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ABSTRACT
Object-oriented modelling languages allow to build models
of large, loosely coupled systems, as well as of multi-domain
systems with fast and slow sub-systems easily. State-of-the-
art simulation tools employ sophisticated techniques to effi-
ciently turn the system DAEs into ODEs, but then rely on
standard single-rate algorithms for the simulation of ODEs.
These algorithms perform very poorly in the two above-
mentioned classes of systems as their size grows, up to the
point of making their simulation practically unfeasible. The
goal of this paper is to introduce multi-rate algorithms with
error control to the EOOLT community, showing through an
exemplary case study the potential they have for the simu-
lation of such large-scale systems.

Keywords
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Problems; G.4 [Mathematical Software]: Algorithm De-
sign and Analysis

1. INTRODUCTION AND MOTIVATION
Equation-based, object-oriented (O-O) languages and tools

have now become well-established for system-level modelling
of engineering systems, in particular for those spanning mul-
tiple physical domains. Sophisticated symbolic and numer-
ical methods (see, e.g., [3] for a review) are used in object-
oriented simulation tools to transform the large, possibly
high-index systems of Differential Algebraic Equations (DAEs)
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into state-space form:

y′ = f(t,y), y(t0) = y0

v = g(t,y)

where y is the state variable vector and v the algebraic vari-
able vector. The last step in the simulation is to numerically
integrate the ODEs for which there are well-established,
general-purpose ordinary differential equation (ODE) solvers
(e.g., DASSL [2] or the Sundials suite [6]).

The standard ODE solvers have advanced features such as
adaptive step-size and adaptive order for error control. All of
them are, however, single-rate algorithms: the solution y(t)
is computed at certain time steps tk, and in order to do that
the entire vector function f(t,y) is evaluated once at every
time step and possibly at other intermediate points. There
are two classes of systems where this approach becomes pro-
hibitively expensive in terms of computational load as the
size and complexity of the system model grows.

The first class is given by models of distributed systems
having a large number of sub-units, interacting with each
other through a network connection. When some kind of
local activity is triggered on a single sub-unit, shorter time
steps are required in order to keep the integration errors
within the specified bounds; however, this local activity does
not significantly affect other distant sub-units. Therefore,
computing the derivatives for the entire system is unneces-
sarily wasteful, when only those belonging to the sub-unit
in question are changing significantly. Notable examples in
this class are models of smart grids, district heating net-
works, power transmission systems, etc.

The second class is given by models of multi-domain sys-
tems, where a slower sub-system interacts with a faster sub-
system. Single-rate algorithms will choose a short system-
wide time-step, due to the faster sub-system. Most of the
computation will be unnecessary in this case, because the
states of the slower sub-system will hardly change over these
steps. A notable example is the model of a thermal power
generation plant, with a slow (and computationally inten-
sive) model of boiler and turbine coupled to a fast, but
lighter, model of the electrical generation and trasmission
equipment.

Due to this limitation, state-of-the-art O-O solvers scale
up badly in terms of computation times, making simulations
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infeasible for larger models. To overcome this limitation,
fixed time step multirate algorithms are often used for real-
time simulation, using co-simulation schemes, see, e.g., [13].
However, the partitioning of the system and the choice of
the time steps is entirely up to the modeller, there is no
guaranteed error bound, and numerical instabilities might
occur. In the spirit of declarative modelling and simulation,
the goal of this research is to look for multi-rate integration
methods that do not require intervention by the modeller,
but yet guarantee rigorous error bound.

The main idea behind multi-rate integration algorithms is
to integrate different components with different time-steps,
depending on their individual dynamical properties. The
faster components are integrated with smaller time-steps
than the slower ones. Coupling between fast and slow com-
ponents is taken care of by interpolation or extrapolation.
In this way, the number of evaluations of derivatives f(t,y)
for the slower components is greatly reduced. The idea was
first introduced in 1960 [10]. Several others, based on differ-
ent types of methods, have been subsequently introduced[4,
5, 8, 12]. Some theoretical analysis of stability issues exists
[1, 7, 11], though only for a restricted class of problems.

The contribution of this paper is to introduce multi-rate
algorithms to the EOOLT community, demonstrate their po-
tential on a simple case study, and motivate further research
on the topic. The paper is structured as follows: in the next
section, the general multirate method is reviewed. Section
3 introduces the model which is used as a test case. Results
are discussed in Section 4, which is followed by conclusions
and proposal for future research in Section 5.

2. THE MULTI-RATE ALGORITHM
This section is organised as follows: (2.1) gives a general

introduction to multirate methods and (2.2) describes the
self-adjusting multirate scheme we have used.

