United States Patent

US007243213B2

(12) 10) Patent No.: US 7,243,213 B2
Pagni et al. 45) Date of Patent: Jul. 10, 2007
(54) PROCESS FOR TRANSLATING 5,925,123 A * 7/1999 Tremblay et al. 712/212
INSTRUCTIONS FOR AN ARM-TYPE 5,951,674 A * 9/1999 MOrenoc.cccc..... 712/210
PROCESSOR INTO INSTRUCTIONS FOR A 6,496,922 B1* 12/2002 Borrilloccvvennnnnnen. 712/209
LX-TYPE PROCESSOR: RELATIVE 6,934,832 B1* 8/2005 Van Dyke et al. 712/244
TRANSLATOR DEVICE’ AND COMPUTER 2002/0138712 Al* 9/2002 Yoshidaccceeeunnnene 712/205
PROGRAM PRODUCT FOREIGN PATENT DOCUMENTS
(75) Inventors: Andrea Pagni, Milan (IT); Fabrizio EP 1028370 A2 82000
Lucini, Ponte dell’Oglio (IT); Danilo WO WO 02/086699 A2 10/2002
Pietro Pau, Sesto San Giovanni (IT); OTHER PUBLICATIONS
Antonio Maria Borneo, Matera (IT);
Vittorio Zaccaria, Milan (IT) IBM Corp., “Real-Time CISC Architecture HW Emulator on a
RISC Processor,” IBM Technical Disclosure Bulletin 37 (3):605,
(73) Assignee: STMicroelectronics S.r.l., Agrate Mar. 1994.
Brianza (IT) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner—Eric Coleman
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm—ILisa K. Jorgenson; Robert
U.S.C. 154(b) by 365 days. Tannucci; Seed IP Law Group PLLC
(21) Appl. No.: 10/776,024 (57) ABSTRACT
(22) Filed: Feb. 10, 2004 A procedure for translating ARM instructions of a first set
into instructions of a second set for execution on an LX
(65) Prior Publication Data processor comprising a core provides a first set of registers
US 2004/0225869 Al Nov. 11. 2004 corresponding to the ARM instructions and a second set of
T registers corresponding to the instructions that can be
(51) Int. CL executed on the LX processor. Each register of the first set
GOG6F 9/455 (2006.01) is mapped in a corresponding register of the second set
(52) US.Cl 712/209: 712/24 designed to emulate the behavior of the first register, obtain-
53 F'- l‘d f Cl """) ﬁt """ S """" h """ 7’1 2209 ing a unique independent translation of the first set into the
(58) Field of Classification Search 712/2 4’ second set. The translation is performed by a translation
g lication file f et h hist device external to the LX core without altering the core, and
ce application ftle for compiete search hstory. the translation operating without accessing resources of the
(56) References Cited core, by the translating device intercepting accesses of the
core to the storage area reserved to the ARM instructions.
U.S. PATENT DOCUMENTS
5,852,726 A * 12/1998 Linetal. ...cccouvvnnnen. 712/200 30 Claims, 1 Drawing Sheet

N .
§

TRANSTATION
SUBSYSTEM

NEXT_ARM_INSTR
oy

i)
ARM
MEMORY
1-CACHE
BIC RORT#4 K=
MOV R15,RD
12~
MOV $RZ=4R14 IA AD
CMPEQ $B1=9R14,4|¢—
T BIC RORI$4
MEMORY MOV R15,RD
J —
15—

US 7,243,213 B2

Jul. 10, 2007

U.S. Patent

3403
X1

£l
v

1a
dM

¢l
ALSNIW3YLXIN
T04LNOD av
WILSASENS
(— N
b NOLLVASNYALN
334408
R 00V
““AON
— [D3N [~
7.
0

o¥'GLY AOW

v 1408 18

N

JHIVO-1

8l
v
ASONIN
X1

y'y19$=18% DIJND
p14$=24% AOW

QU'GLY AOK

y# 1908 218

/
)
9/

AYON3R
WaY

\..

N

US 7,243,213 B2

1

PROCESS FOR TRANSLATING
INSTRUCTIONS FOR AN ARM-TYPE
PROCESSOR INTO INSTRUCTIONS FOR A
LX-TYPE PROCESSOR; RELATIVE
TRANSLATOR DEVICE AND COMPUTER
PROGRAM PRODUCT

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the techniques for trans-
lating instructions that are to operate on different processors.
The invention has been developed with particular reference
to the possible application to the translation of instructions
that can be executed on a processor of the ARM type into
instructions that can be executed on a processor of the LX
type, such as, for example, the microprocessor ST200-L.X
produced by STMicroelectronics, Srl, which is the assignee
of the present application.

2. Description of the Related Art

An ARM microprocessor is typically a 32-bit pipelined
scalar microprocessor, i.e., a microprocessor the internal
architecture of which is constituted by different logic stages,
each of which contains an instruction in a very specific state.
Said state may be one of the following: loading of the
instruction itself from the memory; decoding; addressing of
a file of registers; execution; or writing/reading data from
the memory. The number of bits refers to the width of the
data and of the instructions on which the microprocessor
operates. The instructions are generated in a specific order
by compiling and executed in the same order. An [LX
microprocessor is typically a microprocessor of the type
defined as very-long-instruction-word (VLIW) micropro-
cessor, namely, a 128-bit pipelined VLIW microprocessor. A
pipelined superscalar microprocessor possesses an internal
architecture made up of different logic stages, some of which
are able to execute instructions in parallel, for example in the
execution step. Typically, the parallelism is of four instruc-
tions of 32 bits each (equal to 128 bits), whilst the data are
expressed in 32 bits.

The processor is referred to as superscalar if the instruc-
tions are re-ordered dynamically in the execution step so as
to supply the execution stages that may potentially work in
parallel and if the instructions are not mutually dependent,
thus altering the order generated statically by the compiling
of the source code.

The processor is referred to as VLIW if, instead, the
instructions are re-ordered statically during compiling and
executed in the same fixed order, which cannot be modified
in the execution step.

For more detailed information regarding the architecture
of the microprocessors, reference may be made to the
description given in the text: Computer Organization &
Design: The hardware/software interface, D. A. Patterson &
J. L. Hennessy, Morgan Kaufmann.

The ARM processor is a single-issue RISC machine,
provided in any case with a sufficiently extensive set of
addressing modes (the data-processing instructions support
as many as nine different modes), and affords the possibility
of conditional execution of all its instructions on the basis of
the flags contained in the status register referred to as CPSR.

The LX processor is a four-issue VLIW processor, which
in the sequel of the present description will always be
illustrated in the single-cluster version. The LX processor,
unlike the ARM processor, has only two addressing modes
(from immediate and from register) and does not enable
conditioned execution, but given the presence of four lanes

20

25

30

35

40

45

50

55

60

65

2

operating in parallel, allows execution in parallel of a
number of alternatives (with a maximum of 4 instructions)
and then selection of the appropriate result once the condi-
tion on the execution has been evaluated.

The ARM microprocessor in the version 5, to which
reference will be made hereinafter, possesses a 32-bit inter-
nal architecture that guarantees a 4-Gbyte address space and
has 31 general-purpose registers, of which, however, only
16, designated by the references from R1 to R16, are
accessible simultaneously.

There exist, in fact, seven different modes of operation
necessary for handling the various types of exceptions to
which the processor must respond:

USER normal execution mode

FIQ fast interrupt control

IRW generic interrupt control

SUPERVISOR privileged mode for the operating system

ABORT protection of access to memory and/or
virtual memory

UNDEFINED operating code not defined, for emulation
of coprocessor

SYSTEM privileged mode for particular operations

of the operating system.

Two of the 16 accessible registers have a particular role:
the register R15 is used as program counter (PC), i.e., it
contains the address of the instruction to be executed;
the register R14 is used as link register (LR); i.e., it
contains the address of the instruction to be executed
following upon return from execution of a subroutine.
Furthermore, normally the register R13 is used by the
software as stack pointer.

Two or more of the general-purpose registers are repli-
cated for the various modes of operation in order to speed up
handling of exceptions.

In the IRQ, Abort, Undefined and Supervisor modes, as
compared to the User mode, only the registers R13 and R14
(i.e., link register and stack pointer) are replicated.

In the FIQ mode, to make the handling of the exception
even faster, also the registers from R8 to R12 have been
replicated.

The System mode, whilst presenting all the benefits of a
privileged mode, sees all the same registers as the User
mode.

Obviously, the program counter is not replicated in any of
the modes.

In addition to the general-purpose registers, there is
available a status register CPSR (the content of which is
illustrated in Table 1) containing information on the result of
the execution and on the mode of operation.

TABLE 1
31 30 29 28 27 26 8 7 6 5 4 0
N Z C VvV Q (RAZ) I F T MODE
where
N flag (negative flag): N=1 if the result of a operation is
negative;

C flag (carry flag): C=1 if the result of an add operation
generates carry or else if during the step of generation
of the operands for a logic operation particular condi-
tions have arisen; C=0 if the result of an operation of
subtraction generates borrow;

US 7,243,213 B2

3

V flag (overtlow flag): V=1 if an arithmetic operation has
generated overflow;

7 flag (zero flag): Z=1 if the result of an operation is zero;

Q flag: in the Extended versions Q=1 if the result of one
of the operations of the group Enhanced DSP generates
overflow or saturation.

The bits from 26 to 8 must not be modified and are read

as zero.

I bit: if I=1, it disables the interrupt IRQ;

F bit: if F=1 it disables the interrupt FIQ;

T bit: if T=0 the processor is operating in the normal ARM
mode; if T=1 the Thumb execution mode is active. In
this mode, ARM interprets a reduced set of instructions,
with operation codes, or opcodes, that occupy only 16
bits but with 32-bit register arithmetic, and sees simul-
taneously only 8 general-purpose registers.

The 5 least significant bits of the status register describe

the mode of operation of the ARM processor, as may be seen
from the following Table 2:

TABLE 2
CPSR (4:0) MODE
0b10000 USER
0b10001 FIQ
0b10010 IRQ
0b10011 SUPERVISOR
0b10111 ABORT
0b11011 UNDEFINED
0b11111 SYSTEM

All the privileged modes, in addition to the register CPSR,
then present a register SPSR, replicated for each mode. The
register SPSR associated to a given mode is used for saving
the status word contained in the register CPSR when the
exception corresponding to that mode is raised; at the end of
handling of the exception, the register CPSR will be restored
with the value of the register SPSR. The instructions of the
ARM processor may be classified in six groups:

data processing (addressing mode 1);

load&store word (32 bits) or unsigned byte (addressing
mode 2);

load&store halfword (16 bits) or signed byte (addressing
mode 3);

multiple load&store (addressing mode 4);

instructions for the coprocessors (addressing mode 5);

jumps.

The ARM processor enables the conditioned execution of
almost all its instructions on the basis of the flags N, C, V,
Z contained in the status register CPSR.

The condition is described in the four most significant bits
of the opcode of the ARM processor.

Exceptions to the above are the instruction BLX (branch,
link and exchange to Thumb state) and the instructions that
refer to the coprocessors, which are not conditional.

The various combinations of the flags generate sixteen
types of conditioned execution:

AL (always): the instruction is always executed);

NV (never): the instruction is never executed, is not
defined, or else forms part of the non-conditional
instructions referred to previously;

EQ(equal): Z=1;

NE (not equal): Z=0;

CS/HS (carry set—unsigned higher or same): C=1;

CC/LO (carry clear—unsigned lower): C=0;

MI (minus—negative): N=1;

PL (plus—positive or zero): N=0;

VS (overflow): V=1;

20

25

30

35

40

45

50

55

60

65

4

VC (no overtlow): V=0;

HI (unsigned higher): C=1 and Z=0;

LS (unsigned lower or same): C=0 or Z=1;

GE (unsigned greater than or equal): N=V;

LT (signed less than): N!=V;

GT (signed greater than): Z=0 and N=V;

LE (signed less than or equal): Z=1 or N!=V.

There are eleven addressing modes of the ARM processor
for the data-processing instructions:

Immediate;

direct from register;

logic shift to the left from register (the amount of the shift

is contained in a register);

logic shift to the left from immediate (the amount of the

shift is expressed by a 5-bit immediate contained in the
opcode);

logic shift to the right from register;

logic shift to the right from immediate;

arithmetic shift to the right from register;

arithmetic shift to the right from immediate;

rotation to the right from register;

rotation to the right from immediate;

rotation through the carry flag.

The data-processing instructions are operations of a logic
or arithmetic type that are executed by the 32-bit arithmetic
logic unit (ALU) of the ARM processor.

The above operations can modify the value of the flags of
the register CPSR on the basis of their result when the bit 20
(S bit) of the opcode is at a high level. The execution step
of these operations always lasts just one clock cycle.

The ARM processor is then able to perform multiplica-
tions and multiplications-with-accumulation of numbers up
to 32 bits, generating a 64-bit result that is split into two
destination registers.

All the multiplication operations support only direct-
from-register addressing, and their execution step lasts just
one clock cycle, irrespective of the need or otherwise for
performing the operation of accumulation at the end of the
multiplication itself.

The operations of load&store in memory of Mode 2 act on
words and unsigned bytes and support nine addressing
modes, which in any case make use of a base register and a
displacement:

base register +/— 12-bit immediate;

base register +/- offset register;

base register +/- scaled offset register (the offset register

is shifted with modes similar to the data-processing
instructions; the amount of the shift is described by an
immediate);

base register +/— pre-indexed immediate (the base register

is updated before accessing memory);

base register +/- pre-indexed offset register;

base register +/- pre-indexed scaled register;

base register +/— post-indexed immediate (the base reg-

ister is updated after accessing memory);

base register +/- post-indexed offset register;

base register +/- post-indexed scaled register.

The operation of reading a 32-bit word from the memory
does not require the address to be in itself word-aligned; the
reading is made in any case, after which the word is rotated
by 8, 16 or 24 if the address was not word-aligned but ended
in 0b01, Ob10 or Ob11.

The operation of writing a word, instead, is self-aligned
by ignoring completely the two least significant bits of the
address; hence, it is not exactly the dual of the reading
operation.

US 7,243,213 B2

5

The operations of load&store in memory of Mode 3 act on
halfwords and signed bytes and support only six of the nine
addressing modes associated to Mode 2:

base register +/— 8-bit immediate;

base register +/— offset register;

base register +/— pre-indexed immediate;

base register +/— pre-indexed offset register;

base register +/— post-indexed immediate;

base register +/— post-indexed offset register.

