
Improving Efficiency of Hybrid System Simulation in
Modelica

Victorino Sanz
Dpto. Informática y

Automática, ETSI Informática,
UNED

Juan del Rosal, 16
28040, Madrid, Spain

vsanz@dia.uned.es

Alfonso Urquia
Dpto. de Informática y

Automática, ETSI Informática,
UNED

Juan del Rosal, 16
28040, Madrid, Spain

aurquia@dia.uned.es

Francesco Casella
Dipartimento di Elettronica,

Informazione e Bioingegneria,
Politecnico di Milano

Piazza Leonardo da Vinci, 32
20133, Milano, Italy

francesco.casella@polimi.it

ABSTRACT

Modelica supports the modeling of hybrid systems by means
of differential and algebraic equations, and discrete-events.
The simulation of Modelica models is carried out by solv-
ing the continuous-time equations, detecting the occurrence
of events and managing the triggered events. After manag-
ing an event, the event iteration algorithm is used to find
consistent restart conditions before resuming the numerical
integration. The objective of the work presented in this
manuscript is to describe a procedure to optimize the event
iteration algorithm. The structure of the model is analyzed
in order to only re-evaluate the equations involved in the
management of events. The use of this procedure is de-
scribed by means of an application example.

Categories and Subject Descriptors

I.6 [Computing Methodologies]: Simulation and Mod-
eling; I.6.2 [Simulation and Modeling]: Simulation Lan-
guages—Modelica; I.6.8 [Simulation and Modeling]: Types
of Simulation—Combined, Hybrid ; G.4 [Mathematics and
Computing]: Mathematical Software—Algorithm Design
and Analysis; I.1.2 [Computing Methodologies]: Algo-
rithms—Analysis of algorithms

General Terms

Algorithms, Languages, Performance

Keywords

Hybrid system modeling, event iteration, simulation perfor-
mance, Modelica

1. INTRODUCTION
Modelica is a general-purpose object-oriented modeling

language [16]. It is mainly designed to describe mathemat-
ical models of physical systems using differential, algebraic

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
EOOLT 20014, October 10 2014, Berlin, Germany
Copyright 2014 ACM 978-1-4503-2953-8/14/10 ...$15.00
http://dx.doi.org/10.1145/2666202.2666205.

and discrete equations. It also supports the management of
discrete-events, thus facilitating the description of hybrid-
systems (i.e., systems with combined continuous and dis-
crete behaviors) [15, 5, 8, 17].

In order to simulate a Modelica model its equations have
to be translated into executable code. As a first step, the
model equations are expanded into a flat set of statements,
named the flat hybrid differential and algebraic equation
(DAE) model. These manipulations are described with de-
tail in [6] and [11].

Event conditions are checked during the simulation and
if any event is triggered, the solution of the DAE system
is halted and the event is managed. After each event, the
simulator (Dymola in our case [7]) has to find consistent
restart values for the variables of the hybrid DAE model
before resuming the integrator for the continuous-time part.
This procedure is called event iteration. A similar approach
is used in the OpenModelica compiler [3].

During the event iteration, after handling each event, the
entire model is re-evaluated. However, the management of
the event may not affect the whole model. For example, in
hybrid systems, an event may propagate a chain of events
along the discrete-event part of the model without involving
any change in the continuous-time part. A chain of events
takes place when the management of an event immediately
triggers another event, and so on. During the management
of these chains of events, an event iteration is performed
after each event and the whole model is re-evaluated during
the iteration, even if the events are local to a sub-system
of the discrete-event part (e.g., see case studies presented
in [20] and [21]). This situation is demonstrated with an
example in Section 5.

Following the approach described above, unnecessary eval-
uations of some model equations may be performed, which
may significantly degrade simulation performance. On the
one hand, due to performing unnecessary event iterations
when the values of some variables are changed during the
event but no further events are triggered. On the other
hand, when the event iteration is needed, due to the evalua-
tion of equations not involved in the event. Similarly, an im-
provement for the detection of the events, in order to avoid
unnecessary evaluations of equations during root-finding, is
presented in [12].

