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Statistical fluctuations in HfOx resistive-switching
memory (RRAM): Part I - Set/Reset variability
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Abstract—Resistive switching memory (RRAM) relies on the
voltage-driven formation/disruption of a conductive filament (CF)
across a thin insulating layer. Due to the 1D structure of the CF
and the discrete nature of defects, the set and reset states of
the memory device generally display statistical variability from
cycle to cycle. For projecting cell downscaling and designing
improved programming operations, the variability as a function
of the operation parameters, such as the maximum current in the
set process and the maximum voltage in the reset process, need
to be evaluated and understood. This work addresses set/reset
variability, presenting statistical data for HfO x-based RRAM and
introducing a physics-based Monte Carlo model for switching
statistics. The model can predict the distribution of the set state
as a function of the compliance (maximum) current during set
and the distribution of the reset state as a function of the stop
(maximum) voltage during reset. Numerical modeling results
are finally presented to provide additional insight into discrete
fluctuation events.

Keywords: resistive switching memory (RRAM), noise fluctu-
ations, random telegraph noise.

I. I NTRODUCTION

The resistive switching memory (RRAM) is a two-terminal
resistive memory, where different resistance states can be
achieved by the formation and the disconnection of a con-
ductive filament (CF) through an insulating layer, typically a
transition metal oxide [1]. RRAM shows fast switching [2]
and low power consumption, thanks to the ability to control
the size of the CF through the compliance currentIC during
the set operation [3], [4]. As the CF approaches the few-
atom size, however, RRAM becomes vulnerable to variability
and fluctuation effects, such as the switching statistics [5]–
[10] and noise [11]–[14]. Given the relatively small resistance
window of oxide-based RRAM, read/program fluctuations
can significantly affect the scalability and the low-current
operation [15]. To assess the scalability of RRAM and to
introduce adequate programming algorithms with controlled
variability, the switching statistics must be understood through
experiments and physics-based models.

This work addresses statistical variability of set and reset
operations in oxide-based bipolar RRAM [16]. First, an an-
alytical model for set and reset processes is proposed, based
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Fig. 1. MeasuredI-V curves for IC = 8 µA (a) and 80µA (b). In
both figures, a typicalI-V curve (thick line) and repeated measurements
on different cycles (thin line) are shown to highlight the variability of the
switching parameters. The set voltageVset, the reset voltageVreset, the
reset currentIreset and the stop voltageVstop are also shown.

on previous simulation results by a numerical model of ion
migration by thermally-activated drift and diffusion [17]. A
Monte Carlo model for stochastic set/reset processes is then
developed by extending the analytical switching model to a
distribution of energy barriers for ion migration. The model
is applied to study the dependence of the set state distribution
on the compliance currentIC , namely the maximum current
during set operation, controlling the size of the CF. It is
found that the relative spread of set state parameters, such
as the resistance, increases for decreasingIC , due to the
discrete migration events controlling CF connection [7,15].
The statistical variability of the reset state is then addressed,
discussing the dependence onIC and on the maximum voltage
Vstop along the reset sweep. A preliminary study on variability
modeling was previously reported in [16]. In this work, we
extend the analysis of [16] by reporting the variability of
reset parameters,i.e., reset voltage and current, the reset-state
variability as a function ofIC and a numerical model for
reset variability through a new energy landscape approach.
The statistical model for read noise, namely random telegraph
noise (RTN), will be addressed in the companion paper [18].

II. EXPERIMENTAL SAMPLES AND CHARACTERISTICS

Experiments were performed on RRAM devices in series
with a MOS transistor to accurately control the maximum cur-
rent flowing in the device and the resistance in the set state [3],
[4]. The RRAM device consists of a HfO2 layer sandwiched
between two TiN electrodes. A Ti cap was interposed between
the top TiN electrode and HfO2 to getter oxygen and form a
local substoichiometric HfOx (x < 2) layer close to the top
electrode. The HfO2 layer had a thickness of 10 nm and was
amorphous after deposition. The Ti cap thickness was 15 nm.
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Fig. 2. Contour plots of the calculated defect concentration for a reset transition (a, b, c) and a set transition (d, e, f). The defect concentration was calculated
by a numerical model for set/reset processes due to ion migration. The gap length∆ increases during the reset transition, while the CF diameterφ in the
gap region increases during set transition.

