifier SVM on training set 
 ;଴ܤܭ
ܤܭ ൌ ݊ ;଴ܤܭ ݂݋ ݏݎ݋ݐܿ݁ݒ ݐݎ݋݌݌ݑݏ ൌ ܤܭܫ ;| ଴ܤܭ | ൌ 0; 
While (1) { 
    Acquire sample ݔ; 
    if(new supervised knowledge is available)  
       Insert samples ሺݔ, ;ܤܭܫ ሻ violating the KKT condition inݕ
    endif 
    if(CDT (ݔ) = nonstationary)  
଴ܤܭ       ൌ  ;ݏ݈݁݌݉ܽݏ ݀݁ݏ݅ݒݎ݁݌ݑݏ ݓ݁݊ ݂݋ ݏ݈݁݌݉ܽݏ ܰ ݐݏ݈ܽ
      Train SVM and CDT on ܤܭ଴; 
      KB= support vectors of ܤܭ଴; ݊ ൌ  ;| ଴ܤܭ |
     else 
        ݊ூ௄஻ ൌ  ;|ܤܭܫ|
       if( ݊ூ௄஻/݊ ൐ ݄ܶ) 
଴ܤܭ              ൌ ଴ܤܭ ڂ   ;ܤܭܫ
             Train SVM and CDT on ܤܭ଴; 
             KB= support vectors of ܤܭ଴; 
            ݊ ൌ ܤܭܫ ;| ଴ܤܭ | ൌ 0; 
        endif 
   endif  
   Classification=SVM ( x , KB , C  ;(ߪ,
endwhile 
 

C. Complexity Aspects  
As shown in table II the k-NN and the SVM classifiers are 

particularly appealing candidates as resource-aware classifiers 
for their contained complexities. 

Again, N represents the number of samples in the KB, k is the 
number of samples to be considered in the neighborhood, d is 
the number of support vectors in KB. In general, we have that 
d N< (and in some applications d N<< ) which favors the 
SVM classifier. However, as pointed out in [28], the 
computational cost of solving the quadratic problem required 
by the training phase in SVM grows at least as 2N  for small C 
values and up to 3N  for large C, as also experimentally pointed 
out in [29].  
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TABLE II: COMPLEXITY OF K-NN AND SVM CLASSIFIERS 
 

Complexity k-NN SVM 
Computational 

(Training) O(1) ( ) ( )2 3O N O N−  

Computational 
(Recall) 

O kN log N( )  ( )O d  

Memory ( )O N  ( )O d  

 
However, in many applications one hardly needs to estimate 

the optimal solution for the quadratic problem. Moreover, the 
training time for a linear SVM to reach an expected level of 
error actually decreases as the training set size increases [30]; 
as such, for practical problems one should expect a 2N
complexity. 

From table II it is clear that a k-NN classifier is to be 
preferred for training reasons while the SVM for memory and 
recall. That said, the final decision depends on the particular 
application and on the specific balance between the train and 
recall activities, a critical issue in incremental active solutions 
since the classifier needs to be reconfigured following concept 
drift. At the same time, in stationarity conditions, the k-NN 
scales badly in memory and computation time during the recall 
phase. Here condensing techniques [27] should be considered 
to keep under control the increase in N at the cost of a not 
negligible computational time, which makes the approach not 
viable. 

V. EXPERIMENTAL SECTION 
The experimental section aims at comparing accuracy 

performance and computational and memory complexity of the 
CI-CUSUM and the H-CDT tests coupled with the active k-NN 
and the SVM classifiers. What presented is a new set of 
experiments, a synthetic one and an industrial one, which also 
extends that given in [19].  