The objective of the work presented in this manuscript is
to describe a procedure to optimize the execution of event
iterations. The idea is to analyze the dependencies between

21

the modification of the values of some variables during an
event and their effect in the conditions that trigger addi-
tional events. In some cases some parts of the model will
not be affected by the events triggered, and so they should
not be involved in their management. In general, the sim-
ulation of complex hybrid systems such as communication
networks [9], statecharts [10], DEVS [20, 2], Cellular Au-
tomata [22], Petri Nets [18] or logistic systems [19, 14, 13]
will be improved with this procedure. The proposed pro-
cedure does not modify the usual manipulation performed
to the Modelica model, but provides additional information
based on the description of the hybrid DAE model.

The relationship between the discrete-event and the conti-
nuous-time parts of the system is considered by other simu-
lators in order to improve performance. For example, Saber,
by Synopsys [24, 23], uses the patented Calaveras algorithm
to independently simulate the discrete-event part and the
continuous-time part of mixed-signal systems. The simula-
tion of both parts is efficiently synchronized by the algorithm
in order to ensure the correctness of the overall simulation.

The structure of this manuscript is as follows. A brief de-
scription of the hybrid DAE model, the simulation of Mod-
elica models and the event iteration procedure is presented
in Section 2. The proposed procedure to analyze the model
equations and to optimize the execution of event iterations
is presented in Section 3. The detailed description of the
algorithm is included in Section 4. In order to demonstrate
the use of the proposed procedure, an application example
is described in Section 5. The manuscript is finished with
some conclusions in Section 6.

2. SIMULATION OF MODELICA HYBRID

MODELS
A Modelica model has to be translated into a flat hybrid

DAE model in order to be simulated [11, 6]. According to
the Modelica specification (version 3.2, revision 2) [16] the
hybrid DAE model is defined as (the special cases of the
noEvent() and the reinit() operators are not considered):

c := fc(relation(v)) (1)

m := fm(v, c) (2)

0 = fx(v, c) (3)

where,
v is v := [ẋ;x;y; t;m;pre(m);p].
p are the variables declared as parameter or

constant.
t is the independent variable, time.
x(t) are variables of Real type that appear dif-

ferentiated.
m(te) are the unknown discrete variables, of dis-

crete Real, Boolean and Integer types.
Their values only change at event instants
te. pre(m) are the values of m immediately
before the event.

y(t) are the algebraic variables of Real type.
c(te) are conditions of if-expressions and con-

verted when-clauses (used to trigger
events).

relation(v) are relations containing variables vi.

Begin

Find consistent initial values

Check invariants

Any events?

Solve DAE problem and

advance time

Determine event instant,

fire event and find

consistent initial values

Final time?

End

No

No

Yes

Figure 1: Hybrid DAE simulation algorithm [1].

The simulation of the model is summarized in the diagram
shown in Fig. 1. The simulation starts by finding consistent
initial values for the model variables. After that, the DAE
equations (Eq. (3)) are solved using a numerical integrator.
Conditions c and discrete variables m are kept constant.
During integration, the relations from Eq. (1) (i.e., the in-
variants) are monitored in order to detect changes in their
values (i.e., triggered events). When an event is triggered
the integration is halted and an iteration is performed to
find the interval in which the event has occurred, given a
pre-defined error threshold [4]. Time events (i.e., relations
that depend only on time) can be pre-scheduled (e.g., us-
ing a calendar of events). At the event instant, the model
consist of a mixed set of algebraic equations that has to be
solved for the Real, Boolean and Integer unknowns.

After the event is treated, consistent initial values have
to be found before the integration is restarted. The proce-
dure used to re-initialize the model equations after the event
(named event iteration) is shown in Algorithm 1 [16]. Basi-
cally, this procedure re-evaluates the model until the value
of the discrete variables remains unchanged. If the value
of any discrete variable changes, additional events may be
triggered during the same time instant.