Unlike what occurs in the case of the instructions of Mode
2, the reading and writing operations on halfwords (16 bits)
entail the need for halfword-aligned addresses to be
executed correctly.

The operations of multiple load&store of mode 4 contain
within their opcode a 16-bit field that marks with a high-
level bit the registers involved in the transfer.

The above operations present four addressing modes:

increment after: the list of registers is loaded into memory
(for the store operations) or from the memory (for the
load operations) starting from the address pointed to by
a base register. The subsequent registers will be loaded
into addresses obtained by incrementing by four (given
that access is by words) the address of the previous
access;

increment before: the basic address is first incremented by
four and then used for the first access. The subsequent
registers will be loaded into addresses obtained from
the previous one by increment;

decrement after: as for increment after, but the next
address is obtained by decrement;

decrement before: as for increment before, but the
addresses are obtained by decrement.

The base register may optionally be updated at the end of
the operation with the value of the next location pointed to
if the bit 21 (W bit) of the opcode is at a high level.

There moreover exist instructions of multiple load&store
which can be executed only in privileged operating mode
and which enable loading of the program counter from the
memory or accessing of the-general-purpose registers of the
User mode.

The ARM processor then envisages a further two instruc-
tions that access the memory:

SWP: swap word;

SWPB: swap byte.

These instructions each access the memory twice, by
loading into a first register the contents of a memory location
pointed to by a base register and by writing in the same
memory location the contents of a second register. If the first
and the second register coincide, the contents of the register
and of the memory location have been swapped.

The operations on the coprocessors of mode 5 comprise:

load from memory to coprocessor;

store from coprocessor to memory;

move from general-purpose register to coprocessor’s reg-
ister;

move from coprocessor’s register to general-purpose reg-
ister;

execute coprocessor’s data-processing operation.

The instructions for the coprocessors are not described
here. The ARM processor then envisages three jump instruc-
tions:

PC-relative conditioned jump (with and without storage
of the return address): the 24-bit offset is contained in
the opcode of the jump. To calculate the destination
address, the offset is multiplied by four (in that each
opcode of the ARM microprocessor occupies 32 bits)
and extended with sign, and is then added to the current

20

25

30

35

40

45

50

55

60

65

6

value of the program counter. It should be pointed out
that, as a result of the architecture of the pipeline of the
ARM processor, at the moment of updating, which
takes place in the execution step, the program counter
contains the address of the jump instruction incre-
mented by eight;

unconditioned jump with change of mode: the processor
performs a jump with 24-bit offset, stores the return
address in the link register and enters Thumb mode,
modifying the T bit of the status word;

conditioned jump with change of mode (with or without
storage of the return address): the processor performs a
jump to the address contained in an index register. The
value of the index register is aligned by neglecting its
least significant bit, which is used for deciding the
mode of operation (if it is at a high level Thumb mode;
otherwise ARM mode).

It is to be emphasized that, unlike the case of the L.X
processor, for the ARM processor the program counter
forms part of the general-purpose registers; hence, any
operation of data processing or of load from memory that
will have R15 as destination register may generate a jump.

The commitment step of the operations that have the
program counter as destination is therefore different from
the normal load or data-processing instructions and must
envisage restoring of the register CPSR with the value
contained in the register SPSR associated to the current
mode.

Two special instructions concern handling of the status
registers:

MSR: moves an immediate or a general-purpose register
of the current mode into one of the status registers of
the current mode (CPSR or SPSR);

MRS: moves a status register of the current mode into a
general-purpose register of the current mode.

The above instructions can be executed correctly only in

a privileged execution mode and must not be used for
modifying the T bit of the register CPSR, which would cause
a transition from ARM mode to Thumb mode, or vice versa.

Accessing the register SPSR in the System mode, which
does not see this register, has an unforeseeable effect on the
execution.

There now follows a description of the architecture of the
LX microprocessor.

The LX processor is a core with the possibility of assum-
ing different configurations according to the use; in what
follows, reference will be made to the 4-issue single-cluster
version.

The entire architecture is 32-bit and has 64 general-
purpose registers plus a program counter not accessible
directly by the user.

Two of the general-purpose registers have, however,
particular functions:

the register R63 is used as link register;

the register R0 contains always the value zero and is used
for comparisons and assignments that cannot use
explicitly a further immediate field, as will be clarified
in what follows.

There then exists a series of special registers (always
32-bit ones) mapped in a reserved area that occupies the last
4 Kbytes of the address space of the LX processor, which is
of 4 Gbytes.

These registers, among other things, comprise:

a status register PSW, which contains the mode of opera-
tion (either User or Supervisor) and information on the
devices for the protection and management of the
memory;

US 7,243,213 B2

7

a stack register for the status register, used in the presence
of exceptions;

a HANDLER_PC register, used in the presence of excep-
tions for containing the address of the exception han-
dler;

other registers that contain information required for rec-
ognition and management of the exceptions;

registers for control of the protection unit for the program
memory (IPU) and data memory (DPU).

In each cluster of the LX processor there are therefore
four lanes, to each of which there is associated an ALU
capable of executing the normal 32-bit logic-arithmetic
operations. There are then two units capable of making the
multiplications of a 16-bit number with a 32-bit number,
with result truncated at 32 bits. These units are associated to
lanes 1 and 3 of the cluster.

The LX processor enables just one access to memory for
each cluster; hence, there exists a single Load&Store unit,
which is able to execute operations on words, halfwords, or
bytes and which may be associated to any one of the lanes
of the cluster.

A unit referred to as Instruction Issue Unit allocates the
operations contained in one and the same bundle or set of
instructions on the lanes in such a way that the two least
significant bits of the word address of each instruction
determine the lane on which the instruction itself is run.

A direct consequence of this is that a multiplication
instruction, which must be executed on an odd lane, must
occupy an odd word address in the program memory. It is
therefore necessary to make the alignment by inserting into
the code, if necessary, NOP (no operation) instructions.

In each cluster there is then present a unit referred to as
branch unit, which executes the jump operations. The L.X
processor performs the conditioned-jump operations on the
basis of one of the branch-bit registers, a group of eight
registers of one bit each, which contain the result of logic
operations or comparison operations.

The value of a branch-bit register must be assigned at least
two bundles before the corresponding conditioned jump
occurs.

All the jump operations must occupy the first instruction
of the bundle, and there cannot be two jump instructions
within the same bundle, even if the two constructs are
alternative.

The LX processor has just two addressing modes for the
data-processing instructions:

from register;

from immediate.

The immediates may, however, be of two types: short and
long.

The short immediates are 9-bit signed numbers, which are
able to represent a number from -128 to +128 and are
incorporated into the 32 bits of the opcode.

The long immediates are 32-bit signed numbers and
occupy with the 9 least significant bits part of the 32 bits of
the opcode. The remaining 23 bits are contained in one of the
words adjacent to the opcode, with the constraint of being
associated to lane 0 or lane 2 of the cluster, and hence
occupying an even word address.

The operations of access to the memory enable only
addressing by means of the base register plus 9-bit offset
and, unlike what occurs in the case of the ARM processor,
they involve alignment.

Accesses to words on addresses that are not word-aligned,
as well as accesses to non-halfword-aligned halfwords,
generate exceptions.

20

25

30

35

40

45

50

55

60

65

8

As regards the jump instructions, mention of which has
already been made previously, there are conditioned-jump
operations (BR, BRF), which make offset jumps (23-bit) and
unconditioned-jump instructions (CALL, GOTO, RTI),
which can make offset jumps (23-bit) or else jumps to the
address pointed to by the link register, with the constraint
that the link register must be modified at least three bundles
before the corresponding jump.

There are then two instructions (SLCT, SLCTF), which
enable a conditional MOV operation to be performed on the
basis of the evaluation of a branch bit: if this has a high level,
the first source register is brought into the destination
register; otherwise, the second source register or an imme-
diate is loaded according to the addressing mode.

Finally, it should be emphasized that the LX processor,
unlike the ARM processor, does not contain a register of the
flags, and that hence it is not able to point out automatically
whether the arithmetic operations generate carry or over-
flow.

Already known to the art are various solutions that aim at
enabling a given microprocessor to execute instructions of a
set originally designed for a different processor.

For example, the European patent application EP-A-0 747
808 describes a dual-instruction-set processor that is able to
interpret both the native code of an IBM PowerPC computer
and the code for the Intel x86 family of processors.

The above-mentioned document describes the manage-
ment of the system of virtual memory necessary for enabling
multitasking of two applications developed for different
instruction sets, but does not describe a translation process.

To carry out an efficient translation of the x86 instruc-
tions, the original structure of the PowerPC is extended with
instructions and registers dedicated to the execution in x86
mode.

The issue logic of the core is moreover modified by the
addition of units for decoding and translating x86 opcodes.
These units work in parallel with the native decoding unit of
the PowerPC, and on the basis of the current operating mode
the choice is made as to which of the two decodings is to be
applied. To enable determination of the operating mode of
the processor, there is added a Control Unit Mode, which is
responsible for handling switching between the x86 mode
and the PowerPC mode.

The above unit is able to interact with the Memory
Management Unit to enable a proper management of the
system of virtual memory.

BRIEF SUMMARY OF THE INVENTION

From an analysis of the two sets of instructions of the
ARM processor and the LX processor, it emerges how only
a minimal part of the instructions of the ARM microproces-
sor corresponds to a single instruction of the LX micropro-
cessor, on account of the possibility of conditional execu-
tion, the variety of the addressing modes of the ARM
processor, the different modes of memory access, and the
lack, on the LX, of a status register. Such an expansion of the
code of the ARM processor in the translation step has an
immediate repercussion on the possibility of emulating the
behaviour of an ARM processor on the LX microprocessor
and on the possible creation of a device that carries out
translation.

An embodiment of the present invention provides a
solution that will enable the instructions that can be executed
on an ARM processor to be translated into instructions that
can be executed on an LX processor.

US 7,243,213 B2

9

One embodiment of the invention also regards the corre-
sponding translator device, as well as the corresponding
computer program product, directly loadable into the
memory of a digital computer, such as a processor and which
comprises software code portions for performing the proce-
dure according to the invention when the product is run on
a computer.

The solution according to the invention, which has been
developed with specific reference to the translation of ARM
instructions into X instructions, may in actual fact be
applied to a wider field of use, namely to the translation of
instructions of a pipelined scalar microprocessor that has
characteristics which, in any case, can be correlated to the
characteristics of an ARM processor, into instructions for a
VLIW microprocessor that has characteristics which, in any
case, can be correlated to the characteristics of an LX
processor.

This concept is expressed in what follows, and in par-
ticular in the claims that follow, making reference to “ARM
type” processors and “LX type” processors.

One embodiment of the invention envisages mapping
each register of the ARM microprocessor on a register of the
LX microprocessor, which is designed to emulate the behav-
iour of the former register, performing the translation in the
absence of direct access to the resources of the core of said
LX microprocessor.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described purely by way of
non-limiting example, with reference to the annexed draw-
ings, which comprise a single FIGURE that represents a
block diagram of a translator device operating according to
one embodiment of the invention.

DETAILED DESCRIPTION OF THE
INVENTION

The basic principles of the translation technique described
herein, which corresponds to the currently preferred
embodiment of the invention, are the following:

mapping each register of the ARM microprocessor,

including the replicated registers and all the status
registers, on a register of the L.X microprocessor that
will emulate the behaviour of the corresponding regis-
ter of the ARM microprocessor;

not modifying the core of the LX microprocessor by

adding functional units for covering part of the instruc-
tion set or of the addressing modes of the ARM
microprocessor currently not covered by the LX micro-
processor;

having a unique translation of the instructions of the ARM

microprocessor which is not data-dependent;

never accessing the resources of the core of the LX

microprocessor directly before or during the translation
step.

In particular, the solution according to the invention, in its
currently preferred embodiment is distinguished with
respect to the known solutions for different reasons:

the core of the LX microprocessor is not in any way

modified for interpreting the code of the ARM micro-
processor, but an external translating device is added,
set between said core and the cache;

the translating device, when it needs to access the

resources of the core of the LX microprocessor, does
not access them directly but incorporates in the trans-
lation of the ARM instruction conditional constructs

10

20

25

30

35

40

45

50

55

60

65

10

that are based upon the contents of the registers or of
the branch bits of the core of the LX microprocessor
(see, for example, in the ensuing description, the
method whereby the current operating mode of the
ARM processor is determined for the instructions MRS
and MSR);

the translating device goes into action autonomously,

recognizing the accesses to the storage area reserved to
the ARM code, without any need for explicit switching
operations or for a Mode Control Unit;

the ARM instructions are translated into LX instructions,

which are then decoded by the issue logic of the LX
microprocessor, which is kept unaltered. Instead, in the
document EP-A-707 848 cited above, the x86 instruc-
tions are decoded to control directly the resources of
the core.

By physically mapping all the registers of the ARM
processor, including the replicated registers and the status
registers, on the registers of the LX processor, there is then
emulated also the behaviour of the program counter of the
ARM processor.

The operation of mapping of the ARM registers and of the
other registers that are required for translation on the LX
registers is described in Table 3 appearing below.

TABLE 3
RO: always zero R32: ARM__R13spv
R1: Rtemp 1(temporary storage) R33: ARM_ Rl4spv
R2: Rtemp 2 (temporary storage) R34: ARM_ 13irq
R3: Rtemp3 (temporary storage) R35: ARM_ R13irq
R4: Rtemp4 (temporary storage) R36: ARM_ R13abt
RS5: Rtemp35 (temporary storage) R37: ARM_ R13abt
R6: Rtemp6 (temporary storage) R38: ARM_ R13und
R7: Rtemp7 ((temporary storage) R39: ARM_ R13und
R&: Rtemp8 (temporary storage) R40: ARM_ R&stack
R9: Rt_ dest(temporary destination) R41: ARM_ R9stack
R10: Rshift _op (2nd operand) R42: ARM_ Rl0stack

: ARM_ Rllstack
: ARM__R12stack

: RN (negative flag)
: LX stack pointer

R13: RC (carry flag) R45: ARM__Rl13stack

R14: RV (overflow flag) R46: ARM_ Rl4stack

R15: RZ (zero flag) R47: not used

R16: ARM_RO R48: ARM__CPSR
(status register)

R17: ARM_RI1 R49: ARM__SPSRspv
(status register)

R18: ARM_R2 R50: ARM__SPSRirq
(status register)

R19: ARM_R3 R51: ARM__SPSRfiq
(status register)

R20: ARM_R4 R52: ARM__SPSRund
(status register)

R21: ARM_R5 R53: ARM__SPSRabt
(status register)

R22: ARM_R6 R54: ARM__R13fiq

R23: ARM_R7 R55: ARM_ RI3fiq

R24: ARM_R8 R56: RN (temporary
negative flag)

R25: ARM_R9 R57: RtZ (temporary
zero flag)

R26: ARM_R10 R58: RtC (temporary
carry flag)

R27: ARM_RI11 R59: RtV (temporary
overflow flag)

R28: ARM_RI12 R60: not used

R29: ARM_ R13 (stack pointer) R61: not used

R30: ARM__R14 (link register) R62: not used

R31: ARM_R15/ARM_ PC R63: LX link register

Designated by PC is the program counter of the [LX
processor.