Fig. 1 shows typical current-voltage (I-V ) characteristics
obtained at different cycles with compliance currentIC = 8µA
(a) andIC = 80µA (b). The voltage drop across the MOSFET
was subtracted to provide the switching characteristics ofthe
device only. The set transition takes place at a positive voltage
Vset, while the onset of the reset transition can be seen at a
negative voltageVreset and currentIreset, as indicated in Fig.
1b. The negative sweep is generally completed at a negative
voltageVstop, which is necessary to achieve the high resistance
of the reset state [3], [19], [20]. The current complianceIC
controls the resistanceR in the set state andIreset, thus plays
an essential role in limiting the power consumption in the
memory cell [2], [3], [21]. TheI-V characteristics show a
variability from cycle to cycle, which increases for decreasing
IC .

III. A NALYTICAL SET /RESET MODEL

The set and reset transitions can be described as the change
of shape and size of the CF resulting from the migration of
ionized defects, such as oxygen vacancies and excess metal
atoms. A numerical model based on temperature- and field-
accelerated ionic drift-diffusion was recently reported [17].
Fig. 2 shows numerical simulation results for the contour
plot of the defect density during reset transition (a, b, c)
and set transition (d, e, f). Simulation results were obtained
assuming a thickness of 20 nm for the HfOx switching layer
and a CF diameter around 5 nm. Starting from a continuous
conductive filament (Fig. 2a), the reset transition resultsin the
gradual opening of a depleted gap due to the ion migration
toward the negatively-biased top electrode (Fig. 2b and c).
The depleted gap has a high resistivity, therefore can account
for the resistance increase during reset.

To analytically describe the reset transition, the growth rate
of the gap length∆ can be written as:

d∆

dt
= Ae−

EA−αqV

kT , (1)

where A is a pre-exponential coefficient [ms−1], EA is
the energy barrier for ion migration,α is a barrier lowering
coefficient, V is the voltage drop across the gap,k is the
Boltzmann constant andT is the local temperature at the
injecting edgez1 (see Fig. 2c). Eq. (1) relies on reset transition
being controlled by ion hopping which is a thermally activated
process with energy barrierEA [22], [23]. The latter might
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Fig. 3. CalculatedI-V curves obtained by the analytical model (thick line)
and repeatedI-V curves obtained by the Monte Carlo variability model (thin
line) for IC = 8µA (a) and 80µA (b). The statistical fluctuation of resistance,
switching current and switching voltage increases for decreasingIC .
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Fig. 4. Average of measured and calculated set state resistanceR (a), reset
current Ireset (b) and reset voltageVreset (c) as a function ofIC . The
absolute values of current and voltage are reported. The average values were
obtained over 50 cycles at eachIC . Resistance (a) andVreset (b) are corrected
by the voltage drop across the select MOSFET in the 1T1R structure. Data
for HfOx RRAM samples from [24] are also reported for comparison.

also include the energy barrier for defect ionization, which is
necessary for migration since only ionized defects can respond
to the electric field. It is thus assumed that the gap depletion
rate increases proportional to the defect migration velocity,
described by the Arrhenius law in Eq. (1).

Starting from the reset state in Fig. 2d (same as the final
state in Fig. 2c), the set transition causes defect migration
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toward the bottom electrode as a result of the positive voltage
applied to the top electrode. Defects are therefore injected
into the gap leading to an increase of defect concentration
which appears as an increase of CF diameterφ within the gap
region (Fig. 2e and f). Defect migration is sustained by the
CF reservoir at the top electrode side. Similar to Eq. (1), we
can therefore describe the diameter growth rate by:

dφ

dt
= Ae−

EA−αqV

kT , (2)

where the same parameters as in Eq. (1) were used, except
for T which is now evaluated at the injecting top boundary
at z2. The same coefficientA as Eq. (1) was used in Eq.
(2) for simplicity. Note that, in our model, migration mostly
takes place between top/bottom reservoir of defects and the
gap region, with no interaction with the electrodes. This
approximation might be acceptable, given the low temperature
and low electric field at the electrodes, compared to the active
part of the CF in the gap or bottleneck region. In the analytical
model we also neglected the radial diffusion of ions, drivenby
the defect concentration gradient, in favor of vertical migration
driven by the field. This might be understood by the barrier
lowering along the field direction [25], which makes field-
driven migration the dominant microscopic process during
bipolar switching.