Due to the synchronous data flow principle and the single

Algorithm 1: Modelica event iteration procedure.

known variables : x, t, p
unknown variables: dx/dt, y, m, pre(m), c
// pre(m) = value of m before event occurred

repeat
solve (1),(2) and (3) for the unknowns, with pre(m)
fixed;
if m == pre(m) then

break;

pre(m) := m;

until;

22

Listing 1: Model NoEventIter1.
model NoEventIter1

Real x (start = 0);
Real y (start = 0);

Real z (start = 0);
equation

der(x) = 1;
when y > 0.5 then

z = pre (z) + 1;

end when;
when x > 1 then

y = pre(y) + 1;
end when;

end NoEventIter1;

assignment rule, a change in a discrete variable that is also
used in another equation, or condition, without using the
pre() operator does not require event iteration. The rea-
son for this is because the BLT ordering of the equations
provides the correct order for evaluating the equations. It
is dependent on the implementation to use this character-
istic or to find new consistent initial values by means of
event iterations. The example model NoEventIter1, shown
in Listing 1, can be evaluated as follows.

Equation z = pre(z)+1 will be ordered after equation y

= pre(y)+1 since the former is contained within a condition
that used the value of y, that is computed in the latter.
When x > 1 becomes true a new value for y is computed,
and this change may trigger y > 0.5 event, which will be
computed later in the BLT. At the end of the evaluation of
the model equations, all feasible events had been checked
and computed if their conditions became true.

On the other hand, a change in a discrete variable that is
involved in another equation, or condition, under the pre()
operator (e.g., when pre(x) > 0.5 then) may need event
iterations. A condition using pre(v) may be ordered before
the computation of v in the BLT. As stated in the Modelica
specification (Section 3.7.3.1):
“A new event is triggered if at least for one variable v

“pre(v) <> v” after the active model equations are evalu-
ated at an event instant. In this case the model is at once
reevaluated...”

Consider the example shown in Listing 2.

Listing 2: Model NoEventIter2.
model NoEventIter2

Real x (start = 0);

Integer c (start = 0);
equation

der(x) = 1;
when x > 0.5 then

c = pre(c)+1;

end when;
end NoEventIter2

When the state event is triggered (x > 0.5), the value
of c becomes different than pre(c) due to the assignment
inside the when clause, and according to the specification
an event iteration has to be performed. However, the state
event will not be triggered again, and the event iteration
could be avoided. In this case, the difference between values
of c and pre(c) is irrelevant for the event iteration. The
same situation can be observed in the previous example -
i.e., NoEventIter1 - where y <> pre(y) and z <> pre(z) at

the end of the evaluation of the event. An a-priori analysis
of the model equations and the event conditions could be
used to avoid unnecessary event iterations. The procedure
described next performs this analysis.

3. OPTIMIZING EVENT ITERATIONS
When an event is triggered, Algorithm 1 specifies how the

consistent restart conditions for the model can be computed.
When solving Eqs. (1)-(3) for the first time, the values

of some variables may change, possibly triggering further
events. However, if BLT ordering is used to solve Eqs. (1)-
(3), assuming a fixed value for pre(m) and taking into ac-
count all dependencies, all conditions not containing pre(m)
will be properly ordered in the BLT, and the correct se-
quence of further events to be triggered will automatically
stem from the ordered solution of the BLT blocks, as shown
by the example in Listing 1. Since the last statement in
the loop only changes the value of pre(m), these conditions
will not be triggered in the next iterations; therefore, all the
equations depending on these conditions can be removed
from the set of equations to be solved iteratively, and the
values of their corresponding variables considered as fixed
for the next iterations. The same argument applies to time-
induced conditions, which are also not affected by the change
of pre(m).

On the other hand, conditions using pre(), for example
pre(x) > 1, may be ordered in the BLT before the calcu-
lation of the variable under pre(), e.g., x = pre(x)+1. As
a consequence, a change in the variable may trigger an ad-
ditional event whose condition has to be checked during an
additional evaluation (i.e., the event iteration). The goal
of the algorithm is to identify the minimal set of equations
affected by the change of the pre() variable, thus avoiding
unnecessary computations during the event iteration.