2.1 Introduction
Consider the initial value problem

y′ = f(t,y), y(t0) = y0

where y ∈ Rn. We require f to be continuous and satisfy
the Lipschitz condition w.r.t y for the entire region R× Rn

In a general multi-rate scheme, one considers a partitioned
system consisting of ya-the active components, and yl-the
latent ones

ya
′ = fa(t,ya,yl)

yl
′ = fl(t,ya,yl)

where ya ∈ Rna , yl ∈ Rnl and na + nl = n.
The partitioned system is then integrated with a smaller

time-step ha for the active part and a larger time-step hl for
the latent part. Coupling between the two sets of compo-
nents is taken care of by interpolation/extrapolation.

If the dynamical properties of the system are well known,
then the system can be partitioned a priori. However, such
information is not always available. Moreover the system
may be such that components go from being active to latent,
and vice-versa, during the course of a simulation. Therefore,
methods with an automatic mechanism to partition the sys-
tem would be desirable.

2.2 A Self-adjusting multirate scheme

Self-adjusting multi-rate integration schemes partition the
system based on the local truncation error estimates. Nu-
merical schemes which have lower order methods embed-
ded in them are the ideal choice as a basis for a multi-rate
scheme. The error estimate can be computed without addi-
tional cost by comparing the lower order method with the
higher order one.

A tentative solution for the so-called global time-step tn−1

to tn, is computed. Components with error exceeding the
tolerance are classified as active. The active components
are ‘refined’ using two steps of size ∆tn

2
, using interpolated

values for the so-called latent components. There may be
components which still have error. The refinement step is
repeated, using interpolation for the components which are
not recomputed but needed for the refinement. This can be
implemented efficiently as a recursive algorithm.

For this study, we have used the recursive multirate Rosen-
brock 2nd order scheme proposed in [12]. The Rosenbrock
2nd order numerical method is given by

yn = yn−1 +
3

2
k1 +

1

2
k2

(I − γhJ)k1 = hf(tn−1, yn−1) + γh2ft(tn−1, yn−1)

(I − γhJ)k2 = hf(tn−1, yn−1 + k1)− γh2ft(tn−1, yn−1)− 2k1

where J is the Jacobian and γ is a parameter of the method.
This method has the embedded first-order method

ȳn = yn−1 + k1,

which is used to estimate the error. This error estimator is
then used to partition the system at the end of each global
step.

3. A TEST CASE
The test problem we consider is a simplified, lumped-

parameter model of a heating system with a central heater
supplying heat to several users through a distribution net-
work. The temperature of the distribution network is con-
trolled using P control and that of each user by an on-off
controller.

The system is oversimplified and we do not suggest that
it has any practical application in the design or analysis of a
heating system. However, the resulting system of equations
is very stiff and has localised activity. Thus, it is a good test
problem to study the applicability of multirate methods to
the first class of problems described in the introduction.

The central heating unit consists of a source supplying
heat to the distribution network fluid, which is represented
by a single temperature and has a large heat capacity, thus
also acting as a buffer. A P temperature controller modu-
lates the heat source appropriately.

The model parameters are the maximum heat supply rate
Qmax, the proportional gain of the controller Kp. The heat
supply rate Q of the heater can vary between 0 and Qmax.
This is modeled by a smooth saturation function, to ensure
that all functions are continuously differentiable and thus
the (local) existence of solutions can be guaranteed.

Qsat =
Qmax

2
· tanh(

2Q

Qmax
− 1) +

Qmax
2

(2)

The model for each user consists of heated unit which has
an on-off controller with hysteresis, which provides very fast
localized action. The model parameters are the temperature
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set point TSP , the hysteresis width of the controller Tε, the
heat conductance of the units Gh, the heat conductance of
the heated units to the atmosphere Gu, and the heat ca-
pacity of the heated unit C. The model variables are the
temperature T and the state of the on-off controller x.

The heater tries to maintain the temperature close to a
set-point TSP . The on-off controller is modelled by a smooth
nonlinear system:

ẋ = −50 ·
(

(x− 0.5) · (x+ 0.5) · x
0.0474

· Tε
)

+ (TSP − T ) (3)

which shows on-off behaviour due to a bifurcation triggered
by T : as T rises above or falls below TSP , x very rapidly goes
to the corresponding equilibrium point. With appropriate
tuning, the system behaves like an on-off controller w.r.t
the controlled variable, though the mathematical model is
continuously differentiable and needs no event handling.

The controller equations are very stiff and very nonlinear.
On the one hand, this helps testing the proposed integration
algorithm with a stiff problem, as it is often the case with
O-O models. On the other hand, accurately describing the
local fast (but continuous) transition between the on and
the off state requires a lot of time steps, making multi rate-
algorithms particularly attractive.