Here, deliberately, we consider at first a synthetic 
experiment characterized by classification complexity well 
above that of most real applications. The classification 
framework is that suggested in [14], here reported for 
completeness. More specifically, the experiment constructs a 
random pdf composed of a mixture of ten gaussians computed 
as follows. Generate 10 mean values 1

iμ , i ∈ 1,10{ }  from a 

Gaussian two-dimensional distribution ( )[1,2] ,TN I  

representative of class 1 and 10 mean values 2
iμ , 

i ∈ 1,...,10{ }  from a multivariate Gaussian distribution 

N [2,1]T , I( ) . Now, generate for each class, 200 observations by 

picking a random mean 1
iμ  and produce a feature sample 

( )1, / 5iN Iμ . The same procedure is repeated for the second 

class. The final classification problem, composed of 400 
training data, is very complex, with a strong overlap between 
the two classes as can be seen in Figure 2. This situation makes 
change detection a very complex task. During operational time 
new samples are provided according to the above distributions 
and need to be classified by the active classifiers. Perturbations 

are then generated in the test dataset following both the abrupt 
and drift change model affecting all the means of the classes.  

More specifically, the abrupt change affects the ( ), / 5j
iN Iμ , 

j ∈ 1, 2{ }, i ∈ 1,...,10{ }  distributions according to a 

multiplicative perturbation model ( ), 1j j
p i iμ μ λ= +  where 

{ }0.1,0.2,0.5λ =  is the intensity of the perturbation. In the 

drift case the used model is ( ), 1 /j j
p i i t Tμ μ λ= +  so that, at 

time nT incremental with n the perturbation assumes value 
( ), 1j j

p i i nμ μ λ= + . In any case the perturbations influence the 
magnitude of the affected value of λ . 

A set of 14600 data was generated to test the methods. When 
a change is detected the classifier automatically reacts to track 
the change.  
 

 
Fig. 2. A dataset for the two-dimensional synthetic experiment. In circled blue 
data from the first class, in crossed red those of the second class. It can be seen 
the complex mixture of Gaussian structure for the pdf.  
 
The industrial dataset is composed of 28 datastreams taken 
from couples of photodiodes receiving, over time, X-ray 
radiations at four different energies. Each datastream is 
composed of 12000 16-bit measurements (6000 per sensor); the 
goal is to classify the sensor providing the measurement. The 
training set is composed of the first 400 instances. 

The figures of merit considered to assess the performance of 
the CDTs are,  
• False positive (FP). FP measures the percentage of changes 

detected by the CDT when the change is not there; 
• False negative (FN). FN detects the percentage of changes 

missed by the CDT; 
• Latency (L). Latency measures the time (in samples) 

required to detect a change; 
 

and, for the classifier, 
• Accuracy. Accuracy measures the accuracy of the JIT 

classification system over time after training (test phase); 
• Computational time. The computation time measures, 

given a reference Hw platform (Asus Intel i5 core running 
@ 2.4GHz, 4G RAM), the averaged time per sample 
requested to run the JIT classifier; 
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• Memory usage. It represents the maximum number of 
samples over test data stored in the KB (samples data for 
the k-NN classifier, SVs for the SVM). 
 

Where it does apply experiments have been averaged over 50 
runs for the synthetic dataset and 28 runs for the real one. 

A. Detecting Changes  
The experiments on the synthetic dataset were executed as 

discussed above and led to results given in table III where we 
present the expected value of latency and, between parenthesis, 
the standard deviation. 

As expected we see that FN and latency decrease with the 
increase of the intensity of the perturbation affecting mean 
values in both CDTs. However, the H-CDT is always better 
than the CI-CUSUM both in terms of FN and latency. This is 
associated with the fact that the Hotelling’s test introduces a 
further control on the proliferation of false positives (we set the 
gamma parameter of H-CDT at 0.8 to induce a very sensitive 
CDT. The presence of some FPs introduce a positive 
conservative approach as we will see in the sequel). 