The resistanceR of the device was calculated as the series
of three CF regions, namely (i) a stub at the top-electrode
side, (ii) a gap region and (iii) a stub at the bottom electrode
side. The two stubs were assumed to have a fixed diameter,
dictated byIC during the forming operation. The gap region
was assumed to have length∆, dictated by the reset operation,
and a filament diameterφ, dictated by the set operation. This
allowed for the calculation of the CF resistance during any
set/reset process. The I-V curves were calculated by simulating
a voltage increase with ramp rate dV/dt = 1 Vs−1 applied to
the device and calculating the consequent change of resistance
through Eqs. (1) and (2). Fig. 3 shows theI-V characteristics,
thick line, obtained by the analytical model forIC = 8 µA (a)
and IC = 80 µA (b). In the model,IC controls the set state
R andIreset, similar to experimental results in Fig. 1. This is
further confirmed in Fig. 4, showing measured and calculated
R for the set state (a),Ireset (b) andVreset (c) as a function of
IC . The reset voltage was extracted in correspondence of the
maximum currentIreset along the negative voltage sweep, in
both experiments and calculations. Experimental results were
obtained as the median value over a statistics of 50 cycles
for the same RRAM device. Data for HfOx RRAM samples
from [24] are also reported for comparison. Calculations were
obtained forEA = 1.2 eV, α = 0.05 andA = 300 ms−1.
The resistance decreases at increasingIC as a result of the
larger diameterφ achieved during set transition [25]. The
product ofR and IC is approximately constant and equal to
VC ≈ 0.5 V, which describes the voltage needed to activate ion
migration in the timescale of the experiment (about 1 s in this
work) [25]. In fact, the voltage across the device decreases
due to CF growth at a constantIC , therefore the growth
process stops when the voltage equals the critical valueVC for
ion migration. The reset currentIreset increases according to

Fig. 5. Schematic illustration of the discrete defect migration in the Monte
Carlo model for variability. Set transition is described as the migration of
discrete defects, resulting in the CF diameter growth (a) while reset transition
is described as the migration of discrete defects, resultingin the gap length
increase (b). Energy barriers for the injection of individual defects, or defect
clusters, are randomly extracted within a uniform distribution between 0.7 eV
and 1.7 eV (c).

Ireset ≈ IC in Fig. 4b, whileVreset is approximately constant
in Fig. 4c [26]. Calculated results from the analytical model
show good agreement with data, supporting our analytical
model for set/reset processes.

IV. M ONTE CARLO MODEL

To account for switching variability in Fig. 1, random migra-
tion of discrete defects was introduced in the analytical model
by a Monte Carlo approach. Fig. 5 shows a schematic for
the discrete migration of ionized defects during set transition
(a) and reset transition (b). In the Monte Carlo model, each
defect (or defect cluster) has a characteristic energy barrier
EA describing its hopping mobility. The CF or gap growths
therefore follow a sequence of discrete defect events, each
characterized by a random value ofEA and a corresponding
migration rate. The energy barrier was randomly generated
from a uniform distribution between 0.7 and 1.7 eV, which
is centered around the average value of 1.2 eV used in the
calculations of Figs. 3 and 4. A uniform distribution was
used instead of a normal distribution, since it allows for
better agreement with statistical variability data. The random
EA was used in the continuous Eqs. (1) and (2), where the
stochastic migration time of each individual defect for a given
EA was neglected compared to the large variability of time
deriving from the spread ofEA in Fig. 5c. The randomEA

allows to describe the structural change of the HfOx material
in the gap region, due to change of the composition profile
resulting from the growth of the CF during set transition and
the growth of a depleted gap during reset transition. As a
result, the structure of the migration channel changes with
time during the transition, resulting in a random change of
the energy barrier for defect migration. A constant volume of
0.6 nm3, corresponding to about 13 point defects in HfOx, was
attributed to each defect cluster with a certain value ofEA.
The value ofEA was updated by a new random generation as
the migration of a whole cluster of 13 defects was completed
according to (1) or (2). As an example, Fig. 5c shows the
randomly generatedEA for 11 groups of defects during a set
transition calculated by the Monte Carlo model.
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Fig. 6. Distributions ofEA for three set/reset cycles and the corresponding
gaussian fits obtained from the Monte Carlo model forIC = 8 µA (a) and
80 µA (b). Both the average valueµEA

and the standard deviationσEA

display more fluctuation from cycle to cycle in the case ofIC = 8 µA, as
summarized byµEA

(c) andσEA
(d) as a function ofIC .