In order to do so, one can interpret the termination con-
dition of Algorithm 1, m = pre(m), as an additional set of
constraint equations that must be fulfilled by the computed
consistent restart conditions. A suitable dependency graph
can be built, to analyze the dependencies in the system that
results from adding these constraint equations to the orig-
inal set (1)-(3), and removing those equations that depend
on conditions not containing pre(m), which are irrelevant.

Any loop in the graph that connects an equation used
to compute a variable x, the equation added to represent
the exit condition x == pre(x), the condition including that
previous value pre(x), and the equation(s) restricted by that
condition, will then identify a set of equations that needs
event iterations to be solved, due to cyclic dependencies.
Equations and variables which are outside such loops and
which are not influenced by the variables computed in such
loops will not be affected by the change pre(m) := m at the
end of each iteration; therefore, they can be excluded from
the event iteration loop, avoiding unnecessary computations.

The following concepts are used in the description of the
algorithm:

• pre-node: is a node in the graph that represents the
equation used to update the previous value of a vari-
able (e.g., pre(x) = x).

• condition-node: is a node in the graph that represents
a discrete-time expression of the model that contains
at least a variable under the pre() operator, and is used
as a condition for an event.

23

• loop-node: is a node in the graph that belongs to a
loop. A loop is composed at least by a pre-node and a
condition-node.

• update-node: is a node that does not belong to a loop
but receives an edge from a loop-node, or from another
update-node.

4. ALGORITHM DESCRIPTION
The procedure starts considering the BLT ordered equa-

tions of the flat model. Some equations may be restricted
under certain conditions (i.e., defined inside when- or if-
expressions). Some of the variables involved in these con-
ditions may be affected by the pre() operator. Each set of
equations inside the same when clause is divided into indi-
vidual when clauses, each containing one equation. This pro-
cedure is based on the analysis of the relationship between
the changes in the discrete variables and their appearance
in the conditions using the pre() operator.

The procedure is described next, with the help of the ex-
ample shown in Listing 3:

Listing 3: Example model.
model example

parameter Real a = 1;

parameter Real b = 1;
parameter Real c = 1;
Real x(start = 1, fixed = true);

Real y(start = 0, fixed = true);
equation

when y > 3 and pre(x) > 0 then
x = a + b;

end when;

der(y) = x + c;
end example ;

1. Remove all equations declared inside when clauses whose
conditions may trigger time events. Also, remove the
non-active branch of if-expressions whose condition may
also trigger time events. Time events will not be trig-
gered during event iteration (i.e., time is not advanced)
and so, it is not necessary to evaluate those equations.
Eq. (1), of the hybrid DAE model, is then reduced to
conditions that trigger state events. In the example
there are no time event conditions.

2. Remove all equations declared inside when clauses whose
conditions do not include the pre() operator. Simi-
larly, remove the non-active branch of if-expressions
whose condition does not include the pre() operator.
In the example the condition of the when clause in-
cludes pre(x), so equation x = a + b is not removed.

3. If all equations have been removed, event iteration can
be avoided and the procedure ends. In this case, the
modification of the discrete variables of the model dur-
ing an event is not related with the conditions that may
trigger additional state events.

4. If not, add the equations corresponding to the updates
of pre() variables described in Algorithm 1, that is,
pre(x) = x.

5. Using the current system of equations, construct a di-
rected graph of equation-variable relations. The nodes

of the graph represent each equation of the system and
the variable that is computed using that equation, in-
cluding the pre-nodes corresponding to the equations
added in the previous step. The edges of the graph
go from the node in which a variable is computed to
the nodes that represent the equations that use the
previously computed variable. In the case of an al-
gebraic loop in a sub-system of equations, the whole
sub-system of equations may be represented using a
single node with multiple edges representing all the
variables computed in the loop. The directed graph
corresponding to the example presented in Listing 4 is
shown in Fig. 2.