 
TABLE III: THE COMPARED PERFORMANCE OF THE CDTS 

 
  CI-CUSUM CDT H-CDT 
 λ  FP FN L FP FN L 

A
br

up
t 

0.1 0% 98% 2221(0) 26% 2% 1297 
(1850) 

0.2 0% 72% 1508.1 
(1139.3) 20% 0% 254.4 

(444.2) 

0.5 0% 2% 446.7 
(497.5) 10% 0% 186.8 

(426.5) 

D
rif

t 

0.1 2% 100
% -(-) 32% 24% 3432  

(3535) 

0.2 2% 98% 1081(0) 18% 2% 1124.1 
(1556.7)

0.5 0% 36% 1127.3 
(761.3) 10% 0% 218.4 

(413.6) 

 

B. Reacting to Changes  
The second set of experiments refers to 1) the case where 

inputs are affected by a series of concept drift; 2) data coming 
from the industrial datastreams. 

 
A synthetic dataset 
An abrupt change affecting the mean value, λ = 0.5 is 

injected at sample t1 = 3000  followed by a drift within time 

interval [ 2t = 6000, 3t = 10000] λ =1; At time t3 the means go 
back to the nominal ones and a change in the variance 

2 2(1 )λσ λ σ= + , λ = 0.5 takes place. 
The signature profile of the change is given in figure 3 where 

the abscissa shows the values assumed by the first feature over 
time. Detection performance of the two CDTs is shown in 
Figure 3 (lower plot); compared results are given in table IV. 
From the figure we see that H-CDT always detects the change, 
with an obvious delay (tests need to acquire data to provide 
enough confidence to support the “change” statement), while 

CI-CUSUM introduces false negatives. It is worth recalling that 
the proposed systems react to each detected change by 
activating the active modality for the envisaged classifier. 
However, at the same time, the envisaged classifiers might 
adapt also when the change is not detected provided that new 
supervised samples are provided.   

 

 
 
Fig. 3. The time profile of the change (upper plot), and  
 the instants of time a change is detected by the CI-CUSUM and the H-CDTs 
(lower plot). In the abscissa we have the test samples. 

 
TABLE IV: COMPARED PERFORMANCE ON THE SYNTHETIC DATASET 

 
Method Classification 

Accuracy 
Computation  

Time (ms) 
Memory  

Usage (couples)
SVM +  

CI-CUSUM 82.28%(0.008) 1.062(0.080) 695(148.3) 

SVM+H-CDT 81.94%(0.010) 0.440(0.079) 371(69.7) 

k-NN +  
CI-CUSUM 83.25%(0.005) 1.096(0.088) 2214(353.4) 

k-NN+H-CDT 82.02%(0.013) 0.721(0.139) 1298(235.1) 

Static k-NN 81.26%(0.013) 0.095(0.005) 400(0) 

Static SVM 79.46%(0.012) 0.032(0.003) 154(11.4) 

 

 
 
Fig. 4. The average accuracy of the classifiers over time; the reference CDT is 
the H-CDT. 

 
Results are given in table IV; computation time must be 

intended as the expected computation burden per sample.  
Notation X(Y) refers to expected value X with standard 
deviation Y. Static k-NN and static SVM refer to the case 
where the classifiers are static and not adaptive.  

From the table we see that the static versions of the 
classifiers are less performing than the adaptive ones and that 
the best performing classifier is the k-NN+CI-CUSUM. We 
comment that the datastream contains three stationary plateau 
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where the process is stationary and recall that, in stationary 
conditions, the JIT classifier with k-NN tends towards the 
optimal Bayes one. Even if CI-CUSUM is less effective in 
detection, the supervised samples are inserted in the KB and 
mitigate occurrences of false negatives. However, from the 
complexity point of view the solution SVM+H-CDT is clearly 
preferable than the others with a 63% improvement in 
computation time w.r.t the second best one (also based on 
H-CDT) and a 87% in memory savings (compared to the 
SVM+CI-CUSUM solution). The light computation required 
by H-CDT (about 0.06ms to run the two levels hierarchical test) 
vs. the CI-CUSUM (0.5ms) makes the difference in the 
computation cost. This is a direct consequence of CI-CUSUM, 
which is a computationally intensive CDT. In fact, in order to 
keep generality w.r.t. the pdf generating the datastream (or the 
derived features) it needs to compute several numerical features. 
In particular, in addition to the mean and the variance values, 
the CDT computes features related to the pdf and its cumulative 
density function as well as others inspired by the Mann– 
Kendall and the CUSUM CDTs. A pdf-free test, as CI-CUSUM 
is, provides a very high flexibility and generality in the pdf at 
the cost of an increased computational load and latency as we 
have seen in table III. Differently, ICI inspects solely the mean 
and the transformed variance of x(t), which are features 
characterized by a Gaussian distribution. Such implicit priors 
impact both on results and computational complexity.   