V. SIMULATION RESULTS

Fig. 3 shows typicalI-V characteristics (thin line), obtained
by the Monte Carlo model forIC = 8 µA (a) andIC = 80µA
(b). Random migration events appear as step changes of resis-
tance during both set and reset transitions. Most importantly,
random defect migration induces cycle-to-cycle variations of
switching parameters, such asR of the set and reset states,
Vset, Vreset and Ireset, similar to the experimental charac-
teristics in Fig. 1. The switching variability is significantly
higher for IC = 8 µA as compared toIC = 80 µA, similar
to the experimental data in Fig. 1. The enhanced statistical
fluctuation at decreasingIC is explained in Fig. 6, showing
the histograms of the generatedEA associated to each defect
cluster contributing to set/reset processes along 3I-V cycles
at IC = 8 µA (a) andIC = 80 µA (b). The gaussian fitting
curve is also shown for each histogram: the average value
µEA

and the standard deviationσEA
of the EA distribution

change from cycle to cycle forIC = 8 µA in Fig. 6a, as a
result of the small number of injection events. On the other
hand, the Gaussian distributions are highly stable in terms
of µEA

and σEA
for IC = 80 µA in Fig. 6b, thanks to the

large number of defects involved in the set/reset transitions.
To further highlight the dependence onIC , Fig. 6 also shows
µEA

(c) andσEA
(d) of individual I-V curves as a function

of IC . As IC increases, the distributions of bothµEA
and

σEA
become narrower, indicating the decrease of the cycle-to-

cycle variations for increasing size of the CF. Clearly, thelarge
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Fig. 7. Relative spread of set state resistanceσR/µR (a), relative spread
of Ireset (b) and standard deviation ofVreset (c) as a function ofIC , from
both data and calculations. Data were collected from a statistics of 50 cycles
for a single 1T1R structure. Data for HfOx RRAM samples from [24] are
also reported for comparison.

fluctuation ofEA at smallIC clearly results in the enhanced
switching variability in Fig. 3a.

A. Set state variability as a function of IC

To highlight the IC-dependence of switching variability,
Fig. 7a shows the relative spread ofR for the set state as a
function ofIC . The relative spread was evaluated for both data
and calculations as the ratio between the standard deviation
σR and the median valueµR of the distribution ofR over
50 cycles on the same device. Both data and calculations
show a decrease ofσR/µR for increasingIC , due to the
averaging effect of discrete ion migration in large CFs. Similar
behaviors are found for the relative spread of the reset current
σIreset/µIreset in Fig. 7b and for the standard deviationσVreset

of the reset voltage in Fig. 7c. The calculated relative spread
of the resistance in Fig. 7a shows a slope of -0.5, which is
consistent with the Poisson statistics that controls the number
of defects in the CF after set transition [7]. However, the
experimental data show a larger slope of about -1, which
can be interpreted by the additional contribution of random
position of defects, as schematically shown in Fig. 8. In fact,
our model only accounts for the variable number of injected
defects as a result of the randomEA, while defect position
within the gap region is not considered. Fig. 8 schematically
shows a CF with only 4 defects A, B, C, D in the gap region.
The position of these defects is randomly changed from cycle
to cycle, e.g., the defects can be located at the top electrode
side (a), at the bottom electrode side (b) or evenly distributed
(c). Depending on the local defect arrangement, different band
structures and transport properties are obtained, thus resulting
in different values of the set stateR. This additional variability
source might account for the slope in Fig. 7a being higher than
the theoretical value of 0.5 at least in the range of relatively
low IC . More studies are needed to clarify the relatively high
slope ofσR/R also in the highIC regime.
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Fig. 8. Schematic picture of the fluctuation of the defect position in small
CF, possibly contributing to theIC -dependent variability in Fig. 7. The CF
is assumed to consist of only four defects A, B, C and D in the gapregion.
For instance, defects can be located at the top side of the gap(a), at the
bottom side of the gap (b) or be uniformly distributed (c), thus impacting the
measured resistance for the same nominal size of the CF.
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B. Reset state variability as a function of IC