Listing 4: Modelica flat model including pre() up-
date equations.

1 when y > 3 and pre(x) > 0 then x := a+b; end when;

2 der(y) := x+c;

3 pre(x) := x;

1

2

3

Figure 2: Directed graph for example code (node
numbers correspond to line numbers in Listing 4).

6. Add the condition-nodes to the graph. These condi-
tions will include variables using the pre() operator.
The equations of the example including the conditions
are presented in Listing 5.

Listing 5: Modelica flat model including conditions.
1 when y > 3 and pre(x) > 0 then x := a+b; end when;

2 der(y) := x+c;

3 pre(x) := x;

4 (y > 3 and pre(x) > 0)

7. Add edges to the graph that correspond to the relation-
ships between the variables of the conditions and their
corresponding condition-nodes. The new nodes and
edges corresponding to the condition-nodes are shown
in Fig. 3 (i.e., node 4).

1

2

3 4

Figure 3: Directed graph including condition-nodes.

8. Add an edge from each condition-node to the nodes
of equations whose computation is restricted by the

24

condition (i.e., equations that will be active when the
condition is satisfied). These new edges are shown
in Fig. 4 for the example graph. Some loops will
be formed in the graph, due to the dependencies be-
tween pre-nodes, condition-nodes and nodes restricted
by condition-nodes.

1

2

3 4

Figure 4: Directed graph including edges from
condition-nodes.

9. If the graph contains any loop composed of a pair of
nodes, merge these nodes into one single node. These
pairs correspond to the use of the pre() value of a vari-
able to calculate its new value (e.g., x = pre(x) + 1).

10. Identify the nodes of the graph that belong to a loop,
named loop-nodes (e.g., nodes 1, 3 and 4 in the exam-
ple). These nodes will have to be evaluated in the event
iteration, because the loop indicates that the modifica-
tion of a discrete variable and the update of its pre()
value may modify the value of a condition and trig-
ger a new event. In the case of nodes merged in the
previous step, both nodes will become loop-nodes.

Begin

Find consistent initial values

Check invariants

Any events?

Determine event instant

and fire event

Final time?

End

No

No

Yes

Loop-nodes empty?

Evaluate

update-nodes

Evaluate

loop-nodes

m == pre(m)?

Yes

No

Yes

No

Solve DAE problem and

advance time

Figure 5: Adapted hybrid DAE simulation algo-
rithm.

11. Update-nodes will have to be evaluated once before re-
starting the integration, in order to correctly update
the value of their variables with the final value of the
variables involved in the event iteration. This corre-
sponds to node 2 in the example.

12. The rest of the nodes (i.e., nodes without edges or
nodes with edges pointing to any loop- or update-node)
does not have to be evaluated in the event iteration. In
such a simple example this set of nodes is empty, but
it will contain some nodes in the application example
discussed in Section 5.

This procedure can be computed in advance, previously
to the simulation, during the translation of the model. The
simulation algorithm can be adapted to evaluate loop-nodes
and update-nodes equations. The diagram of the adapted
simulation algorithm is shown in Fig. 5.

5. APPLICATION EXAMPLE
In order to demonstrate the described procedure, an appli-

cation example is presented. This model, named hybridSys,
describes a hybrid system where the discrete and the con-
tinuous parts are clearly separated. The only interaction is
by using the values of x_End and x1 to compute x2, using
the function named func2. The parts, phases and behavior
of the model are shown in Fig. 6. The Modelica source code
for this model is shown in Listing 6.

Figure 6: Diagram describing relations between
phases and equations for the hybridSys model.