To guarantee proper execution of a program for an ARM
microprocessor on an [LX microprocessor, a first solution
proposed is that of forcing the program counter of the [L.X

US 7,243,213 B2

11

microprocessor to emulate the operation of the program
counter of the ARM microprocessor.

According to this approach, upon loading an ARM
instruction, the program counter of the LX processor must
contain exactly the same value as the program counter of the
ARM processor, but the LX processor finds itself, in the vast
majority of cases, having to execute more than one instruc-
tion to emulate the behaviour of the ARM processor, so that
at the end of the execution of the emulated instruction it will
be necessary to jump to the address of the next ARM
instruction, in order to be able to load the next instruction.

In the meantime, a further register ARM_R15/ARM_PC,
which emulates the program counter of the ARM processor,
indicated in Table 3, will first have to be incremented by
eight so that each instruction that accesses it during its
execution step will present a behaviour coherent with the
execution on the pipeline of the ARM processor, and then
decremented by four to point to the next ARM instruction in
memory.

Exceptions to the above will of course be the ARM
instructions that have as destination register the program
counter, for which the loading of the next ARM instruction
will take place by loading, in the link register of the L.X
processor, the updated value of the register ARM_PC and by
making an unconditioned jump of the GOTO-link type.

To carry out what is described above, the translation of the
ARM instructions is entrusted to a device set outside the LX
core, which intercepts the accesses to the storage area
reserved to the ARM code, translating all the instructions
that do not have a single equivalent LX instruction into an
unconditioned jump of a GOTO type and forcing the pro-
gram counter of the LX processor to point to a reserved
storage area for containing the translation of the ARM
instruction that in the meantime is decoded.

Into this translation buffer, the device will load all the
bundles that constitute the LX translation of the decoded
ARM instruction. As has already been said, the last bundle
of the translation must contain a jump-to-link to the next
ARM instruction to be executed.

In this way, all the ARM instructions that are not directly
mappable on an LX instruction entail a jump to the trans-
lation area and a jump-to-link for loading the next ARM-
instruction. Given that to make an LX jump-to-link it is
necessary for the link register to be modified at least three
bundles before the corresponding jump, the impact of these
two jumps on the duration of execution of the ARM program
is considerable.

For this reason, a second solution is proposed, which
envisages not forcing the program counter of the LX pro-
cessor to follow the operation of the program counter of the
ARM processor, in this way enabling saving of the jump to
the translation area and making the jump with final link only
if the ARM instruction really does make a jump.

In addition to speeding up execution of the ARM pro-
gram, this second solution enables saving on the number of
LX instructions executed in parallel and consequently reduc-
ing the waste of power by the core with respect to the
previously proposed solution.

In the absence of jumps, the program counter of the LX
processor is left to evolve freely.

Whilst in the first solution if the LX program counter exits
the memory space in which the ARM instructions reside it
is certain that the native LX instructions will be executed, in
the second solution the translating device must intercept all
the accesses of the core to the memory instructions and
control the pointer register to decide whether to execute the
subsequent instructions as native LX or as ARM to be

20

25

30

35

40

45

50

55

60

65

12

emulated. The pointer register resides in the translating
device illustrated in FIG. 1, which is set between the
instruction cache and the core of the L.X processor and the
operation of which will be described in greater detail in what
follows.

FIG. 1 therefore shows a schematic circuit diagram of the
translation device. The said translation device is designated
by 10 and comprises a translation buffer 11, a translation
subsystem 12 associated with a microcode table, and a
control unit 13 for controlling the translation device.

The translation device 10 is set between a core 14 of the
LX processor and a memory cache for the instructions 16,
which executes its own caching function on two areas of
memory, a RAM memory 17 for the ARM instructions and
a RAM memory 18 for the LX instructions.

The translation device 10 therefore, which is set outside
the core 14, intercepts the accesses of the core 14 to the
memory, in particular to the storage area reserved to the
ARM code constituted by the RAM 17. In fact, the trans-
lation device 10 exchanges data by means of said control
unit 13 with the core 14 of the LX processor and receives the
addresses on respective data-signal lines D1 and address-
signal lines Al.

The control unit 13 is then connected by means of an
address-and-data bus AD to the instruction cache memory
16, the pointer of which is comprised in a set of pointer
registers designated by 15 and comprised in the translation
device 10.

In the memory 17 it is possible to note an ARM instruc-
tion to be translated, designated by IA in the I-cache 16, by
way of example the instruction BIC.

It is to be noted at this point that, whilst in the first
solution, which envisages forcing the program counter of the
LX processor if said program counter exits from the memory
space in which the ARM instructions reside it is certain that
native LX instructions will be executed, in the second
solution the translating device 10 must intercept all the
accesses of the core to the memory instructions and check
the pointer register 15 to decide whether to execute the next
instructions as native LX or as ARM to be emulated. The
pointer register 15, as described above, resides in the trans-
lating device 10, which is set between the memory cache 16
and the core 14 of the LX processor

Upon resetting of the LX processor of which it forms part,
the translating device 10 is inactive and sends back the
accesses-to-memory to the underlying devices, typically to
the instruction cache 16. This is the condition in which the
translating device 10 works until the core 14 executes a
normal LX code (with instructions belonging to the instruc-
tion set of the LX processor).

When there is an access to the storage area reserved for
containing the ARM code, i.e., the memory 17, for example
an access to the instruction IA, the translating device 10 is
activated, loads the address that is accessed into one of its
internal registers in the pointer register 15, designated by
NEXT_ARM_INSTR in FIG. 1, and carries out reading of
the instruction to be translated IA into ARM code from the
storage area in the corresponding memory 17. The register
NEXT_ARM_INSTR has, that is, the function of ARM
instruction pointer.

The instruction IA read is translated by the translation
subsystem 12, which makes use of a microcode table in the
corresponding equivalent set of LX instructions, designated
in FIG. 1 as translation T, and stored in the translation buffer
11. The translation device 10 then allocates “above” the
ARM instruction an execution window to which will be sent
back all the accesses to memory addresses that start from the

US 7,243,213 B2

13

current value of the program counter of the LX processor
and cover an area equal to the one occupied by the trans-
lation.

The core 14 of the LX processor may thus read the first
instruction of the translation T from the buffer 11, which
sends it to the control unit 13, and the device 10 increments
the register NEXT_ARM_INSTR by four to point to the
next ARM instruction of the translation. In the presence of
jumps in the program in ARM code, the register NEX-
T_ARM_INSTR must be rewritten explicitly by means of a
store-word operation contained in the LX translation of the
ARM instruction.

Once the last instruction of the translation T has been
read, the execution window closes and, if at the next access
to memory the register NEXT_ARM_INSTR points outside
the storage area reserved to the ARM code, the translation
device 10 is deactivated.

The control unit of the device 13 checks activation of the
translation device 10, activates the translation subsystem in
block 12 to allocate and manage the execution window by
means of the appropriate internal pointer registers that
supply window pointers designated by WP in FIG. 1, and to
propagate the accesses-to-memory by the core 14 to the
memory system consisting of the RAM memories 17 and 18.

Of the instruction set of the ARM processor those instruc-
tions the execution of which depends directly upon the
hardware of the peripherals or of the memory system of the
specific ARM processor cannot be translated.

These instructions comprise:

software interrupts;

breakpoints;

instructions for the management of the coprocessors;

accesses-to-memory with the T option: these operations
interact with the memory, accessing the latter in User
mode regardless of the actual current mode of the
processor. The ARM core has, in fact, a line that
enables the memory to know with what attributes (user
or privileged) to access the memory.

There now follows a detailed description of the procedure

of translation of the ARM instructions into LX instructions.

For this purpose, a pseudo-code will be used for describ-
ing the instructions.

The description in pseudo-code of the translation of each
ARM instruction uses a C-like syntax.

The only extensions to the traditional C syntax are the
following:

Since the LX processor is a VLIW machine, to highlight
the parallelism at the instruction level, each bundle, i.e.,
the set of LX instructions that can be executed in
parallel in the same cycle, has been delimited by a
dashed line;

all the operations of assignment within a bundle must be
considered executed simultaneously: the order in which
the instructions are written within one and the same
bundle of the pseudo-code is irrelevant, and it is not the
one actually used on the LX processor that imposes
constraints in the positioning of multiplications and
long immediates (i.e., ones of more than 9 bits);

the Boolean variables stored in the branch-bit registers of
the LX processor are designated as $<variable_name>;

the immediates (numeric constants dependent upon the
opcode of the instruction), generated directly by the
translation logic on the basis of the contents of the
ARM opcode, are indicated in the code executed by LX
as #i<immediate_name>;

20

25

30

35

40

45

50

55

60

65

14

the list of the operations carried out by the translating
device for generating these values is described in the
boxes with dashed borders set to the right of the LX
translation;

all the LX opcodes that make use of long immediates

occupy in effect two consecutive words in the LX
bundle. The following instructions are not indicated in
the pseudo-code:

the operator ASR (arithmetic shift right) symbolizes the

arithmetic shift to the left;

the operator ROR (rotate right) symbolizes the rotation to

the right;

the macros 16 Isb_of(<register>) and 16 msb_of(<regis-

ter>) indicate, respectively, extraction of the 16 least
significant bits and extraction of the 16 most significant
bits from a register. The remaining 16 bits are filled
with zeros;

the macro Mask(<fields>) generates, on the basis of the

4-bit mask <fields> contained in the opcode, the masks
for modification of the status registers for the instruc-
tion MSR;

the operations of access to memory are described by the

macros: MemoryWord(<add ress>),
MemoryByte<address>), MemoryUByte(<address>),
MemorySByte(<address>). In particular, MemoryS-
Byte represents reading from the memory to the
address <address> of a byte that is extended with sign.
MemoryUByte represents the reading of an unsigned
byte;

in the representation of the instructions, the character @

is used as jolly. For example ADD@@ represents all
the ARM instructions of adding, such as, for example,
ADDEQ (add if equal) or ADDNE (add if different), or
else ARM_R@ represents any one of the LX registers
that emulate the general-purpose registers of the ARM
processor, such as ARM_R1 or ARM_R12.

As already described previously, the ARM processor
enables the conditioned execution of the instructions on the
basis of the flags contained in the status register CPSR.

The condition is described in the four most significant bits
of the ARM opcode.

Exceptions to this rule are the instruction BLX (branch,
link and exchange to Thumb state) and the instructions that
refer to the coprocessors, which are not conditional.

Furthermore, the translation of the instructions for the
coprocessors is not described here in that, for their correct
operation, the presence is indispensable in the system based
upon the LX core of devices that emulate correctly the
coprocessors of the ARM processor, here not available.

Also from the point of view of the translation, it is
possible to divide the ARM instructions into the five fol-
lowing groups:

data processing;

multiplications;

single load&store;

multiple load&store;

jumps.

For all five categories, the translation on the L.X processor
of the operation starts with the verification of the execution
condition, which consists in the evaluation of one or more of
the flags present in the status register. There are four such
flags:

N flag (negative flag): N=1 if the result of an operation is

negative;

C flag (carry flag): C is forced to 1 if the result of a logic

operation or of an addition generates carry, to 0 if the
result of a subtraction generates borrow;

US 7,243,213 B2

15

V flag (overtlow flag): V=1 if an arithmetic operation has

generated overflow;

7 flag (zero flag): Z=1 if the result of an operation is zero.

The various combinations of these flags generate the
sixteen types of conditioned execution AL, NV, EQ, NE,
CS/HS, CC/LO, M1, PL, VS, VC, HI, LS, GE, LT, GT, LE.

The LX processor, which does not support the condi-
tioned execution, must carry out the appropriate tests for
evaluating whether the execution condition is verified, after
which the instruction to be executed can be translated.

The positive evaluation determines the setting of one of
the branch bits of-the X processor (namely, the branch bit
7), which is used for a predicated execution of the instruc-
tion or, in the case of instructions that cannot be executed in
a speculative manner, such as for example load&store
instructions, for jumping to the next ARM instruction.

To speed up modification of the flags on the basis of the
result of the multiplication and data-processing operations,
each of the four flags C, Z, N, V is calculated and stored in
a special register of the LX processor. The said four registers
are designated by RC, RZ, RN, RV in Table 3.

The said set of registers RC, RZ, RN, RV is read for
evaluating the condition of execution of the subsequent
ARM instructions. The register ARM_CPSR on the [LX
processor that emulates the behaviour of the register CPSR
is hence not updated at each instruction that modifies it but
only when there occurs a reading operation thereon, so that
the value read will be coherent with the one read in the
normal execution of the same program on the ARM proces-
SOf.

In the step of translation of the condition, the value of the
LX register that emulates the ARM program counter is
moreover incremented by eight, so that during the subse-
quent steps of the operation each access to said register will
see the updated value, coherently with the behaviour of the
ARM processor.

The translation of the ARM instructions is described in a
pseudo-code, the syntax of which is described in detail
hereinafter.

For example, when an ARM instruction with execution
condition GE (unsigned greater or equal) is encountered, the
first bundle of the LX translation will be:

LX translation
$Condition = (RN= =RV)
ARM_PC =ARM_PC +8

ARM instruction
@@@GE Rdest,Rsorgl, Rsorg?

When the execution condition is, for example, LE (signed
less or equal) and cannot be evaluated instantaneously but it
is necessary to combine the results of the two comparisons
7=1 and N!=V, two bundles will be necessary for making the
evaluation.

For the data-processing operations, once the condition has
been translated, it is necessary to translate the addressing
mode.

The addressing modes of the ARM processor for data-
processing instructions, as described previously, are nine:

immediate, direct from register, logic shift to the left from

register, logic shift to the left from immediate, logic
shift to the right from register, logic shift to the right
from immediate, arithmetic shift to the right from
register, arithmetic shift to the right from immediate,
rotation to the right from register, rotation to the right
from immediate, and rotation through the carry flag.