Fig. 9 shows the measuredσR as a function ofµR, for
set and reset states. Data were collected from the switching
statistics over 50 cycles, where different values ofR in the
set and reset states were obtained by changingIC . The curve
shows a universal behavior with a slope of 1.5 for reset states
and a higher slope around 2 for set states. The slope of
1.5 for the reset state is consistent with Poisson statistics,
as can be analytically described in the following. Poole-
Frenkel (PF) current in the reset state is proportional to the
density of localized states which act as centers for thermally-
activated emission of carriers. Assuming that injected defects
all contribute to PF current, the reset-state resistanceR can
thus be written as:

R = B
e

EC
kT

ACFnD

= Be
EC
kT

∆

ND

, (3)

where B is a pre-exponential constant,ACF is the CF
cross section area,EC is the PF energy barrier controlling the
activation energy for conduction in the reset state,nD is the
defect density andND is the defect number in the gap region
of length∆, which controlsR in the reset state. SinceND is
affected by Poisson fluctuations with spreadσND

= N0.5
D , the
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stop ≈ Vreset,
the spread becomes large as a result of the reset variability.The distribution
finally tightens for highV ′

stop, reflecting the completion of the reset transition.

spread of the resistance can be obtained as [7]:

σR =
RσND

ND

∝ R1.5, (4)

The universal spread in Fig. 9 suggests that variability
steeply increases withR for both the set and reset state.
DecreasingIC causes a resistance increase of both set and
reset states, therefore reducingIC might result in a significant
degradation of resistance distribution.

C. Reset state variability as a function of Vstop

The reset stateR is not only controlled byIC , but also by
Vstop dictating the maximum voltage along the reset sweep.
Due to the gradual increase ofR along the reset transition,
Vstop must be maximized for a betterR window between
set and reset states. We have studied the impact ofVstop

on R variability by changingV ′

stop, namely the maximum
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voltage across the 1T1R device in the reset operation (V ′

stop

is slightly larger thanVstop in Fig. 1b due to the voltage drop
across the select MOSFET). For instance, Fig. 10a shows
the measured reset characteristics forV ′

stop = -1.25 V over
several cycles on the same device, which leads to the tight
distribution of R reported in Fig. 11a. ReducingV ′

stop to
-1 V in Fig. 10b changes the distribution quite negligibly,
however the resistance distribution significantly broadens for
V ′

stop = -0.7 V, as shown by theI-V curves in Fig. 10c
and by the cumulative distribution ofR at variableV ′

stop in
Fig. 11a. The variability increase is due toV ′

stop being located
in the transition region of theI-V curves, where discrete
migration events induce resistance changes. Due to the random
occurrence of the discrete reset events, the resistance achieved
at V ′

stop also changes significantly from cycle to cycle. In this
intermediate range ofV ′

stop, in fact, the reset process may
be almost complete in some case, whereas in other cases the
reset process is largely incomplete or still to be initiated. This
large statistical spread is due to the large range of energy
barriers in Fig. 5. Finally, for very lowV ′

stop = -0.5 V, the
reset transition has barely started in the device, therefore the
resistance is relatively low, close to the initial value forthe set
state, and its distribution is also relatively narrow.

The V ′

stop-dependentR and its corresponding fluctuation
were studied by the Monte Carlo model, as shown by sim-
ulation results for theR distributions in Fig. 11b. The dis-
tributions are relatively tight for the full reset state at high
V ′

stop, then a tail gradually appears and the overall distribution
increases its spread at decreasingV ′

stop. Finally, a narrow
R distribution is achieved again at lowV ′

stop, correspond-
ing to the set state. Fig. 12 summarizes the measured and
calculated medianR (a) and the relative spreadσR/R (b)
as a function ofV ′

stop. The medianR increases gradually
with V ′

stop, while the relative spread first steeply increases for
Vstop ≈ Vreset ≈ 0.5 V, then gradually decreases as the
distribution tightens again at highV ′

stop. The calculated results
agree well with the reported data, validating our Monte Carlo
model for variability prediction. These results suggest that a
relatively wide set/reset window can be achieved at highV ′

stop,
which is also beneficial to improve the distribution spread.On

Fig. 13. Calculated energy landscape for ion migration (a), map of calculated
defect concentration in the CF at bias points -0.4 V (A), -0.8V (B), -1.2 V
(C) for φ = 2 nm, calculatedI-V curve for the reset transition (c) and
corresponding measured curve for a comparableIreset = 50 µA (d).

the other hand, a highV ′

stop was shown to lead to a degradation
of both endurance [27] and retention [28], therefore a careful
tradeoff between high resistance window and reliability should
be considered for the choice ofV ′

stop in the reset operation.