Listing 6: Modelica code of hybridSys model.
package Example2

function func1
input Real x;

output Real func1_out;
algorithm

func1_out := x;

end func1;

function func2
input Real x1;
input Real x2;

output Real func2_out;
algorithm

func2_out := x1 + x2;
end func2;

25

model hybridSys

parameter Integer Niter = 4;
// Variables of the discrete event model

Boolean phase_Start(start=true);
Boolean phase_Loop1(start=false);
Boolean phase_Loop2(start=false);

Boolean phase_Loop3(start=false);
Boolean phase_End(start=false);

Real x_Start (start=0);
Real x_Loop1 (start=0);

Real x_Loop2 (start=0);
Real x_Loop3 (start=0);
Real x_End(start=0);

Boolean startCondition(start=false);
Boolean loopCondition1(start=false);

Boolean loopCondition2(start=false);
Boolean loopCondition3(start=false);
Boolean endCondition(start=false);

// Variables of the continuous-time model
Real x1(start=10),x2;

equation
// ---------------------

// Continuous-time model
der(x1) = -func1(x1);
// No discrete -to-continuous interaction

//x2 = func1(x1);
// Discrete -to-continuous interaction

x2 = func2(x1,x_End);
// --------------------
// Discrete -event model

startCondition = time > 1;
loopCondition1 = pre(x_Loop1) < Niter+1;

loopCondition2 = pre(x_Loop2) < Niter+1;
loopCondition3 = pre(x_Loop3) < Niter;

endCondition = not loopCondition3;
phase_Start =

pre(phase_Start) and not startCondition;

phase_Loop1 =
pre(phase_Start) and startCondition or

pre(phase_Loop3) and loopCondition3 or
pre(phase_Loop1) and not loopCondition1;

phase_Loop2 =

pre(phase_Loop1) and loopCondition1 or
pre(phase_Loop2) and not loopCondition2;

phase_Loop3 =
pre(phase_Loop2) and loopCondition2 or

pre(phase_Loop3) and not (loopCondition3
or endCondition);

phase_End =

pre(phase_Loop3) and endCondition;
when phase_Start then

x_Start = pre(x_Start) + 1;
end when;
when phase_Loop1 then

x_Loop1 = pre(x_Loop1) + 1;
end when;

when phase_Loop2 then
x_Loop2 = pre(x_Loop2) + 1;

end when;
when phase_Loop3 then

x_Loop3 = pre(x_Loop3) + 1;

end when;
when phase_End then

x_End = pre(x_End) + 1;
end when;

end hybridSys;

end Example2 ;

The continuous-time part is computed until the start-

Condition for the discrete event part is met. At that time,
the discrete-event part enters a loop of computations un-
til the endCondition becomes active, which happens after
each phase in the loop is active Niter times. The activation
of each phase in the loop triggers a new event (i.e., loop-
ConditionX), so event iteration is required after the start
condition is satisfied. However, during the event iteration
the continuous-time equation is also evaluated, even when

it will not change until the end condition is active and the
loop ends. This situation is illustrated in the extract from
the simulation log obtained using Dymola 2013, and shown
in Listing 7.

Listing 7: Extract from hybridSys simulation log.
...
Expression time > 1 became true

((time)-(1) = 5.73541e -13)
W_[6](1) = 1
func2x_0out(1) = 3.678483823267749

Variable phase_Loop1 = 1 at time 1
Variable phase_Start = 0 at time 1

Variable x_Loop1 = 1 at time 1
Iterating to find consistent restart

conditions.

func1x 0out(1) = 3.678483823267749
W_[7](1) = 1

func2x_0out(1) = 3.678483823267749
Variable phase_Loop1 = 0 at time 1

Variable phase_Loop2 = 1 at time 1
Variable x_Loop2 = 1 at time 1

Iterating to find consistent restart

conditions.
...

The flat Modelica code for the example is shown in List-
ing 8. The graph constructed following the described proce-
dure is shown in Fig. 7. This graph also includes the nodes
corresponding to the conditions of the five when clauses in-
cluded in the code (i.e., nodes C1, C2, C3, C4 and C5).