When the best active SVM-based and k-NN solutions are 
compared, the former introduces a gain on the latter of about 
250% in memory savings. We refer to table III to further 
investigate results. As far as memory is concerned we should 
always expect SVM to be better than k-NN since d, the number 
of support vectors, is smaller-equal than N, the number of 
available samples. However, when computational complexity 
is envisaged, we cannot decide a priori which classifier should 
be considered. In fact, computational complexity is function of 
the number of times a change is detected (and training 
requested). We shall expect that SVM, characterized by a costly 
training and a cheap recall phases should be preferred when 
concept drift are infrequent, otherwise k-NN might be better. 
This issue is application specific and should be decided 
application by application.   

In order to scale the computation time performance of table 
IV (Matlab) to an embedded system, we executed a numerical 
intensive application composed of multiplications, sums and 
divisions both in Matlab and two embedded processors. The 
first embedded microprocessor is the 8 bits Arduino 
ATMEGA328P working at 16MHz, the second one the 16 bits 
STM32F103ZET6 one running at 72MHz. The ratio between 
the two execution times is taken as a rough estimate of the gain 
that the particular pc-based platform provides over the 
embedded system. It comes out that the Arduino processor is 
78.2 times slower than corresponding execution in Matlab 
whereas the STM32 one is only 10.9.  With these figures, the 
expected execution time per sample would be, in the 
SVM+H-CDT case of table IV, 34ms for the Arduino and 
4.5ms for the STM32, respectively.  
  As a last note we comment about figure 4. We see how 

averaged performances are kept over time despite the changes. 
In fact, a reaction to the detection the active mechanism is 
enabled in addition to the adaptive mechanism intrinsic with the 
classifiers and accuracy are high. The fact that k-NN is slightly 
worse in the average after sample 10000 is associated with the 
fact that the change, even if detected, keeps in the KB of the 
k-NN samples related to the drift (only old samples are 
discarded and the drift operated for long time). Afterwards, new 
data cause the classifier to steadily improve its accuracy: new 
incoming data are inserted in the KB of the k-NN, made 
available and immediately used. Differently, the SVM either is 
retrained following a change detection or stores new samples 
not satisfying the KKT conditions in the incremental KB (IKB) 
and, only when they represent a significant percentage of the 
SVs present in KB a new training procedure is activated to 
redesign the classifier (the new SVs are identified). This is what 
happens with the SVM of figure 4.  

As a final note, it is worth point out that false positives 
introduce an unnecessary retrain of the classifier which is 
positive to track drifts and changes hardly detectable for their 
magnitude at the expenses of a higher cost in computation.    

 
A real-world dataset 

An example of a real datastream is shown in Figure 5 where 
also its detection performance of the methods is provided. Here, 
the H-CDT detects all changes, the CI-CUSUM only the first 
one, characterized by a larger change in the mean. 
 

 
 
Fig. 5. Photodiodes sensing. The input radiation changes and introduces four 
abrupt changes in the datastream (upper plot); the instants of time a change is 
detected by the CI-CUSUM and the H-CDTs are also given (lower plot). 
 

The tracking-to-change experiments were run with results 
given in table V. At first the advantages introduced by 
adaptation are evident when we compare accuracies provided 
by the JIT classifiers with those of static solutions. Again, SVM 
is advantageous over k-NN in terms of memory consumption 
and the use of H-CDT provides a gain in computation 
complexity over the CI-CUSUM. 