25

30

35

40

45

50

55

60

65

16

In this step, the last bit at output from the source register
following upon the shift operation must also be evaluated.
This bit will be used for updating the value of the carry flag
for those logic operations that require commitment and, in
this step, is stored in a special temporary register awaiting a
decision, based upon the opcode, as to whether the status
register CPSR must be updated.

In the case of addressing from immediate, it is necessary
to check whether a rotation has to be made on the 8-bit
immediate contained in the least significant byte of the ARM
opcode. The immediate field of the ARM opcode is 12 bits
long and contains in the four most significant bits a value,
designated by amt, which describes the rotation to the right
to be applied on the 8-bit immediate, designated by imm.

Said 4-bit value amt must be multiplied by two to know
by how many positions it is necessary to rotate the imme-
diate to the right.

If said value is equal to zero, the rotation is not necessary,
but it is necessary only to shift the immediate into a special
temporary register, designated by Rshift_op in FIG. 1 for the
next translation of the execution step of the opcode to be
unique. The value of the carry flag is not altered by this
addressing mode, so that in the temporary carry register, RtC
in Table 3, all that needs to be done is to write the contents
of the carry register RC.

LX translation
Condition Evaluation
Rshift__op = #imm
RtC = RC

ARM instruction
@@@ Rdest.Rsorgl, imm

If, instead, the rotation is necessary, this must be per-
formed on the LX processor, which does not have rotation
operations in its instruction set, as a series of shifts and logic
ORs. The value of the carry must be updated with the last
value coming from the register Rshift_op as a result of the
rotation to the right (which is also the MSB of the rotated
immediate).

The direct-from-register addressing is encoded in the
ARM opcode as a particular case of addressing with logic
shift to the left from immediate when the immediate is equal
to zero. Its translation, like the addressing from immediate,
consists only in moving, in the register Rshift op, the
contents of the source register, whilst the carry does not need
to be modified.

There now follows an analysis of the modes of addressing
from register scaled with the amount of the shift expressed
by an immediate.

Logic shift to the left from immediate: the amount of the
shift is expressed by a 5-bit immediate contained in the
opcode. In addition to carrying out the shift of the source
register, it is necessary to carry out the complementary logic
shift to the right for updating the carry. With just the shift,
the temporary carry register RtC would not be updated
correctly, because its LSB will contain the value with which
the flag is to be updated, but other bits of the register may
have non-zero content. It will be necessary, in the subse-
quent steps of the translation, to set to zero all the other bits
of the register RtC by means of a logic AND operation.

Logic shift to the right from immediate: this is analogous
to the previous case, but the carry flag must be updated with
the last bit coming from the register Rshift_op following
upon the operation of shift to the right.

Arithmetic shift to the right from immediate: this is
analogous to the previous case, with the particularity that if

US 7,243,213 B2

17
the amount of the shift is zero, an arithmetic shift of 31
positions is made, i.e., just the sign of the contents of the
register Rsorg2 is kept in the register.

Rotation to the right from immediate: as already men-
tioned, the LX processor does not have a rotation instruc-
tion; hence the rotation must be made as a series of shifts and
logic ORs.

The carry flag is to be updated with the last bit coming
from the register Rsorg2 following upon a rotation to the
right.

Logic shift to the right from register: this is analogous to
the previous case, but if the amount of the shift is not zero
the carry flag must be updated with the last bit coming from
Rshift_op following upon the operation of shift to the right.

Arithmetic shift to the right from register: this is alto-
gether analogous to the previous case, with the only differ-
ence that the two shifts must of course be arithmetic and not
logic.

Rotation to the right from register: if the value is zero it
must not have any effect. Otherwise, it is necessary to make
the rotation and update the carry flag with the last bit coming
from the register Rsorg2 following upon the shift to the
right.

For the rotation to be made correctly by means of the shift,
if the amount of the rotation is greater than or equal to 31 it
is necessary to truncate (a rotation to the right of 35 positions
is in fact equivalent to a rotation of 3). It is, in any case,
necessary to distinguish the cases of rotation of zeros from
the rotation of multiples of 32, because in the second case
the carry flag must be updated.

Once the operand has been obtained, which is always
stored in the special register Rshift_op, the part of execution
of the ARM opcode is translated.

Among the data-processing instructions there are 8 logic
instructions and 8 arithmetic instructions.

The logic instructions are:

AND (logic AND);

EOR (exclusive OR);

ORR (inclusive OR);

BIC (bit clear);

MOV (move to register);

MVN (move negated);

TST (test: updates the flags as a result of a logic AND);

TEQ (test equivalence: updates the flags as a result of an

exclusive OR).

These instructions do not modify the overflow flag and
update the carry flag on the basis of the previous step of
rendering available the operand, as described previously.

The test operations, unlike the other operations, do not
modify the contents of any general-purpose register but only
the flags of the register CPSR.

The arithmetic instructions are:

ADD (addition);

ADC (addition with carry);

SUB (subtraction: subtracts the value of the shifter-

operand from that of a register);

RSB (reverse subtract: subtracts the value of a register

from that of the shifter-operand);

SBC (subtraction with borrow);

RSC (reverse subtract with borrow);

CMP (compare: updates the flags as a result of the

subtraction between the two operands);

CMN (compare negated: updates the flags as a result of

the addition of the two operands);

These instructions modify the overflow flag and the carry
flag according to the result.

20

25

30

35

40

45

50

55

60

65

18

The evaluation of these two flags is different for addition
and for subtraction and is made in the next commitment step.

The compare operations, unlike the others, do not modify
the contents of any general-purpose register but only the
flags of the register CPSR.

Seeing that all the data-processing operations can support
the conditional execution, the result of the execution is
stored in a temporary destination register designated as
Rt_dest in Table 3.

As example of instruction logic of the ARM processor, the
part of execution of the instruction BIC (bit clear) is trans-
lated as follows:

ARM instruction
BIC @ @ Rdest,Rsorgl @ @ @

LX translation

Condition Evaluation

224 Operand Generation
Rtempl = Rsorgl+Rshift_ op
Rt_dest = Rtempl + RC

Note how the high bits of the temporary carry register RtC
are set to zero in this step of the translation, given that, in the
previous step of generation of the second operand, said
register may have been updated simply with a shift opera-
tion.

As example of an arithmetic operation, consider the
instruction ADC(add with carry):

ARM instruction
ADC @ @ Rdest,Rsorgl, @ @ @

LX translation

Condition Evaluation

224 Operand Generation
Rtempl = Rsorgl+Rshift_ op
Rt_dest = Rtempl + RC

In the case of arithmetic operations, should the instruction
require updating of the flags, the carry flag will be updated
on the basis of the result of the addition or of the subtraction,
and hence it is not necessary to mask the contents of the
register RtC, which will be ignored in the remaining part of
the process of translation.

The last step of the translation is that of commitment. In
this step, if the execution condition is verified, the value of
the temporary destination register Rt_dest is written in the
destination register.

All the data-processing operations can then optionally
modify the status register; exceptions to this are the test and
compare operations that necessarily execute this operation.

Since the LX processor does not have a status register, in
this step a series of instructions will be executed on the
destination register for establishing how to update the flags,
if this is required by the high value of the bit 21 of the ARM
opcode.

The zero flag is sent to a high level if the result of an
operation is zero.

The sign flag is updated with the most significant bit of the
result.

The carry flag for the logic operations is updated on the
basis of the last bit coming from the source register follow-
ing upon the shift in the step of generation of the operands.

For the operations of addition, C=1 indicates the presence
of a carry and is set if:

both of the addenda are negative;
one of the addenda is negative and the result is positive.

US 7,243,213 B2

19

For the operations of subtraction, C=0 indicates the pres-
ence of borrow. Considering the operation RES=A-B, with
or without carry, C=1 if:

A is negative and B is positive;

one of the terms is negative and the result is positive.

The overflow flag is not modified by the logic operations.

For the operations of addition, V=1 if:

both of the operands are positive and the result is nega-

tive;

both of the operands are negative and the result is posi-

tive;

For the operations of subtraction (see above), V=1 if:

A is negative, B is positive and the result is positive;

A is positive, B is negative and the result is negative.

It is to speed up this step that each of the four flags (C, Z,
N, V) is calculated and stored in a special temporary register
(RtC, RtZ, RtN, RtV) and then saved, if the execution
condition is verified, in an appropriate register (RC, RZ, RN,
RV).

This latter set of registers will then be used for evaluating
the condition of execution of the subsequent ARM instruc-
tions. It is again emphasized that the register ARM_CPSR,
which emulates the behaviour of the register CPSR of the
ARM processor, is not updated at each instruction that
modifies it but only when there occurs a read operation
thereon, so that the value read will be coherent with the one
read in the normal execution of the same program on ARM.

In addition to the modification of the flags, in this step the
value of the register of the LX processor that emulates the
program counter of the ARM processor designated by
ARM_R15/ARM_PC in Table 3 is updated.

If R15 is not the destination register, from the current
value (i.e., PC+8) 4 is subtracted to point to the next ARM
instruction.

If R15 is the destination register, the register ARM_PC is
consequently updated, and the LX processor is forced to
make a jump-to-link to the new value of said register.

If moreover it is necessary to update the status register, the
register SPSR associated to the current mode is loaded into
the register CPSR, and it is necessary to execute a complex
procedure of switching of the operating mode of the ARM
processor.

If the instruction does not cause a jump, the translating
device is able, autonomously, to point to the next ARM
instruction in memory, whilst if the operation modifies the
contents of the program counter of the ARM processor it is
necessary to force the device to point to the new value of
ARM_PC.

This may be readily achieved by writing the new value of
the ARM program counter in memory at the address asso-
ciated to the ARM-pointer instruction of the translating
device.

For the arithmetic instructions of addition (ADD, ADC)
that entail updating of the status register and do not cause
jumps, it is to be recalled that the updating of the carry flag
and overflow flag occurs as follows:

C=1 indicates the presence of a carry and is set if:

both of the addenda are negative,

one of the addenda is negative and the result is positive;

V=l if:

both of the operands are positive and the result negative,

both of the operands are negative and the result positive.

The commitment step is thus translated onto the LX
processor as follows:

20

25

30

35

45

50

55

60

65

20

LX translation

Condition Evaluation

274 Operand Generation

Execution

RtN=Rt__dest»31

Rtempl = Rshift__op »31

Rtemp2 = Rsorgl »31

Rdest = ($Condition)? Rt dest: Rdest
Rtemp3 = Rtempl && Rtemp2
Rtemp4 = (Rtempl == 0) &&
(Rtemp2 == 1)

Rtempl = Rtempl && (RtN ==0)
Rtemp2 = Rtemp2 && (RtN == 0)
Rtempl = Rtempl || Rtemp2
Rtemp2 = Rtemp4 && (RtN == 0)
Rtemp4 = Rtemp3 && (RtN == 0)
RN = ($Condition)? RtN: RN

RtV = Rtemp?2 [l Rtemp4

RtC = Rtemp! | Rtemp3

RtZ = (Rt_dest ==0)

RC = ($Condition)? RtC: RC

RV = ($Condition)? RtV: RV

RZ = ($Condition)? RtZ: RZ
ARM PC = ARM PC - 4

ARM instruction
ADDS@@ Rdest,
Rsorgl, @@@

For the compare instruction CMN, which performs an
addition but does not write the result of the operation in a
general-purpose register, the translation of the commitment
step obviously becomes the following:

LX translation

Condition Evaluation

274 Operand Generation

Execution

RtN=Rt__dest»31

Rtempl = Rshift _op »31

Rtemp2 = Rsorgl »31

Rtemp3 = Rtempl && Rtemp2
Rtemp4 = (Rtempl ==0) &&
(Rtemp2 == 1)

Rtempl = Rtempl && (RtN == 0)
Rtemp2 = Rtemp2 && (RtN == 0)
Rtempl = Rtemp1|Rtemp2

Rtemp2 = Rtemp4 && (RtN == 0)
Rtemp4 = Rtemp3 && (RtN == 0)
RN = ($Condition)? RtN: RN

RtV = Rtemp?2 || Rtemp4

RtC = Rtempl | Rtemp3

RtZ = (Rt_dest == 0)

RC = ($Condition)? RtC: RC

RV = ($Condition)? RtV: RV

RZ = ($Condition)? RtZ: RZ
ARM PC = ARM PC - 4

ARM instruction
CMN@@Rsorgl,@@@

For the arithmetic instructions of subtraction (SUB, SBC,
RSB, RSC) that involve updating of the status register and
do not cause jumps, it should be recalled that the updating
of the carry and overflow flags assumes the following form:

C=0 indicates the presence of borrow. Considering the
operation RES=A-B, with or without carry, C=1 if:

A is negative and B positive;

one of the terms is negative and the result positive.

V=l if:

A is negative, B is positive and the result is positive;

A is positive, B is negative and the result is negative.

When, instead, the destination register is the program
counter of the ARM processor and updating of the status
register is required, it is necessary to read the 5 LSBs of the
status register to identify the current operating mode and
choose which of the replications of the status register SPSR
to save in the register CPSR. There follows a complex

US 7,243,213 B2

21

procedure that enables switching of the current operating
mode of the ARM processor, which in practice almost
perfectly reproduces the translation of the ARM instruction
MSR (move to status register from general-purpose regis-
ter).

For the detailed description of this procedure the reader is
thus referred to the subsequent description of the translation
of the instruction MSR.

In any case, the translation of the instruction ADDS that
uses as destination register the program counter sets the [L.X
link register, referred to as LX_LR, in a condition to make
the jump and forces the translating device to point to the new
ARM_PC value.

This is obtained by writing the new value of the ARM
program counter in memory at the address associated to the
ARM-instruction pointer of the translating device.

Likewise, if updating of the status register is not required,
the CPSR must not be modified and the translation is
simplified.

Obviously the use of 32-bit immediates in the translation
(for example, ARMPOINTER_ADDR) must follow the
constraints imposed by the LX processor for the encoding of
the immediates. The translating device must ensure that the
long immediates will be positioned in memory addresses
corresponding to an even number of words, as required by
the LX core.

The 3 LSBs of the address in which the long immediate
is encoded must, that is, always be zero.

The instructions of multiplication and multiplication-
with-accumulation behave in a way similar to the data-
processing instructions. The former two types of instructions
support, however, only the direct-from-register addressing,
and, even though they support the S option, they never
modify the carry and overflow flags but only the sign and
zero flags.

Whilst the ARM processor is able to perform also mul-
tiplications of 32-bit numbers, obtaining a 64-bit result that
is split on two destination registers, the LX processor can
only perform multiplications of 16-bit numbers or of a 16-bit
number with a 32-bit number, in any case truncating the
result to 32 bits.