VI. N UMERICAL MODEL

To gain a deeper insight into the reset mechanism, we
extended the ionic drift-diffusion numerical model [17] to
statistical switching fluctuations by a Monte Carlo approach.
In this model, the ionic drift-diffusion flux [cm−2s−1] is given
by:

~j = −D~∇nD +
qD

kT
~FnD, (5)

wherenD is the defects density [cm−3], q is the electron
charge and~F is the electric field. The ion diffusivityD
[cm2s−1] is modeled by the Arrhenius formula, namely:

D = D0e
−

EA
kT , (6)

whereD0 is a pre-exponential factor [cm2s−1]. To introduce
a statistical fluctuation from cycle to cycle in the model, a non-
uniform distribution ofEA was randomly generated within
the CF region by an energy landscape approach [29]. In this
approach,EA is assumed to randomly change with the position
in the CF region, therefore resulting in strong fluctuationsof
ionic conductivity which leads to percolation effects. Fig. 13a
shows the calculated map ofEA for a CF with diameterφ
= 2 nm. The local variation ofEA reflects the disordered
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Fig. 14. Same as Fig. 13, but forφ = 0.9 nm and for an experimental reset
current ofIreset = 10 µA.

structure and mechanical stress distribution in the gap region,
where structural defects, such as vacancies and dislocations,
can provide localized states and/or paths for ion hopping. Fig.
13b shows the evolution of the defect concentration during a
negative voltage sweep, while Fig. 13c shows the correspond-
ing I-V curve for the reset transition. The concentration is
mapped at three different states A, B and C, corresponding to
V = -0.4, -0.8 and -1.2 V. As ionized defects migrate toward
the negatively-biased top electrode, the gap length increases.
Due to the non-uniform distribution ofEA, migration takes
place over percolation paths with the lowestEA, resulting in
irregular boundaries of the depleted gap. Fig. 13d shows the
experimentalI-V curve for a similarIreset of about 50µA.
Note that the experimental current both displays increasing
and decreasing steps. This might be explained by the transfer
of defects from the bottom reservoir to the top reservoir, where
a defect stopping in an intermediate position within the gap
might temporarily increase the conductivity [17]. As the defect
completes the transition, the conductivity decreases again to
an even higher value according to the reset process.

To highlight the size dependence of switching fluctuations,
Fig. 14 shows simulation results for the energy landscape
(a), the defect concentration map (b), and the calculated reset
characteristic (c) for a CF diameter of 0.9 nm. Fig. 14d shows
the measuredI-V curve for a comparableIreset of about 10
µA. The smaller CF results in a smaller number of percolation
paths for defect migration, which makes discrete reset events
more visible in theI-V curve of Fig. 14c. Each discrete reset
event corresponds to the sudden increase of the gap length
as the driving forces for migration, namely electric field and

temperature, reach the value needed to induce migration over
a critical EA barrier in the energy landscape. A typicalI-
V curve in Fig. 14d also displays discrete reset events for
small IC , while discrete reset events are less visible in Fig.
13 due to averaging effects. These results also allow a physical
interpretation of the sudden switching events in the measured
I-V curves as due to sudden migration of defect clusters in
the non-uniformEA landscape.

VII. C ONCLUSIONS

The switching variability of HfOx-based RRAM devices has
been modeled by a Monte Carlo approach, which describes
the discrete injection of defects. The model can capture
the main trends of set and reset variability, including the
IC-dependence of the switching distribution for set and reset,
and theV ′

stop-dependence of the reset state distribution. A
numerical model is finally proposed to provide a microscopic
picture of random defect migration during the reset process.
The Monte Carlo models allow to predict the statistical varia-
tion of resistance and other switching parameters for variable
operating conditions.
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