Here, the best accuracy performances are associated with 
SVM classifiers even if k-NN performs well thanks to the 
effective detection ability provided by H-CDT. However, as 
mentioned in the previous experiment, the choice of the optimal 
classifier is application dependent. 
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 TABLE V: COMPARED PERFORMANCE ON REAL DATASET 
 

Method Classification 
Accuracy 

Computation  
Time (ms) 

Memory  
Usage 

(couples) 
SVM +  

CI-CUSUM 73.05%(0.069) 0.672(0.073) 887(226.9) 

SVM+H-CDT 73.39 %(0.073) 0.243(0.032) 551(108.7) 

k-NN +  
CI-CUSUM 70.40%(0.063) 0.577(0.028) 1688(221.1)

k-NN+H-CDT 73.37%(0.059) 0.426(0.048) 937(28.2) 

Static k-NN 54.22%(0.014) 0.050(0.001) 400(0) 

Static SVM 45.16%(0.072) 0.032(0.004) 269 (49.8) 

 

 
 
Fig. 6. The average accuracy of the classifiers over time; the reference CDT is 
the H-CDT.  
 

The evolution over time of the accuracy performance 
(averaged over runs) is given in figure 6. The “peaks” are 
associated with the detection phase after which reaction takes 
place. The fact that SVM is very responsive implies that many 
samples violate here the KKT conditions inducing the classifier 
to be retrained in addition to retrains induced by detection of 
changes in stationarity. De facto, given the abrupt type of 
perturbations, every time we retrain the SVM we generate a 
classifier that works in locally stationary conditions. 
Interestingly, the performance of the classifier improves over 
time despite the abrupt changes. This implies a structural 
concept drift in the pdf of the process generating the data which 
evolves towards problems whose classification complexity 
reduces.   

VI. CONCLUSION 
Designing applications able to react just in time to changes 

affecting the stationarity of datastreams is a main feature for 
any intelligent embedded system dedicated to sensing 
applications. Hardware resources are here finite both in terms 
of computational power and memory usage hence pushing the 
designer towards resource-aware solutions. The paper, by 
referring to a classification application, compares two 
interesting candidates as CDTs, namely the CI-CUSUM and 
the ICI CDT families. At the same time it envisages active 
k-NN and SVM classifiers, modified to host a CDT. The 
outcome classifier is able to detect changes in the incoming 
samples and react accordingly by updating the classifier to 
track the change and maximize accuracy. It comes out that the 
H-CDT is lighter and best performing both in terms of false 

positives and negatives than the CI-CUSUM rival which, 
however, is more general and able to detect more subtle concept 
drift as those not affecting the mean and the variance of the pdf 
generating the data (or derived features). We surely recommend 
the use of the H-CDT (or the newly introduced sequential 
version of the LP-CPM [34]) as CDT in intelligent embedded 
systems. As such, the H-CDT code has been made available 
and can be downloaded from the link given in [38]. If we move 
to the Just-In-Time adaptive classifier issue then we cannot 
immediately claim whether a SVM or a k-NN core should be 
considered. While memory consumption is always in favor of a 
SVM-based solution, computational complexity depends on the 
frequency a change is detected in the datastream and, as such, is 
application dependent. Both algorithms should be tested for 
computational complexity as we did in the experimental section 
before being ported to the embedded system. The use of CDT 
introduces, a priori, false positives FP and false negatives FN. 
FP mainly introduce an unnecessary retrain of the classifier 
with an increase of the computational complexity and energy 
consumption. In terms of accuracy they might negatively affect 
the k-NN since old samples are removed (when they should be 
not). However, this introduces a mechanism which is beneficial 
if subtle drift or small magnitude changes affect the datastream 
since a periodic training is induced. FN, a priori unwished 
events, are here strongly kept under control by tolerating FP 
and mitigated by the particular nature of the adaptive classifiers. 
In fact, both classifiers introduce implicit adaptation 
mechanisms by taking advantage of new supervised samples 
either by inserting them in the knowledge base (k-NN) or in a 
suitable set (SVM) whenever they violate the KKT conditions.  