Listing 8: Modelica flat model for model hybridSys.
1 der(x1) := -x1;

2 startCondition := time > 1;

3 phase_Start := pre(phase_Start) and not
startCondition;

4 loopCondition3 := pre(x_Loop3) < Niter;

5 loopCondition1 := pre(x_Loop1) < Niter+1;

6 phase_Loop1 := pre(phase_Start) and startCondition
or pre(phase_Loop3) and loopCondition3 or pre(
phase_Loop1) and not loopCondition1;

7 loopCondition2 := pre(x_Loop2) < Niter+1;

8 phase_Loop2 := pre(phase_Loop1) and loopCondition1

or pre(phase_Loop2) and not loopCondition2;

9 endCondition := not loopCondition3;

10 phase_Loop3 := pre(phase_Loop2) and loopCondition2
or pre(phase_Loop3) and not (loopCondition3 or

endCondition);

11 phase_End := pre(phase_Loop3) and endCondition;

12 when phase_Start then x_Start := pre(x_Start)+1;

end when;

13 when phase_Loop1 then x_Loop1 := pre(x_Loop1)+1;

end when;

14 when phase_Loop2 then x_Loop2 := pre(x_Loop2)+1;

end when;

15 when phase_Loop3 then x_Loop3 := pre(x_Loop3)+1;
end when;

16 when phase_End then x_End := pre(x_End)+1; end when
;

17 x2 := x1+x_End;

18 pre(phase_Start) := phase_Start;

19 pre(x_Start) := x_Start ;

20 pre(x_Loop3) := x_Loop3 ;

21 pre(x_Loop1) := x_Loop1 ;

22 pre(phase_Loop3) := phase_Loop3;

23 pre(phase_Loop1) := phase_Loop1;

24 pre(x_Loop2) := x_Loop2 ;

25 pre(phase_Loop2) := phase_Loop2;

26 pre(x_End) := x_End;

The result of the applied procedure is summarized in Ta-
ble 1. Note that since the continuous-time part of the model
is simple, the number of equations not involved in the iter-
ation is reduced. Also, note that nodes 18-26 have been

26

2

C2

Figure 7: Re-structured graph for hybridSys model.

Table 1: Results of the procedure applied to hy-

bridSys model

Loop-nodes 5, 6, 7, 8, 9, 10, 11, 13, 14, 20, 21,
22, 23, 24, 25

Update-nodes 12, 15, 16, 17, 26
Nodes not involved 1, 2, 3, 4, 18, 19

included during the procedure and does not represent real
equations just the update of the pre() values.

6. CONCLUSIONS
A procedure to optimize the execution of event iterations

during the simulation of hybrid systems has been proposed.
This new procedure can be used to analyze the relationships
between the update of pre() values of discrete variables in
the model and their use within event conditions. The results
of the procedure are two subsets of equations: a) loop-nodes,
that contains the equations involved in the event iteration
and; b) update-nodes, that are equations to be updated once
the event iteration is finished. If the set of loop-nodes is
empty, event iteration can be avoided. An adaptation of the
simulation algorithm has been described in order to use the
information provided by this procedure. The use of this pro-
cedure has been illustrated using an application example of a
hybrid system. Future work will include the implementation
of this algorithm in a simulation tool.

7. ACKNOWLEDGMENTS
This research was supported by 2013-026-UNED-PROY

grant from UNED and DPI2013-42941-R grant from the
Government of Spain.

8. REFERENCES

[1] M. Andersson. Object-Oriented Modeling and
Simulation of Hybrid Systems. PhD thesis, Dept. of
Automatic Control, Lund Institute of Technology,
Lund, Sweden, 1994.

[2] T. Beltrame and F. E. Cellier. Quantised state system
simulation in Dymola/Modelica using the DEVS
formalism. In Proceedings of the 5th International

Modelica Conference, pages 73–82, Vienna, Austria,
2006.

[3] W. Braun, B. Bachmann, and S. Pross. Synchronous
events in the OpenModelica compiler with a Petri Net
library application. In Proceedings of the 3rd

International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools, pages
63–70, Oslo, Norway, 2010.

[4] F. E. Cellier. Combined Continuous/Discrete System
simulation by Use of Digital Computers: Techniques
and Tools. PhD thesis, ETH Zurich, Switzerland, 1979.