For this reason, the 32x32 multiplications of the ARM
processor must be performed on the LX processor as a series
of' 16x16 multiplications and of additions with carry, accord-
ing to the procedure described in what follows.

Let A and B be the two 32-bit operands contained in the
two source registers; we indicate by AH and BH the high
halfwords of A and of B, respectively, and by AL and BL the
low halfwords.

A=AL+4H*2'6
B=BL+BH*2'¢
A*B=AL*BL+(AH*BL+AL*BH)*2'S+ AH*BH*232

In the case of 32x32 multiplication of a signed type, first
the absolute values of A are determined by calculating the
twos complement of the negative numbers; after which the
unsigned multiplication is performed, as described previ-
ously. On the basis of the sign of the operands already
extracted previously, there is then calculated the sign of the
result, which, if negative, entails making the twos comple-
ment of the 64-bit number obtained from the multiplication
of the absolute values.

Once the execution condition has been evaluated, the
execution of the multiplication is translated.

20

30

35

40

45

50

55

60

65

22

If the instruction is a MUL, a multiplication of two 32-bit
numbers is performed, with the result truncated at 32 bits.
The positioning in the bundles of the multiplication opera-
tions must respect the constraints imposed by the [LX
processor. The translating device must ensure that the mul-
tiplications are positioned in memory addresses correspond-
ing to an odd number of word, as required by the X core.

The 3 LSBs of the address in which the long immediate
is encoded must, that is, be 100.

There must moreover be respected the constraints on the
latency of the multiplications, which is twice that of the
data-processing instructions.

If the instruction is an ML A (multiply and accumulate), to
the result of a MUL instruction there must be added the
contents of a third source register Rsorg3.

If the instruction is an UMULL (unsigned multiply), it is
necessary to make the multiplication of two 32-bit unsigned
numbers and split the 64-bit result obtained on two registers:
the high part is saved in the temporary register Rt_dest
awaiting the commitment step, whilst the low part is saved
in the temporary register Rtempl.

For the instruction UMLAL (unsigned multiply and accu-
mulate), it is necessary only to add to the result of the
UMULL instruction the 64-bit number previously contained
in the registers RdHi and RdLo, remembering to propagate
the carry of the addition.

If the instruction is a SMULL (signed multiply), it is
necessary to make the multiplication of two 32-bit signed
numbers in twos complement and split the 64-bit result
obtained on two registers: the high part is saved in the
temporary register Rt_dest awaiting the commitment step,
whilst the low part is saved in Rtempl.

To make the signed multiplication, first the absolute
values of the two operands are calculated, then the unsigned
multiplication is performed as for the UMULL instruction,
and finally, if the two operands had opposite sign, the twos
complement of the 64-bit number resulting from the multi-
plication of the absolute values is performed.

The translation is thus the following:

LX translation

Condition Evaluation

Rtempl = — Rsorgl

Rtemp2 = — Rsorg2
Rtemp3=Rsorgl»31

Rtemp4 = Rsorg2 »31

$Negl = (Rtemp3 == 1)

$Neg2 = (Rtemp4 == 1)

$PosRes = (Rtemp3 = = Rtemp4)
Rtemp7 = ($Negl)? Rtemp1: Rsorgl
Rtemp8 = ($Neg2)? Rtemp?2: Rsorg?
$Carry0 = OR

Rtempl = 16lsb__of (Rtemp7) *
16msb__of(Rtempg)

Rtemp2 = 16lsb__of (Rtemp8) *
16msb__of(Rtemp7)

Rtemp3 = 16lsb__of(Rtemp7) *
16lsb__of(Rtemp?®)

Rtemp4 = 16msb_ of(Rtemp7) *
16msb__of(Rtempg)

Rtempl = Rtempl «16

Rtemp5 = Rtempl »16

Rtemp2 = Rtemp2 «16

Rtemp6 = Rtemp2 »16

Rtemp5 = Rtemp5 + Rtemp6
$Carryl,Rtempl = Rtempl + Rtemp3 +
$Carry0

$Carry2,Rtemp8 = Rtemp4 +
Rtemp3 + $Carryl

$Carryl,Rtemp7 = Rtempl + Rtemp2 +

ARM instruction
SMULL@@ RdHi,
RdLo,Rsorgl,Rsorg2

US 7,243,213 B2

23

-continued

$Carry0

$Carry2,Rtemp8 = Rtemp8 + $Carryl
$LowlsZero = (Rtemp7 == 0)
Rtempl =— Rtemp7

Rtemp3 =~ Rtemp8

Rtempl = ($PosRes)? Rtemp7:
Rtemp1l

$Carry2,Rtemp2 = Rtemp3 +
$LowlsZero

Rt_dest = ($PosRes)? Rtemp8:
Rtemp2

Note that, to make the twos complement of the 64-bit
result it is necessary to check whether the 32 least significant
bits are all zeros or not in order to decide whether the top
part must be twos-complemented or negated.

For the instruction SMLAL (signed multiply and accu-
mulate), it is necessary only to add to the result of the
SMULL instruction the 64-bit number previously contained
in the registers RdHi and RdLo, remembering to propagate
the carry of the addition.

Like the data-processing instructions, the multiplications
support the S option and terminate with a similar commit-
ment step, which, however, does not update the overflow and
carry flags.

From the point of view of the translation, the operations
of access to memory differ fundamentally from the data-
processing operations because they cannot be executed in a
predicative way. In fact, whilst it is possible to perform, in
any case, an addition or a multiplication and then decide
whether to write or not the result thereof in the destination
register, this approach does not of course have any sense for
the operations of writing in memory.

The said method is moreover not applicable for the
reading operations either, because if the access in reading
takes place in a memory location on which a device is
mapped (for example, a UART), the access may cause a loss
or modification of the information contained in that location.

Also for the reasons expressed above, the translation of
the operations on the memory follows a procedure different
from the one for the data-processing instructions.

The instructions of single access to memory comprise
both the instructions of Mode 2 and those of Mode 3. All
these instructions use, for addressing, a base register, to
which is added or from which is subtracted an offset that
may be obtained in various ways.

The Mode 2 instructions are the operations of load&store
of words and unsigned bytes. There are nine addressing
modes supported:

base register +/— 12-bit immediate;

base register +/— offset register;

base register +/— scaled offset register (the offset register

is shifted with modes analogous to the data-processing
instructions; the amount of the shift is described by an
immediate);

base register +/- pre-indexed immediate (the base register

is updated before accessing a memory);

base register +/— pre-indexed offset register;

base register +/— pre-indexed scaled register;

base register +/— post-indexed immediate (the base reg-

ister is updated after accessing a memory);

base register +/— post-indexed offset register;

base register +/— post-indexed scaled register.

The operations of load&store in memory of mode 3 act on
halfwords and signed bytes. The addressing modes sup-
ported are six of the nine associated to Mode 2:

10

20

25

30

35

40

50

55

60

65

24
base register +/- 8-bit immediate;
base register +/- offset register;
base register +/- pre-indexed immediate;
base register +/- pre-indexed offset register;
base register +/- post-indexed immediate;
base register +/- post-indexed offset register.

As explained previously, the ARM processor enables
accesses to words with non-word-aligned addresses, whilst
the LX processor does not enable them and, in these cases,
triggers an exception. For this reason, the translation of the
accesses to memory of the ARM processor must necessarily
envisage an operation of truncation to generate word-aligned
or halfword-aligned addresses. Furthermore, since both the
ARM processor and the X processor are potentially bi-
endian, should the endianness, i.e., the representation of the
integers from right to left or left to right, of the two systems
be different, it is necessary to carry out the appropriate
operation of swapping by words or halfwords.

The translation of the instructions of Modes 2 and 3 takes
place with two similar processes, which are differentiated
only as regards the addressing modes supported and the
different translations of the access-to-memory step. These
differences, as will emerge more clearly in what follows, are
aimed at obtaining, in every case, the translation that can be
executed faster on an LX processor.

After the first step of decoding and translation of the
conditional field as for the data-processing instructions,
there is the translation of the addressing mode and the
consequent generation of the address for access to memory.

In this step, both the address for access to memory and the
value with which, if required, it will be necessary to update
the base register at the end of the execution of the instruction
are calculated.

The two values are stored in the temporary registers
Rshift_op and Rtemp6, respectively.

There is then translated the load or store operation, which,
as explained previously, must first check whether the execu-
tion condition is verified or not and, if it is not, not to access
but to jump to the last bundle of the translation and then
make a jump-to-link, and then access the next ARM instruc-
tion to be executed.

There now follows a detailed analysis of the translation of
some of the various addressing modes, starting from those
common to Modes 2 and 3.

The addressing mode is described by the bits from 21 to
25 of the ARM opcode.

In the case of addressing with base register +/— immedi-
ate, the base register must not be updated, whilst the register
Rshift_op, which will be used as pointer to the memory,
must contain the result of the addition (or of the subtraction)
of the base register and of the long offset immediate:

LX translation

Condition Evaluation

Rtemp6 = Rbase

Rshift _op = Rbase + #sign__imm
sign__mm = +/—

ARM instruction
LDR@ @ Rdest,
[Rbase, # +1— imm]

sign_imm = +/— imm

In the case of addressing with pre-indexed immediate,
also the base register must be updated at the end of the
operation; then the register Rtempé6 is consequently modi-
fied.

US 7,243,213 B2

25

In the case of addressing with post-indexed immediate,
the base register must be updated at the end of the operation
but the access to memory must be made at the current value
of the base register.

In the case of addressing with offset contained in a
register, the process is analogous.

The operations of Mode 2 also support the addressings
with scaled offset register (with the usual modes LSL, LSR,
ASR, ROR, RRX). The translation of these modes consists,
in the first place, in obtaining the offset by means of the
operations of shift or rotation, and then in updating the
registers Rtemp6 and Rshift_op according to the procedures
already seen.

Once the addressing mode has been translated, the execu-
tion of the access to memory is translated. The translation of
the access varies totally according to the format of the datum
to be read or written in memory.

The accesses to bytes do not present problems of endi-
anness or of alignment. Examples of accesses to bytes are
the instruction STRB (store unsigned byte, Mode 2) and the
instruction LDRB (load unsigned byte, Mode 2).

Note that, on account of the latency of the byte-loading
operation, which involves waiting two bundles for access to
the byte read, it is necessary to insert an empty bundle in
order to render the contents of the register Rdest immedi-
ately available to the next ARM instruction and thus prevent
read hazards.

Note, moreover, that since it is possible that the destina-
tion register will coincide with the base register when the
latter does not need to be updated by the post-indexed or
pre-indexed modes, it is necessary to carry out first writing
in the register Rbase and then writing in the register Rdest
in two separate bundles.

The instruction LDRSB (load signed byte) forms part of
Mode 3 and as such does not allow addressing with scaled
offset register. The byte read is extended with sign.

The LX processor requires the memory operations that
involve halfwords to be halfword-aligned, whilst the ARM
processor, at the moment of access to memory, ignores the
last bit of the address, and then, if necessary, swaps the two
bytes read with one another if the rejected bit was 1.

The store operations, instead, ignore the last bit com-
pletely.

It is moreover necessary to pay attention to the endianness
of the ARM processor and LX processor: if the two systems
use different conventions it is necessary to swap the bytes of
the halfwords read with one another.

Access to halfwords of the ARM processor will then be
translated into two individual accesses to bytes of the
unsigned type to speed up execution in the case where it is
necessary to swap the bytes of the halfword (i.e., convert the
hexadecimal word xxxxYyZz into the word xxxxZzYy).

The instruction LDRH (load unsigned halfword, Mode 3)
reads the halfword byte by byte from the destination register
and writes it in the destination register by carrying out or not
carrying out the swap according to the endianness of the
ARM processor and least significant bit of the address. The
other halfword of the destination register is filled with zeros.

It is emphasized how, in order to save time in the case
where it were necessary to make the swap of the bytes read,
both the word read and its swapped version are pre-calcu-
lated, and then the correct version is chosen on the basis of
the endianness of the ARM system.

The endianness of the LX processor in this case is of no
effect because the accesses are made byte by byte.

The instruction LDRSH (load signed halfword, Mode 3)
is similar to the previous one, with the only difference that

20

25

30

35

40

45

50

55

6

<

65

26

the bytes are read with sign and then the least significant is
masked with OxOOFF to construct the halfword already
sign-extended.
Otherwise, the translation strategy is identical to the
previous case.
In the bi-endian case, it is just sufficient to swap the roles
of Rtempl and Rtemp?2 in the last bundle.
For the translation of the accesses to words a different
approach is chosen: rather than making four accesses to
consecutive bytes and then constructing the word on the
basis of the endianness of the ARM processor, it is preferred
to make a single word-aligned access and then possibly
make the swap of the bytes should the endianness of the
ARM processor and [.X processor be different.
In this way, if the ARM processor and the LX processor
have the same endianness the gain in terms of speed of
execution is considerable, whereas when the endianness is
different, the two solutions, with four accesses or with single
access, are practically equivalent.
The instruction STR (store word, Mode 2) ignores the two
least significant bits of the address and is hence self-aligned.
When the endianness of the ARM processor and LX pro-
cessor is different, the translation of the instruction com-
prises the swap of the bytes of the word read: the hexadeci-
mal word OxAaBbCcDd is converted into 0xDdCcBbAa. If
the endianness of the two systems is, instead, the same, all
the bundles dedicated to the swap are spared.
The instruction LDR (load word, Mode 2) has a more
complex translation process for various reasons:
the access is made, neglecting the two least significant bits
of the address, but then the word read must be swapped
if the endianness of the ARM processor and L.X pro-
cessor is different and also rotated to the right by a
number of positions equal to eight times the value of
the two address bits ignored (for example, if the address
ends in 11 the word must be rotated by 24 positions);

if the destination register of the load operation is the
program counter of the ARM processor, the instruction
may generate a jump, and it is thus necessary to make
sure that the value loaded is word-aligned and set the
translating device for pointing to the ARM instruction
that is the target of the jump.