REFERENCES 
[1] H. Flavell, “Piaget’s legacy,” Psychol. Sci., vol. 7, no. 4, pp. 200–203, Jul. 

1996. 
[2] R. Elwell and R. Polikar, “Incremental learning of concept drift in 

nonstationary environments,” IEEE Transactions on Neural Networks, 
vol. 22, no. 10, pp. 1517–1531, Oct. 2011.  

[3] G.Acciani, G. Brunetti, and G. Fornarelli, “Application of neural 
networks in optical inspection and classification of solder joints in surface 
mount technology,” IEEE Transactions on  Industrial Informatics, vol. 2, 
no.3, pp. 200–209, 2006. 

[4] A. Rizzo and M. G. Xibilia, “An innovative intelligent system for sensor 
validation in tokamak machines,” IEEE Transactions on Control Systems 
Technology, vol.10, no. 3, pp. 421–431, 2002. 

[5] E. Athanasopoulou and C. N. Hadjicostis, “Probabilistic approaches to 
fault detection in networked discrete event systems,” IEEE Transactions 
on Neural Networks, vol.16, no.5, pp.1042–1052, 2005 

[6] I. W. Burr, Statistical Quality Control Methods. New York: Dekker, 
1976. 

[7] G. A. F. Seber, Linear Regression Analysis. New York: Wiley, 1976. 
[8] R. Gnanadesikan, Methods for Statistical Data Analysis of Multivariate 

Observations. New York: Wiley, 1977. 
[9] R. J. Herrnstein, D. H. Loveland, and C. Cable, “Natural concepts in 

pigeons,” J. Exp. Psychol.: Animal Behavior Process, vol. 2, pp. 285–302, 
1976. 

[10] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics, 
vol. 1, pp. 80–83, 1945. 

[11] M. Kendall, Rank Correlation Methods, 4th ed. London, U.K.: Griffin, 
1975. 

[12] B. F. J. Manly and D. I. MacKenzie, “A cumulative sum type of method 
for environmental monitoring,” Environmetrics, vol. 11, pp. 151–166, 
2000. 

[13] C. Alippi, G. Boracchi, and M. Roveri, “Adaptive classifiers with 
ICI-based adaptive knowledge base management,” in Artificial Neural 

0 2000 4000 6000 8000 10000 12000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

 

 

SVM+H-CDT
KNN+H-CDT



 
 

10

Networks (ICANN 2010), Lecture Notes in Computer Science. Springer 
Berlin / Heidelberg, 2010, vol. 6353, pp. 458–467. 

[14] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical 
Learning, Springer, 2009 

[15] G. Anastasi, M. Conti, M. D. Francesco, and A. Passarella, “Energy 
conservation in wireless sensor networks: A survey,” Ad Hoc Networks, 
vol. 7, pp. 537–568, 2009 

[16] L. Rokach, “Ensemble-based classifiers,” ACM Journal Artificial 
Intelligence Review, vol. 33, no. 1-2, pp. 1–39, Feb. 2010. 

[17] C. Alippi, G. Boracchi, and M. Roveri, “Just-in-time adaptive classifiers – 
part II: Designing the classifier,” IEEE Transactions on Neural Networks, 
vol. 19, no. 12, pp. 2053–2064, Dec. 2008. 

[18] C. Alippi, G. Boracchi, and M. Roveri, “An effective just-in-time 
adaptive classifier for gradual concept drifts,” in Proceedings of 
International Joint Conference on Neural Networks, San Jose, California 
July 31–Aug. 5, 2011, pp. 1675–1682.  

[19] C. Alippi, L. Bu, and D. B. Zhao, “SVM-based just-in-time adaptive 
classifiers,” in ICONIP 2012, Part II, Lecture  Notes  in  Computer 
Science. Springer Berlin/ Heidelberg, 2012, vol. 7664, pp.664–672. 