[5] F. E. Cellier, H. Elmqvist, M. Otter, and J. H. Taylor.
Guidelines for modeling and simulation of hybrid
systems. In Proceedings of the IFAC World Congress,
Sydney, Australia, 1993.

[6] F. E. Cellier and E. Kofman. Continuous System
Simulation. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006.

[7] Dynasim AB. Dymola, Dynamic Modeling Laboratory.
User’s manual, 2006.

[8] H. Elmqvist, F. E. Cellier, and M. Otter.
Object-oriented modeling of hybrid systems. In
Proceedings of the European Simulation Symposium,
Delft, The Netherlands, 1993.

[9] D. Färnqvist, K. Strandemar, K. H. Johansson, and
J. P. Hespanha. Hybrid modeling of communication
networks using Modelica. In Proceedings of the 2nd

International Modelica Conference, pages 209–213,
Oberpfaffenhofen, Germany, 2002.

[10] J. Ferreira and J. E. de Oliveira. Modelling hybrid
systems using StateCharts and Modelica. In
Proceedings of the 7th IEEE International Conference
on Emerging Technologies and Factory Automation,
pages 1063–1069, 1999.

[11] P. Fritzson. Principles of Object-Oriented Modeling
and Simulation with Modelica 2.1. Wiley-IEEE
Computer Society Pr, 2003.

[12] C. Höger. Sparse causalisation of differential algebraic
equations for efficient event detection. In Proceedings
of the 8th EUROSIM Congress on Modelling and
Simulation, pages 351–356, Washington, DC, USA,
2013.

[13] W. D. Kelton, R. P. Sadowski, and D. T. Sturrock.
Simulation with Arena. McGraw-Hill, Inc., New York,
NY, USA, 4th edition, 2007.

[14] A. M. Law. Simulation Modelling and Analysis.
McGraw-Hill, New York, NY, USA, 4th edition, 2007.

[15] S. E. Mattsson, M. Otter, and H. Elmqvist. Modelica
hybrid modeling and efficient simulation. In
Proceedings of the 38th IEEE Conference on Decision
and Control, pages 3502–3507, 1999.

[16] Modelica Association. Modelica - An unified
object-oriented language for physical systems
modeling. Language specification version 3.2 rev. 2,
2013.

[17] M. Otter, H. Elmqvist, and S. E. Mattsson. Hybrid
modeling in Modelica based on the synchronous data
flow principle. In Proceedings of the 10th IEEE
International Symposium on Computer Aided Control
System Design, pages 151–157, 1999.

[18] S. Pross and B. Bachmann. A Petri Net library for

27

modeling hybrid systems in OpenModelica. In
Proceedings of the 7th International Modelica
Conference, pages 454–462, Como, Italy, 2009.

[19] V. Sanz. Hybrid System Modeling Using the Parallel
DEVS Formalism and the Modelica Language. PhD
thesis, ETSI Informática, UNED, Madrid, Spain, 2010.

[20] V. Sanz, A. Urquia, F. E. Cellier, and S. Dormido.
System modeling using the Parallel DEVS formalism
and the Modelica language. Simulation Modeling
Practice and Theory, 18(7):998–1018, 2010.

[21] V. Sanz, A. Urquia, F. E. Cellier, and S. Dormido.
Hybrid system modeling using the SIMANLib and
ARENALib modelica libraries. Simulation Modeling
Practice and Theory, 2013(37):1–17, 2013.

[22] V. Sanz, A. Urquia, and A. Leva. 1D/2D cellular
automata modeling with Modelica. In Proceedings of
the 10th International Modelica Conference, pages
489–498, Lund, Sweden, 2014.

[23] Synopsis Inc. Saber platform for modeling and
simulating physical systems
(http://www.synopsys.com/saber), 2014.

[24] M. Vlach. Modeling and simulation with Saber. In
ASIC Seminar and Exhibit, 1990. Proceedings., Third
Annual IEEE, pages T/11.1–T/1111, Sep 1990.

28