Irrespective of whether the destination register is or not
the register ARM_PC, the first part of the translation is the
same and, in the case where it is necessary to make the swap,
we have:

LX translation

Condition Evaluation
Address generation

Rshift op = Rshift_op &
OxFFFFFFFC

Rtemp5 = Rshift__ op & 0x03
Rbase = ($Condition)? Rtemp6:
Rbase

IF (! $Condition) GOTO end
Rt__dest = MemoryWord(Rshift_op)
Rtemp5 = Rtemp5 «3
Rtempl = OxOOFF

Rtemp6 = 32 — Rtemp5
Rtempl = Rtempl «8
Rtemp3 = Rtempl «16
Rtemp2 = Rt_ dest »8
Rtemp4 = Rt_ dest «8
Rtempl = Rt dest »24
Rtemp3 = Rt_ dest «24
Rtemp2 = Rtemp2 & Rtempl
Rtemp4 = Rtemp4 & Rtemp3

ARM instruction
LDR@@ Rdest, [Rbase, @ @ @

Bundle dedicated exclusively
to the swap operation

US 7,243,213 B2

27

-continued

Rtemp2 = Rtempl | Rtemp2
Rtemp4 = Rtemp4 | Rtemp3
Rt_ dest = Rtemp?2 | Rtemp4
Rt dest = Rt_ dest «Rtemp5
Rtempl = Rt_ dest »Rtemp6
Rdest = Rtemp1] Rt_ dest

Once the memory has been accessed and any possible
operations of swapping and rotation of the word read have
been completed, if the destination register is not ARM_PC
the translation terminates by simply updating the program
counter itself:

LX translation

Condition Evaluation

Address generation

Memory Access

end: ARM_PC = ARM_PC - 4

ARM instruction
LDR@ @ Rdest, [Rbase, @ @ @

When, instead, the destination register is actually
ARM_PC, version 5 of the instruction set of the ARM
processor requires that the word read be made halfword-
aligned and that the least significant bit of the word should
establish whether to enter or not Thumb state, setting bit 5
of the status register ARM_CPSR.

It is then necessary to set the device for pointing to the
destination address of the jump.

LX translation

Condition Evaluation

Address generation

Memory Access

Rtempl = ARM_PC & 1 ___
LXJLR = ARM_ PC & OxFFFFFFFE
Rtemp3 = ARMPOINTER_ADDR
Rtempl = Rtempl «5 __
ARM.CPSR = ARM__CPSR &
OxFFFFFFDF

ARM PC = ARM__PC & OxFFFFFFFE
MemoryWord (Rtemp3) = ARM__PC
ARM_PC = ARM_PC + 4
ARM.CPSR = ARM__CPSR | Rtemp1
GOTO LX_LR

End: ARM PC = ARM_PC - 4

ARM instruction
LDR@@ R15, [Rbase, @@@

The operations of multiple load&store of Mode 4 contain,
within their opcode, a field of 16 bits that marks with a
high-level bit the registers involved in the transfer.

The last sixteen bits of the opcode are then examined one
by one, and for each high-level bit, a load-word operation or
store-word operation is carried out on the register associated
to that bit.

These operations present four addressing modes:
increment after (suffix 1A);

increment before (suffix IB);

decrement after (suffix DA);

decrement before (suffix DB).

The base register, if specified by the bit 21 of the opcode
being at a high level, is updated at the end of each single load
or store operation with the value of the next pointed location.

It should be emphasized that, whether updating is made
by decrement or by increment, the registers with a higher

20

25

30

35

40

50

55

60

65

28

number are associated to the higher addresses and the
registers with a lower number are associated to the lower
addresses.

There then exist versions of the multiple load&store that
can be executed only in privileged operating mode, which
enable loading of the program counter from the memory or
access to the general-purpose registers of the User mode.
Once each register of the ARM processor has been mapped,
including the replicated ones, on a register of the LX
processor, access to the registers of the User mode may be
achieved immediately.

Mapping of the registers of the ARM processor on the [L.X
processor, detailed in Table 3, is handled by mapping the
registers of the current mode on the registers of the [LX
processor from R16 to R31 in such a way that translation of
the operations will be immediate. For the vast majority of
the instructions of the ARM processor, in fact, these are the
only registers accessible, and the register of the X proces-
sor can be obtained from the register of the ARM processor
specified in the opcode by simply adding 16 to the number
identifying the register.

The registers R13 and R14 of the ARM processor repli-
cated for the Supervisor, Interrupt, Abort and Undefined
modes are mapped on registers from R40 to R46, which will
serve as “stack” registers for R29 and R30 when the current
mode is different from the one associated to the register
replicated.

In the same way, R45 and R46 constitute the stack
registers for R13 and R14 for the User and System modes,
as likewise R54 and R55 for the Fast-Interrupt mode (FIQ).

The registers from R40 to R44 of the LX processor
constitute an area of stack that will contain registers from R8
to R11 of the User mode of the ARM processor when the
current mode is the Fast-Interrupt one, or else the replicated
registers of the Fast-Interrupt mode from R8 to R11 when
this is not the current mode.

The multiple load operations can also load a datum from
the memory into the program counter of the ARM processor,
generating a jump and, in version 5 of the instruction set, by
updating the register CPSR with the register SPSR of the
current mode. The operations for loading the program
counter are hence treated in a different way from those that
involve the other registers, also because it is necessary to
prevent a non-word-aligned value from being loaded into
ARM_PC.

It should moreover be emphasized that each store opera-
tion of the program counter writes in memory the updated
value, which is equal to the PC of the current instruction
increased by eight.

All the operations of Mode 3 only make word-aligned
accesses, ignoring the two least significant bits of the base
register. The updated value of the base register, however,
will be calculated considering also these last two bits.

The instruction STM (multiple store) has two execution
modes:

in Mode 1, the instruction can be executed in any oper-

ating mode of the ARM processor and makes it possible
to save, in consecutive memory locations, any subset of
the registers of the current mode;

in Mode 2, the instruction can be executed only in a

privileged mode, whilst its effect is unforeseeable in the
User and System modes. This mode makes it possible
to save, in memory, any subset of the registers of the
User/System modes.

The process of translation of the instruction STM, apart
from the customary evaluation of the execution condition,
may be divided into three steps:

US 7,243,213 B2

29

an initial step, in which there is obtained a word-aligned
address, masking the two least significant bits of the
base register and, if the execution condition is not
verified, there is a jump to the end of the program. In
Mode 2, in this step the status register CPSR is read to
understand whether the operating mode of the ARM
processor is User/System, FIQ (and hence has more
replicated registers) or another privileged mode;

a cycle that scans the 16 least significant bits of the
opcode and for each of them, on the basis of the register
and the current operating mode, translates the writing
in memory with the possible swapping, should the
endianness of the ARM and LX systems differ. The
order of scanning of the list of registers, whether the
updating of the addresses is by decrement or by incre-
ment, must be such that the registers with a higher
number will be associated to the higher addresses and
the registers with a lower number will be associated to
the lower addresses;

a final step, in which the register ARM_PC is updated, the
contents of which cannot be modified by the instruction
STM, and if necessary the writeback of the base
register is performed. Even though, during access to
memory, the two least significant bits of the address
must not be ignored for generating word-aligned
accesses, during the writeback step it is necessary to
take account thereof.

In the translation, there is inserted an explicit NOP (no
operation) to give the [.X core time to evaluate the execution
condition before the possible jump. The LX processor
requires, in fact, that between the writing in a branch bit and
the execution of the conditioned jump thereto there should
intervene at least one bundle of instructions.

The scanning of the bits of the list of registers involved in
the transfer starts from bit 0 and arrives at bit 15 in the case
of addressing by increment, whilst it proceeds in the oppo-
site direction if the addressing is by decrement. According to
whether the addressing is of the before or after type, the
value of the base register must be increased (in the case of
increment) or decreased (in the case decrement) by 4 before
or after carrying out writing in memory of each register.

In Mode 1, the registers to be written in memory are the
ones associated to the current operating mode of the ARM
processor: these registers are always mapped on the [LX
registers from R16 (ARM_RO0) to R31 (ARM_R15/
ARM_PC).

If the endianness of the ARM and LX processors is the
same, it is not necessary dedicate bundles to the swap.

The translation of the previous instruction is valid also for
the instruction STM of Mode 2 for the registers not repli-
cated in any privileged mode, i.e., ARM_R15 and all the
registers from ARM_R0 to ARM_R7.

Instead, in Mode 2 for the registers from ARM_RS to
ARM_R12 this translation is not suitable. These registers are
in fact replicated for the FIQ mode and when the ARM
processor enters this mode the registers from R8 to R12 of
the User/System mode are saved in the registers of the [L.X
processor from ARM_R8stack to ARM_R12stack. The
translation must therefore start by choosing which register to
write in memory between ARM_Rxstack (if the current
mode is FIQ) and ARM_Rx (in all the other cases).

The last case to be considered is that of the instruction
STM of Mode 2 for the registers R13 and R14.

In this case, the registers are replicated for each of the
privileged modes and hence, when the current mode is not
User or System, it is necessary to save the register

20

25

30

35

45

50

55

60

65

30

ARM_R13stack or ARM_R14stack instead of the corre-
sponding current-mode register ARM_R13 or ARM_R14.

The translation of the instruction STM ends with updating
of the register ARM_PC and possibly with updating of the
base register if the instruction requires writeback.

The instruction LDM (multiple load) has three different
execution modes:

in Mode 1, the instruction can be executed in any oper-

ating mode of the ARM processor and enables reading
from consecutive memory locations and writing the
data read in any subset of the registers of the current
mode;

in Mode 2, the instruction can be executed only in a

privileged mode, whilst its effect is unforeseeable in the
User and System modes. The privileged mode enables
saving of the data read from the memory in any subset
of the registers of the User/System modes. The contents
of ARM_PC cannot be modified;

in Mode 3 , the instruction can be executed only-in a

privileged mode, whilst its effect is unforeseeable in the
User and System modes. The privileged mode enables
saving of the data read from the memory in any subset
of the current-mode registers that comprises the register
ARM_PC. Furthermore, the register ARM_3PSR of the
current mode is copied in ARM_CPSR. It is necessary
to read the 5 LSBs of the status register to identify the
current operating mode and choose which of the rep-
lications of the status register SPSR to save in the
register CPSR. There follows a complex procedure that
enables switching of the current operating mode of the
ARM processor to be made, which in effect reproduces
almost perfectly the translation of the ARM instruction
MSR (move to status register from general-purpose
register). For the detailed description of this procedure,
the reader is thus referred to the subsequent description
of the translation of the instruction MSR.

The process of translation of the instruction LDM is
analogous to that of the instruction STM but, from what has
been said previously, it has to respect a greater number of
particular cases.

Of course, writing on the program counter of the ARM
processor may generate a jump in the execution of the ARM
code, and the translating device must be prepared to execute
it, pointing to the instruction destination of the jump.

The translation is altogether analogous to that of the initial
step of the instruction STM, with the only difference that the
wait bundle of the branch bit that precedes the conditioned
jump is exploited for loading the link register of the LX
processor in anticipation of the unconditioned jump to be
made at the end of translation.

For Modes 1 and 3 , which access just the current-mode
registers, the last two bundles are not necessary.

The scanning of the bits of the list of registers involved in
the transfer follows exactly the same rule used for the
instruction STM.

Also in this case then, according to whether the address-
ing is of the before or after type, the value of the base register
must be increased (in the case of increment) or decreased (in
the case of decrement) by 4 before or after carrying out
reading in memory and loading of the value read in each
register.

In Modes 1 and 3 , the registers to be written are the ones
associated to the current operating mode of the ARM
processor: these registers are always mapped on the registers
of the LX processor from R16 (ARM_R0) to R31
(ARM_R15/ARM_PC).

US 7,243,213 B2

31

The previous translation is valid also for the instruction
LDM of Mode 2 for the registers not replicated in any
privileged mode, i.e., the ones from ARM_R0 to ARM_R7.

Instead, in Mode 2, for the registers from ARM_RS8 to
ARM_R12, this translation is not acceptable. These registers
are in fact replicated for the FIQ mode, and when the ARM
processor enters this mode the registers from R8 to R12 of
the User/System mode are saved in the LX registers from
ARM_RS stack to ARM_R12 stack.

Therefore, once access to memory and the possible swap
have been performed, the translation must terminate, choos-
ing in which register to write the datum read between
ARM_Rxstack (if the current mode is FIQ) and ARM_Rx
(in all the other cases).

Note how, in this case, only four of the bundles dedicated
to the swap can be avoided if the systems have the same
endianness. The load-word operation in fact has twice the
latency of the LX data-processing instructions, and thus
requires a wait bundle between the operation of access to
memory and the use of the destination register.

Yet a different translation involves writing of the registers
R13 and R14 of the User/System mode, for the instruction
LDM of Mode 2. In this case, the registers are replicated for
each of the privileged modes and hence, when the current
mode is not User or System, it is necessary to write the
register ARM_R13stack or ARM_R14stack, instead of the
corresponding current mode register ARM_R13 or
ARM_R14.

There remain to be analysed the cases of writing of the
program counter in Modes 1 and 3.

In the first case, it is necessary to make the jump to the
value written in the program counter of the ARM processor
and pre-arrange the translating device for the jump, forcing
it to point to the destination address of the jump. Version 5
of the instruction set of the ARM processor requires that the
word read be rendered halfword-aligned and that the least
significant bit of the word should establish whether to enter
or not the Thumb state, setting bit 5 of the status register
ARM_CPSR.

In Mode 3 , instead, for version 5 of the instruction set of
the ARM processor, it is necessary to make the jump to the
value written in the program-counter of the ARM processor
and pre-arrange the translating device for the jump, forcing
it to point to the destination address of the jump.

If the ARM processor is working in Thumb state the word
read must be rendered halfword-aligned; otherwise, it must
be rendered word-aligned.

In either case, however, the status register ARM_SPSR of
the current mode must at any rate be written in the status
register ARM_CPSR.

The translation of the instruction LDM terminates with
the updating of the register ARM_PC (which, if it has been
loaded by a previous load operation, has also already been
incremented by four) and possibly with the updating of the
base register if the instruction requires writeback.

If, instead, the register ARM_PC is not modified and
writeback is not required, the translation of the final step
becomes simpler.

The ARM processor has a further two access-to-memory
instructions: SWP (swap word) and SWPB (swap byte).
These instructions each make two accesses-to-memory by
loading in a first register the contents of a memory location
pointed to by a base register and by writing, in the same
memory location, the contents of a second register. If the
first register and the second register coincide, the contents of
the register and of the memory location have been swapped.

20

25

30

35

40

45

50

55

60

65

32

The instruction SWP behaves exactly like a pair of LDR
and STR instructions; consequently, it is necessary to take
into account the endianness of the two systems and to make
the possible rotation of the word read on the basis of the two
least significant bits of the address.

Note that if the endianness of the two systems is different
the swap operations to be made are two: one on the word
read by the load operation and one before executing the store
operation.