[20] C. Alippi and M. Roveri, “Just-in-time adaptive classifiers – part I: 
detecting nonstationary changes,” IEEE Transactions on Neural 
Networks, vol. 19, no. 7, pp. 1145–1153, July 2008. 

[21] A. Goldenshluger, A. Nemirovski, “On spatial adaptive estimation of 
nonparametric regression,” Mathematical Methods of Statistics, vol. 6, 
pp.135–170, 1997 

[22] V. Katkovnik, “A new method for varying adaptive bandwidth selection,” 
IEEE Transactions on Signal Processing, vol. 47, no. 9, pp. 2567–2571, 
1999. 

[23] C. Alippi, G. Boracchi, and M. Roveri “A just-in-time adaptive 
classification system based on the intersection of confidence intervals 
rule,” Neural Networks, vol. 24, no. 8, pp. 791–800, 2011.  

[24] K. Fukunaga, Introduction to Statistical Pattern Recognition. New York: 
Academic, 1972. 

[25] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector 
Machines, Cambridge University Press, 2000 

[26] H. Shen, H. Xi, and G. Xie, “The improved grid-search algorithm used in 
the fault diagnosis by SV,” Mechanical Engineering & Automation, 
pp.108–110, 2012 

[27] G. W. Gates, “The reduced nearest neighbor rule,” IEEE Transactions on 
Information Theory, vol. 18, no. 3, pp. 431–433, May 1972. 

[28] A.Bordes, S. Ertekin, J. Waston, and L. Bottou, “Fast kernel classifiers 
with online and active learning,” Journal of Machine Learning Research, 
vol. 6, no. 1, pp. 579–1619, 2005. 

[29] R. Collobert and S. Bengio, “SVM torch: support vector machines for 
large-scale regression problems,” Journal of Machine Learning Research, 
vol. 1, pp. 143–160, 2001. 

[30] S. Shalev-Shwartz and N. Srebro, “SVM optimization: inverse 
dependence on training set size,” in Proceedings of the 25th International 
Conference on Machine Learning (ICML), Helsinki, Finalnd, July 2008, 
pp.928–935. 

[31] R. Isermann, Fault-Diagnosis Systems: An Introduction from Fault 
Detection To Fault Tolerance. Springer Verlag, 2006. 

[32] G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine: 
theory and applications,” Neurocomputing, vol. 70, no. 1, pp. 489–501, 
2006. 

[33] B. Schrauwen, D. Verstraeten, and J. V. Campenhout, “An overview of 
reservoir computing: theory, applications and implementations,” in 
Proceedings of the 15th European Symposium on Artificial Neural 
Networks. Bruges, Belgium, April 25-27, 2007, pp. 471–482. 

[34] G. J. Ross, D. K. Tasoulis, and N. M. Adams, “Nonparametric monitoring 
of data streams for changes in location and scale”, Technometrics, vol. 53, 
no. 4, pp. 379–389, 2012 

[35] P. Padhy, R. K. Dash, K. Martinez, and N. R. Jennings, "A utility-based 
sensing and communication model for a glacial sensor network", in 
Proceedings of the Fifth International Joint Conference on Autonomous 
Agents and Multiagent Systems (AAMAS'06), Hakodate, Japan, May 8– 
12, 2006, pp. 1353–1360. 

[36] C. Alippi, G. Anastasi, M. Di Francesco, and M. Roveri, “An adaptive 
sampling algorithm for effective energy management in wireless sensor 
networks with energy-hungry sensors,” IEEE Transactions on 
Instrumentation and Measurement, vol. 59, no. 2, pp. 335–344, Feb. 
2010. 

[37] C. Alippi, G. Boracchi, and M. Roveri, “Just in time classifiers for 
recurrent concepts,” IEEE Transactions on Neural Networks and 
Learning Systems, DOI:10.1109/TNNLS.2013.2239309, to be published. 