Each heated unit receives heat from the distribution net-
work. The ambient temperature T0 varies sinusoidally with
a period of 86,400 seconds which corresponds to the diurnal
temperature variation. The heat received from the network
is being regulated by the on-off controller by changing the
thermal conductance to the heat source via a nonlinear func-
tion f(x), to closely resemble on-off operation. The energy
balance of this model can be written as

C · Ṫ = Gh · (Td − T ) · f(x)−Gu · (T − T0) (4)

The heat capacities of the units are set to only slightly
differ from each other, so that the period between the on-off
transitions of the different units are not the same. In this
way, local activity in each unit will take place at different
points in time, to the advantage of the multi-rate algorithm.

As to the distribution network, we assume that its average
temperature is governed by

Cd · Ṫd = Qheater +

N∑
i

Qi, (5)

where N is the number of users connected to the network.
The heat capacity Cd is taken very large in comparison to
the heat capacity of an individual unit and scaled up pro-
portionally to N .

3.1 Explicit ODE form of the system
The above subsections described the salient features of

the models in a declarative way. In this subsection we show
the actual explicit ODEs that describe the system dynam-
ics. For N number of users there are 2 ×N + 1 differential
variables viz. the temperature of the distribution network
fluid, the temperatures of the N units and the states of the

N on-off controllers. The equations that arise are

Ṫd =
1

Cd

{
tanh

(
2
Kp(Td0 − Td)

Qmax
− 1

)
· Qmax

2
+
Qmax

2

+

N∑
i=1

Gh(Td − Ti)
(

1

2
tanh (2xi − 1) +

1

2

)}

Ṫi =
1

Ci

{
Gh(Td − Ti)

(
1

2
tanh (2xi − 1) +

1

2

)
−Gui

(
Ti −

(
278.15 + 8sin

(
2πt

86400

)))}

ẋi =− 50 ·
(

(x− 0.5) · (x+ 0.5) · xi
0.0474

· Tε
)

+ (TSP − Ti)

4. RESULTS AND DISCUSSION
The performance of the multi-rate method was compared

against that of the corresponding single-rate method for the
model described in section 3. The performance of the codes
with increasing system size is quantified by two parameters,
namely the number of individual derivative evaluations and
computational time. In all the runs the simulation parame-
ters were T = 5×104 and tol = 10−4. The obtained solutions
were verified by comparing them with those obtained using
standard solvers (DASSL in OpenModelica).

4.1 Number of individual derivative evalua-
tions

Figure 1 shows the number of evaluations of individual
components of the derivative vector by the multi-rate and
single-rate methods with varying system size. It can be seen
that the performance of the multi-rate method as regards
evaluation of the derivatives, scales up quadratically as op-
posed to the single-rate method which scales up cubically
with the system size. This could be particularly useful when
the evaluation of derivatives of the slow components is com-
putationally expensive, e.g., if it involves calculating fluid
properties with sophisticated models.

100 101 102 103
106

107

108

109

1010

System size

N
um

be
r o

f f
un

ct
io

n 
ev

al
ua

tio
ns

Number of function evaluations

 

 
Single−rate
Multi−rate

Figure 1: Number of function evaluations vs System
size
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4.2 CPU time
Figure 2 shows the CPU time taken by both methods for

systems of different sizes. In the multi-rate method, parti-
tioning of the system causes some overhead. For very small
systems, the time required to solve implicit systems of equa-
tions is not very significant, so the multi-rate is slower on
the whole. However, as the system size increases, the cost
to solve implicit systems of equations scales up in general as
O(N3). The multi-rate method outperforms the single-rate
counterpart because it has a much smaller implicit system
to solve. Again one can see a quadratic scaling for the multi-
rate and cubic for the single-rate.
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Figure 2: CPU time for simulation run with varying
system size

5. CONCLUSIONS AND FUTURE WORK
A multi-rate integration algorithm based on the 2nd order

Rosenbrock method was applied to the simulation of an ex-
emplary model of thermal distribution system, that can be
easily scaled up to arbitrarily large size. The system is char-
acterized by many sub-units with fast changes happening
locally at uncorrelated time instant, which are weakly cou-
pled by a thermal distribution network with a large inertia.
The results presented in the paper show very clearly that
multi-rate algorithms scale up much better than single-rate
ones, overcoming any overhead for large enough sizes. It is
possible to conclude that this kind of algorithms have a huge
potential for the simulation of large, distributed systems de-
scribed by EOOOLs, and this motivates further research in
this direction.

It would be interesting to study the behavior of other
multi-rate methods on this as well as other test problems.
The multi-rate method used here has a self-adjusting mech-
anism based on the error estimates. Other ways of dynam-
ically partitioning the system, similar to cycle analysis and
dynamic decoupling [9] are being studied.

In this paper, the model, which contains no algebraic
loops, was turned into explicit ODE form manually. The
next interesting question to be addressed is then how to effi-
ciently compute the required sub-sets of the derivative vec-
tor, from the original DAE formulation of an O-O model.
Other questions to be addressed in the future regarding
multi-rate algorithms applied to O-O models involve the

handling of events, the efficient computation of Jacobians
and the possible parallelization of the integration algorithm.
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