It is emphasized that for the ARM processor all the swap
operations that involve the program counter, both as operand
and as base register, are unpredictable.

The instruction SWPB does not present problems of
endianness and has a much simpler translation, provided that
the precaution is taken of separating the last two instructions
of the translation to make possible access to the destination
register Rdest in the first bundle of the translation of the next
ARM instruction, without giving rise to read hazard.

The LX instructions for reading of a byte in memory
(LDB and LDBU) entail, in fact, waiting for two bundles
before access to the read byte.

The ARM processor has then three jump instructions:

PC-relative conditioned jump (with and without storage

of the return address): the 24-bit offset is contained in
the opcode of the jump. To calculate the destination
address, the latter is multiplied by four (in so far as each
ARM opcode occupies 32 bits) and extended with sign,
and is then added to the current value of the program
counter. It should be emphasized that, as a result of the
architecture of the pipeline of the ARM processor, at
the moment of the updating that occurs in the execution
step, the program counter contains the address of the
jump instruction incremented by eight;

unconditioned jump with change of mode: the processor

performs a jump with a 24-bit offset, stores the return
address in the link register, and enters Thumb mode,
modifying the T bit of the status word;

conditioned jump with change of mode (with or without

storage of the return address): the processor performs a
jump to the address contained in an index register. The
value of the index register is aligned, neglecting its
least significant bit, which is used for deciding the
mode of operation (if it is at a high level, Thumb mode;
otherwise, ARM mode).

Both the Jumps to PC-relative offsets and the jumps from
register are translated on LX with a jump-to-link operation,
also as a result of the fact that the ARM processor can make
longer PC-relative jumps than the L.X processor, the opcodes
of which contain a field that supplies the offset one bit
shorter than the ARM.

The ARM instruction B (branch) performs a conditioned
PC-relative jump, without storing the return address in the
link register.

The offset contained in the opcode must be extended with
sign and multiplied by two to obtain the offset expressed as
number of bytes.

Its translation starts with the customary evaluation of the
execution condition and continues in the following way:

LX translation

Condition Evaluation

Rt_dest = ARM__PC + #byte_ offset
ARM_PC = ARM_ PC-4
ARM__PC = ($Condition)? Rt_ dest:
ARM_PC

ARM instruction
B@@ signed__offset

US 7,243,213 B2

33

-continued

LX_LR = ($Condition)? Rt_ dest:
ARM__PC

Rshift _op = ARMPOINTER__ADDR
MemoryWord(Rshift_op) = LX_LR
GOTO LX_LR

Byte_offset =
signed_ offset «2

The instruction BL (branch and link) performs a condi-
tioned PC-relative jump, storing the return address in the
link register of the ARM processor (R14).

The instruction BX (branch and exchange to Thumb)
performs a conditioned jump to the address contained in a
target register, without storing the return address.

The value contained in the target register Rtarget must be
rendered halfword-aligned, and its least significant bit,
which was rejected during the operation of alignment, goes
to modify the T bit of the status register ARM_CPSR.
Sending the T bit to the high level, the processor enters the
Thumb mode.

The instruction BLX (branch, link and exchange to
Thumb) of Mode 2 is identical to the previous BX but stores
the return address in the link register of the ARM processor.

There also exists another version of the instruction BLX,
which performs a PC-relative jump and is referred to as
Mode 1.

This instruction does not support conditional execution
and contains within the opcode a 24-bit immediate offset that
must be multiplied by four, extended with sign, and then
added to the current value of the program counter.

The bit 24 (H bit) of the opcode must be multiplied by two
and added to the updated value of the program counter to
obtain a destination address, which is in any case haltword-
aligned.

The ARM processor must always enter the Thumb state.

The ARM processor moreover has two instructions dedi-
cated to the handling of the status registers that enable
reading and writing of the status registers CPSR and SPSR
associated to the current mode.

If the instruction has SPSR as source or destination, since
all the modes of operation of the ARM processor, except the
User mode and the System mode, have a replicated SPSR,
the first thing to do is to identify the current mode on the
basis of the contents of the [.X register that emulates the
register CPSR of the ARM processor.

If the aim is not to access the resources of the LX core
directly, the current mode (described by the five least
significant bits of the CPSR) is identified by means of a
series of compare operations that set a different LX branch
bit for each operating mode of the ARM processor. For the
reading operations of the state (MRS), at this point, by
means of a series of select operations (SLCT) it is decided
what to write in the destination register. For the operations
of writing (MSR), once again through a series of select
operations, just the value of the SPSR associated to the
current status is updated, whilst the others are left
unchanged.

Access to the register CPSR obviously does not present
this problem, but writing therein may force a change of the
operating mode of the ARM processor. The mapping of the
registers of the ARM processor on LX has been described
previously and is represented in Table 3.

The operations MSR (move to status register from regis-
ter) modify with an immediate or with the contents of a
source register one or more of the bytes making up a status
register.

25

30

40

45

50

55

60

65

34

The bytes to be modified are identified by the mask that
occupies the bits from 16 to 19 of the opcode: for each high
bit of the mask, the corresponding byte of the status word is
modified.

First, consider the case of addressing from register, with
CPSR as destination.

The translation of this instruction envisages the following
steps, which must be performed by all the instructions that
can change the operating mode of the ARM processor:

1) The current operating mode of the ARM processor is
determined by means of a series of compare operations that
set a different branch bit for each mode, and the source
register and the register CPSR are masked with two comple-
mentary masks.

Writing on the register CPSR in User mode must be
ignored.

LX translation

Condition Evaluation

NOP

Rtempl = ARM_ CPSR & 0xO1F
Rtemp2 = Rsorg & #field__mask
IF (! $Condition) GOTO end
$IsUSR = (Rtempl == 16)
$IsSYS = (Rtempl = = 31)
$ISFIQ = (Rtempl == 17)
$IsSPV = (Rtempl == 19)
$ISIRQ = (Rtempl == 18)
$IsUND = (Rtempl == 27)
$IsABT = (Rtempl == 23)
Rtempl = ARM__CPSR &
(~#field__mask)

IF ($IsUSR) GOTO end

ARM instruction
MSR CPSR_ <fields>, Rsorg

Field__mask = Mask (<fields>)

2) The contents of the registers from R8 to R12 of the
ARM processor are swapped with the corresponding ones of
the stack area, to prepare for a possible transition to the FIQ
mode.

ARM instruction LX translation

MSR CPSR__<fields>, Rsorg
ARM__R8 = ARM_ R8stack
ARM_ R8stack = ARM__R8
ARM__R9 = ARM_ R9stack
ARM RO9stack = ARM__R9
ARM__R10 = ARM_ R10stack
ARM_ R10stack = ARM_ R10
ARM__R11 = ARM__R1 Istack
ARM Rllstack = ARM_R11
ARM__R12 = ARM_ R12stack
ARM_ Rl12stack = ARM_ R12
IF ($IsSPV) GOTO spv__proc

3) Once the current mode has been identified, the values
of the registers R13 and R14 are saved in the corresponding
replicated registers.

LX translation

IF ($IsIRQ) GOTO irq_proc

IF ($IsUND) GOTO und_ proc

IF ($IsABT) GOTO abt_proc

IF ($IsFIQ) GOTO fig_ proc

Spv__proc: ARM__R13spv = ARM__R13
ARM_ Rl4spv = ARM_R14

GOTO continue

irq_proc: ARM_ R13irq = ARM__R13
ARM_ Rl4irq = ARM_R14

ARM instruction
MSR CPSR_ <fields>, Rsorg

US 7,243,213 B2

35

-continued

36

-continued

GOTO continue

und__proc: ARM_ R13und=ARM_ R13
ARM_ R 14und = ARM_ R14

GOTO continue

abt_proc: ARM_ R13abt = ARM_R.13
ARM_ Rl4abt == ARM_ R14

GOTO continue

fig_proc: ARM__R13fig = ARM_R13
ARM_ R14filqg = ARM_R14

4) The register CPSR and the flag registers are updated.

ARM instruction LX translation
MSR CPSR_ <fields>, Rsorg
continue: ARM__ CPSR = Rtempl |
Rtemp2

Rtempl = ARM__ CPSR & OxOIF
RtV = ARM.CPSR »28

RtC = ARM_CPSR »29

RtZ = ARM__CPSR »30

RN = ARM__CPSR »31

RV = RtV & 0x01

RC = RtC & 0x01

RZ = RtZ & 0x01

5) the new operating mode of the ARM processor is
determined as in point 1.

LX translation
$ISFIQ = (Rtempl == 17)
$IsSPV = (Rtempl == 19)
$ISIRQ = (Rtempl = = 18)
Rtemp6 = (Rtempl == 31)
Rtemp5 = (Rtempl == 16)
$IsUND = (Rtempl == 27)
1

ARM instruction
MSR CPSR_ <fields>, Rsorg

$IsABT = (Rtempl == 23)
$IsSUNPRV = (Rtemp6 = =
Rtemp5 == 1)

IF ($IsFIQ) GOTO get_fiq

)

6) If there has not been a switch to the FIQ mode, the
values of the registers that were shifted in point 2) are
re-swapped.

ARM instruction LX translation

MSR CPSR_ <fields>, Rsorg
ARM_ R8 = ARM_ R&stack
ARM_ R8stack = ARM__R8
ARM__R9 = ARM_ R9stack
ARM_ R9stack = ARM__R9
ARM__R10 = ARM__R10stack
ARM_ R10stack = ARM__R10
ARM_ R11 = ARM_ Rllstack
ARM__R11 stack = ARM_R11
ARM_ R12 = ARM__R12stack
ARM_ R12stack = ARM_R12

7) The contents of the replicated registers associated to the
new mode are written in R13 and R14.

ARM instruction LX translation
MSR CPSR_ <fields>, Rsorg

TF$isSPV) GOTO get.spv

20

25

30

35

40

45

50

55

60

65

IF ($IsIRQ) GOTO getlrg

IF ($IsUND) GOTO get_und

IF ($IsABT) GOTO get_abt

ARM_ R13 = ARM_ Rl13stack

ARM_ R14 = ARM_ Rl4stack
get_spv: ARM__R13 = ARM_ R13spv
ARM_ R14 = ARM_ Rl4spv

GOTO end

get_rq: ARM_R13 = ARM_ R13irq
ARM__R14 = ARM_ Rl4irq

GOTO end

get_und: ARM_ R13 = ARM_ R13und
ARM_ R14 = ARM_ R14und

GOTO end

get_abt: ARM__ R13 = ARM_ R13abt
ARM_ R14 = ARM_ Rl4abt

GOTO end

getfiq: ARM__R8 = ARM_ R8stack
ARM_ R8stack = ARM__R8
ARM__RY9 = ARM_ R9stack

ARM_ R9stack = ARM__R9
ARM_ R10 = ARM_ R10stack
ARM_ R10stack = ARM__R10

ARM_ R11 = ARM_ Rllstack
ARM__R11 stack = ARM_ R11
ARM_ R12 = ARM_ Rl2stack
ARM_ Rl12stack = ARM__R12
ARM__R13 = ARM_ R13fig
ARM__R14 = ARM_ Rl4fig

end: ARM_ PC = ARM_PC - 4

The instruction MSR, which writes an immediate in the
register CPSR, has a translation altogether analogous to the
previous one.

When, instead, the destination register of the instruction
MSR is the register SPSR of the current mode, the transla-
tion changes because it is necessary to identify the current
status and in the meantime prepare the updatings of the
SPSR for the various modes (access to the SPSR in the User
and System modes renders the execution unforeseeable).

Finally, just the register SPSR of the current mode is
updated by means of the instruction MSR_SPSR.

The operation MRS (move to register from status regis-
ter), which reads the register CPSR needs to reconstruct the
information content of the CPSR itself, which in this imple-
mentation is distributed between the ARM_CPSR and the
four registers of the flags RC, RN, RZ, RV.

The instruction supports conditional execution.

The operation MRS (move to register from status regis-
ter), which reads the register SPSR of the current mode must
first read the register CPSR to identify the current mode, and
its execution has an unforeseeable result in the User and
System modes, which do not have an register SPSR.

In addition to the instructions already described, the ARM
processor has other special instructions:

BKPT (software breakpoint);

SWI (software interrupt);

instructions for the management of the coprocessors (load

from coprocessor, store to coprocessor, cCoprocessor
data processing, etc.)

The software-breakpoint instruction only is used by an
ARM processor only in the debugging step, and for this
reason must not be present in any executable file. Conse-
quently, like all the opcodes that are not defined, this
instruction has been translated on the LX processor in a
system call of the Illegal-Instruction type.

US 7,243,213 B2

37

The operations on the coprocessors have been treated in
the same way, the complete emulation of a hardware system
based upon the ARM processor not being among our current
targets.

The software interrupts enable the ARM processor to
interact with the hardware of the system and can be trans-
lated in three ways:

as Illegal Instruction, if the aim is not to emulate the

hardware of the system;

as jump to a special ARM exception handler written for

the LX processor, which handles the system call of the
LX processor corresponding to the software interrupt
service invoked by the ARM processor. This solution
may be implemented in the step of development of the
mixed ARM-LX system for verifying proper execution
of the programs;

if the code of all the exception handlers and the contents

of the interrupt vectors are available, the instruction
SWI may be translated simply as switch to the Super-
visor mode of the ARM processor and jump with link
to the interrupt vector. The operations of management
of the status and of saving and restoring the registers
are in fact present explicitly in the ARM code and are
not provided by the opcode SWI. This choice enables
emulation of a complete system based upon the ARM
processor, but to function properly needs a memory
system that provides a partition between ARM memory
and X memory, in which in the ARM memory there
will be mapped the peripherals of the ARM processor
that do not have an equivalent in the LX system and in
which the accesses to peripherals already present in the
LX system are re-addressed to the corresponding
memory locations of the X processor.

From what has been described above, it is evident that the
translation of the opcodes of the ARM processor on the [L.X
processor has a heavy impact on the performance of the
system, for example in the translation of a data-processing
instruction that does not modify the status register.

For each ARM instruction belonging to this category,
there are necessary at least four bundles of the .X processor;
hence, given the same clock frequency, execution of the
ARM code on the LX processor is four times slower.

There is a further deterioration for the instructions of
multiplication, access to memory, and jumps.

From an analysis of the execution of some benchmarks
written in ARM code, some important observations can be
made:

the data-processing operations are on average 50% of the

total of the instructions executed;

over 90% of the instructions do not exploit the conditional

execution;

of the data-processing operations, approximately 90% are

divided into two addressing modes: the direct-from-
register mode and the non-rotated-from-immediate
mode;

of the data-processing operations, fewer than 20% require

modification of the status register CPSR;

the instructions that modify the register CPSR are, in the

majority of cases, compare operations (CMN, CMP), or
logic-test operations (TST, TEQ).