[38] http://www.i-sense.org/open_library.html 
 

Cesare Alippi (SM’94–F’06) received the degree in 
electronic engineering cum laude in 1990 and the 
PhD in 1995 from Politecnico di Milano, Italy.  

Dr. Alippi is a Full Professor of information 
processing systems with the Politecnico di Milano. 
He has been a visiting researcher at UCL (UK), MIT 
(USA), ESPCI (F), CASIA (CN). He holds 5 patents 
and has published about 200 papers in international 
journals and conference proceedings. His current 
research addresses adaptation and learning in 
non-stationary environments and Intelligent 

embedded systems.  Prof. Alippi is Vice-President Education of the IEEE 
Computational Intelligence Society (CIS), Associate editor (AE) of the IEEE 
Computational Intelligence Magazine, past AE of the IEEE Transactions on 
Neural Networks, the IEEE Transactions on Instrumentation and 
Measurements (2003-09) and member and chair of other IEEE committees 
including the IEEE Rosenblatt award. In 2004 he received the IEEE 
Instrumentation and Measurement Society Young Engineer Award. In 2011 
was awarded Knight of the Order of Merit of the Italian Republic. 
 

Derong Liu (S'91-M'94-SM'96-F'05) received the 
Ph.D. degree in electrical engineering from the 
University of Notre Dame in 1994. Dr. Liu was a Staff 
Fellow with General Motors Research and 
Development Center, Warren, MI, from 1993 to 1995. 
He was an Assistant Professor in the Department of 
Electrical and Computer Engineering, Stevens Institute 
of Technology, Hoboken, NJ, from 1995 to 1999. He 
joined the University of Illinois at Chicago in 1999, 
and became a Full Professor of electrical and computer 
engineering and of computer science in 2006. He was 

selected for the "100 Talents Program" by the Chinese Academy of Sciences in 
2008. He has published 10 books. Dr. Liu has been an Associate Editor of 
several IEEE publications. Currently, he is the Editor-in-Chief of the IEEE 
Transactions on Neural Networks and Learning Systems, and an Associate 
Editor of the IEEE Transactions on Control Systems Technology. He was an 
elected AdCom member of the IEEE Computational Intelligence Society 
(2006-2008). He received the Faculty Early Career Development (CAREER) 
award from the National Science Foundation (1999), the University Scholar 
Award from University of Illinois (2006-2009), and the Overseas Outstanding 
Young Scholar Award from the National Natural Science Foundation of China 
(2008).  

 
Dongbin Zhao (M’06-SM’10) received the B.S., 
M.S., Ph.D. degrees in material processing 
engineering from Harbin Institute of Technology, 
Harbin, China, in Aug. 1994, Aug. 1996, and Apr. 
2000 respectively. 

Dr. Zhao was a postdoctoral fellow with Tsinghua 
University, Beijing, China, from May 2000 to Jan. 
2002. He became an associate professor, and a 
professor in 2002 and 2012 respectively at the 
Institute of Automation, Chinese Academy of 
Sciences, China. He has published one book and over 

thirty international journal papers. His current research interest covers 
computational intelligence, adaptive dynamic programming and applications. 

Dr. Zhao has been an Associate Editor of the IEEE Transactions on Neural 
Networks and Learning Systems, and Cognitive Computation, and the 
Newsletter Editor of IEEE Computational Intelligence Society. He received 
five scientific awards, including the Third Scientific Award of Beijing (2010). 

 
Li Bu received the B. S. degree in electronic 
engineering and automation in 2012 from the Chinese 
University of Mining and Technology.  Miss Bu is now 
a graduate in the State Key Laboratory of Management 
and Control for Complex Systems, Institute of 
Automation, Chinese Academy of Sciences. She has 
published one conference paper and submitted two 
journal papers. His current research interest lies in the 
area of adaptation and learning in non-stationary 
environments and computational intelligence.   



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