As a result of the above, it is convenient to complicate
slightly the decoding step to add purposely designed trans-
lations for the most widely used instructions.

This mode of fast translation can be applied when,
amongst the operands of the instruction, there is not present
the program counter of the ARM processor.

20

25

30

35

40

50

55

60

65

38
A non-conditional data-processing instruction, if it does
not moditfy the status register, is translated as follows:
if the addressing is direct from register

LX translation
Rdest=Rsorgl Rsorg2
ARM__ PC=ARM_ PC+4

ARM instruction
ORR@@ Rdest, Rsorgl, @@@

if the addressing is from non-rotated immediate

LX translation
Rdest = Rsorgl | #short_imm
ARM PC = ARM__PC + 4

ARM instruction
ORR Rdest,Rsorgl, #short__imm

A non-conditional logic-test or compare instruction is
translated as follows:
if the addressing is direct from register

ARM instruction LX translation
CMP Rsorgl, Rsorg?2 Rdest = Rsorgl — Rsorg2
$Condition = =

ARM PC = ARM__PC + 8
Commitment

if the addressing is from non-rotated immediate

LX translation

Rt__dest = Rsorg — #short__imm
Rshift_op = #short_imm
$Condition = 1

ARM__PC =ARM_PC + 8
Commitment

ARM instruction
CMP Rsorg, #short__imm

The commitment step takes place exactly as described in
the previous paragraph, and it is for this reason that the
branch-bit condition is brought to one and ARM_PC is
increased by eight.

With this modification, the majority of the data-process-
ing instructions may be executed in a single bundle.

The solution just described enables considerable advan-
tages to be achieved as compared to the known solutions.

It will be appreciated that the main advantage of the
solution described above derives from the fact that the
introduction of an external translator device enables the core
of'the LX microprocessor to be left unaltered. Said translator
device, when it needs to access the resources of the core of
the LX microprocessor, does not access it directly, but
incorporates into the translation of the ARM instruction
conditional constructs based upon the contents of the reg-
isters or of the branch bits of the core of the LX micropro-
Ccessor.

Moreover, advantageously the translator device enters
into action autonomously, recognizing the accesses to the
storage area reserved to the ARM code.

Persons skilled in the sector will appreciate that the
solution described herein with specific reference to the
translation of ARM instructions into ST-200 LX instructions
is in actual fact applicable to a wider field of use, i.e., to the
translation of the instructions of a pipelined scalar micro-
processor having characteristics that in any case correspond
to the characteristics of an ARM processor into instructions

US 7,243,213 B2

39

for a microprocessor of the VLIW type, which has charac-
teristics that in any case correspond to the characteristics of
an LX processor. It is noted that the solution described is
applicable also to a superscalar processor, which supports
renaming and out-of-order execution, thus rendering pos-
sible excellent performance even on not perfectly optimized
translations.

The pipelined scalar processor instructions and the VLIW
instructions identify in general all the processes that involve
instruction-set architectures (ISAs) that are equivalent to the
ones described herein.

All of the above U.S. patents, U.S. patent application
publications, U.S. patent applications, foreign patents, for-
eign patent applications and non-patent publications referred
to in this specification and/or listed in the Application Data
Sheet are incorporated herein by reference, in their entirety.

Of course, without prejudice to the principle of the
invention, the details of implementation and the embodi-
ments may vary widely with respect to what is described and
illustrated herein, without thereby departing from the scope
of the present invention, as defined in the annexed claims.

The invention claimed is:

1. A process for translating instructions belonging to a first
set of instructions that are pipelined scalar processor instruc-
tions into instructions belonging to a second set of instruc-
tions that are VLIW processor instructions for execution on
a VLIW processor that includes a core, said process com-
prising the following operations:

providing a first set of registers corresponding to the

instructions of said first set of instructions;

providing a second set of registers corresponding to the

instructions of said second set of instructions;

mapping each register of said first set of registers in a

corresponding register of said second set of registers
designed to emulate the behavior of the register of said
first set of registers, performing a unique independent
translation of the instructions of said first set of instruc-
tions into said second set of instructions;

said operations of providing the second set of registers

and of mapping being obtained by adding functional
units to VLIW processor and keeping said core unal-
tered; and

performing said translation in the absence of direct access

to resources of said core.

2. The process according to claim 1, wherein adding
functional units includes adding a translation device external
to said core of the VLIW processor,

said translation device intercepting accesses to a storage

area reserved to the first set of instructions.

3. The process according to claim 2, further comprising
forcing a program counter of the VLIW processor to point
to a translation memory reserved in the translation device for
containing a translation of an instruction belonging to the
first set of instructions, and decoding the instruction into a
decoded instruction.

4. The process according to claim 3, further comprising
loading in said translation memory all instructions that
constitute the translation of the decoded instruction.

5. The process according to claim 4, further comprising
associating said all instructions that constitute the translation
of the decoded instruction to a jump-to-link to a next
instruction of the first set of instructions to be executed, so
that all instructions of the first set of instructions that are not
directly mappable to instructions of the second set of
instructions entail a jump to the translation memory and the
jump-to-link for loading the next instruction of the first set
of instructions.

20

25

30

35

40

45

50

55

60

65

40

6. The process according to claim 1, further comprising
translating all instructions of the first set of instructions to
which there does not correspond an equivalent single
instruction in the second set of instructions into an uncon-
ditioned GOTO jump.

7. The process according to claim 1, further comprising an
operation of forcing a program counter of the VLIW pro-
cessor to operationally emulate a program counter of a
pipelined scalar processor.

8. The process according to claim 7, wherein said opera-
tion of forcing the program counter of the VLIW processor
includes forcing said program counter of the VL.IW proces-
sor to contain a value that is the value of the program counter
of the pipelined scalar processor upon loading an instruction
belonging to the first set of instructions.

9. The process according to claim 8, further comprising
executing one translated instruction and ending the execut-
ing by performing a jump to an address of a next instruction
belonging to the first set of instructions.

10. The process according to claim 9, wherein emulating
the program counter of the pipelined scalar processor
includes using a counter register, incrementing said counter
register so that each instruction that accesses said counter
register during the execution step will have a behavior that
is coherent with the program counter on the pipelined scalar
processor, and decrementing said counter register for point-
ing to the next instruction belonging to the first set of
instructions.

11. The process according to claim 10, wherein said
counter register is incremented by a value eight and decre-
mented subsequently by a value four.

12. The process according to claim 11, wherein, for
instructions belonging to the first set of instructions that
have the program counter of the VLIW processor as a
destination, a pointing to the next instruction belonging to
the first set of instructions is obtained by loading into a link
register of the VLIW processor an updated value of the
counter register and by making an unconditioned GOTO
link jump.

13. The process according claim 1 wherein adding func-
tional units includes adding a translation device external to
said core of the VLIW processor, said translation device
intercepting accesses to a storage area reserved to the first set
of instructions, the process further comprising allowing a
program counter of the VLIW processor to evolve freely in
the absence of jumps.

14. The process according to claim 13, wherein said
translation device is designed to execute operations of
intercepting accesses to the storage area reserved to the first
set of instructions and controlling a set of pointer registers
for deciding whether to execute subsequent instructions as
instructions of the second set of instructions or as instruc-
tions of the first set of instructions.

15. The process according to claim 14, wherein said
translation device is inactive until the core of the VLIW
processor executes instructions belonging to said second set
of instructions and refers an accesses-to-memory to an
instruction cache memory, and said translation device is
activated when there is an access to the storage area reserved
to the first set of instructions.

16. The process according to claim 15, wherein when said
translation device is activated, the translation device loads
into a selected one of its internal registers belonging to the
set of pointer registers an address which is accessed and
carries out reading of a corresponding instruction from the
storage area.

US 7,243,213 B2

41

17. The process according to claim 16, further comprising
the operations of: translating said corresponding instruction
read from the storage area and storing said corresponding
instruction;

allocating an execution window, to which are referred all

accesses to memory addresses that start from a current
value of the program counter of the VLIW processor
and cover an area equal to one occupied by the trans-
lation;

reading, using the core of the VLIW processor, a first

instruction of the translation from the storage area
reserved to the first set of instructions in the translation
device;
incrementing a selected register by a value four, to point
to the next instruction of the first set of instructions; and

closing said execution window after reading a last instruc-
tion of the translation, and, if at a next access to
memory the selected register points outside the storage
area reserved to the first set of instructions, deactivating
the translation device.

18. The process according to claim 17, further compris-
ing, in the presence of jumps in a program consisting of
instructions of the first set of instructions, rewriting said
selected register by a store-word operation contained in the
translation of an instruction of the first set of instructions
into instructions of the second set of instructions.

19. The process according to claim 1 wherein the opera-
tion of translation on the VLIW processor starts with veri-
fication of an execution condition, which includes evaluat-
ing one or more flags present in a status register.

20. A translator device for translating instructions belong-
ing to a first instruction set that are pipelined scalar proces-
sor instructions into instructions belonging to a second
instruction set that are VLIW processor instructions for
execution on a VLIW processor that includes a core, said
translation device comprising

a translation subsystem designed to receive at input a

instruction of the first instruction set and supply at
output a translation including one or more instructions
of the second instruction set;

atranslation memory coupled to the translation subsystem

and structured to store said translation; and

a control device for taking said translation from said

translation memory and supplying it to the core of said
VLIW processor, wherein the device is connected
between the core of said VLIW processor and an
instruction-cache memory of said VLIW processor,
which operates on a first memory containing instruc-
tions of the first instruction set and a second memory
containing instructions of the second instruction set,
and wherein the control device intercepts accesses of
the core of the VLLIW processor to said first and second
memories.

21. The device according to claim 20, wherein said
translation subsystem operates based on a code table stored
in said translation memory.

22. The device according to claim 20, further comprising
a set of pointer registers at least in part designed for
controlling access to said memories.

23. A computer-readable medium having contents that,
when loaded into a computer, cause the computer to perform
a process for translating instructions belonging to a first set
of instructions that are pipelined scalar processor instruc-
tions into instructions belonging to a second set of instruc-
tions that are VLIW processor instructions for execution on
a VLIW processor that includes a core, said process com-
prising the following operations:

20

25

30

35

40

45

50

55

60

65

42

providing a first set of registers corresponding to the

instructions of said first set of instructions;

providing a second set of registers corresponding to the

instructions of said second set of instructions;
mapping each register of said first set of registers in a
corresponding register of said second set of registers
designed to emulate the behavior of the register of said
first set of registers, performing a unique independent
translation of the non-native instructions of said first set
of instructions into said second set of instructions;

said operations of providing a second set of registers and
of mapping being obtained by adding functional units
to the VLIW processor and keeping said core unaltered;
and

performing said translation in the absence of direct access

to resources of said core.

24. The process according to claim 23, wherein emulating
a program counter of the pipelined scalar processor includes
using a counter register, incrementing said counter register
so that each instruction that accesses said counter register
during the execution step will have a behavior that is
coherent with a program counter on a pipelined scalar
processor, and decrementing said counter register for point-
ing to the next instruction belonging to the first set of
instructions.

25. The process according to claim 24, wherein said
counter register is incremented by a value eight and decre-
mented subsequently by a value four.

26. The process according to claim 16, further comprising
the operations of: translating said corresponding instruction
read from the storage area and storing said corresponding
instruction;

allocating an execution window, to which are referred all

accesses to memory addresses that start from a current
value of the program counter of the VLIW processor
and cover an area equal to one occupied by the trans-
lation;

reading, using the core of the VLIW processor, a first

instruction of the translation from the storage area
reserved to the first set of instructions in the translation
device;

incrementing a selected register by a number equal to a

length in bytes of each instruction of the first set of
instructions; and

closing said execution window after reading a last instruc-

tion of the translation, and, if at a next access to
memory the selected register points outside the storage
area reserved to the first set of instructions, deactivate
the translation device.

27. A process for translating instructions belonging to a
first set of instructions that are pipelined scalar processor
instructions into instructions belonging to a second set of
instructions that are VLIW processor instructions for execu-
tion on a VLIW processor that includes a core, said process
comprising the following operations:

providing a first set of registers corresponding to the

instructions of said first set of instructions;

providing a second set of registers corresponding to the

instructions of said second set of instructions;

mapping each register of said first set of registers in a

corresponding register of said second set of registers
designed to emulate the behavior of the register of said
first set of registers, performing a unique independent
translation of the instructions of said first set of instruc-
tions into said second set of instructions;

US 7,243,213 B2

43

said operations of providing the second set of registers
and of mapping being obtained by adding functional
units to VLIW processor and keeping said core unal-
tered; and

performing said translation in the absence of direct access
to resources of said core;

wherein adding functional units includes adding a trans-
lation device external to said core of the VLIW pro-
cessor, said translation device intercepting accesses to
a storage area reserved to the first set of instructions,
the process further comprising allowing a program
counter of the VLIW processor to evolve freely in the
absence of jumps;

translating said corresponding instruction read from the
storage area and storing said corresponding instruction;

allocating an execution window, to which are referred all
accesses to memory addresses that start from a current
value of the program counter of the VLIW processor
and cover an area equal to one occupied by the trans-
lation;

reading, using the core of the VLIW processor, a first
instruction of the translation from the storage area
reserved to the first set of instructions in the translation
device;

incrementing a selected register by a number equal to a
length in bytes of each instruction of the first set of
instructions; and

5

20

25

44

closing said execution window after reading a last instruc-
tion of the translation, and, if at a next access to
memory the selected register points outside the storage
area reserved to the first set of instructions, deactivate
the translation device.

28. The process according to claim 27, further compris-
ing, in the presence of jumps in a program consisting of
instructions of the first set of instructions, rewriting said
selected register by a store-word operation contained in the
translation of an instruction of the first set of instructions
into instructions of the second set of instructions.

29. The process according to claim 27, wherein said
translation device is designed to execute operations of
intercepting accesses to the storage area reserved to the first
set of instructions and controlling a set of pointer registers
for deciding whether to execute subsequent instructions as
instructions of the second set of instructions or as instruc-
tions of the first set of instructions.

30. The process according to claim 29, wherein said
translation device is inactive until the core of the VLIW
processor executes instructions belonging to said second set
of instructions and refers an accesses-to-memory to an
instruction cache memory, and said translation device is
activated when there is an access to the storage area reserved
to the first set of instructions.

