
Software Enginering Technique For Modularity
Property In Component-Based Software

Architecture

Fabrizio Boriero1 ,Marta Capiluppi1 , Paolo Fiorini1 , Roberta Perrone2 ,
Elena De Momi2 , Giancarlo Ferrigno2

1 University of Verona
2 Politecnico di Milano

1 Introduction

Robots are widely used in surgical rooms of the main hospitals. The most com-
mon surgical robot is the Intuitive ”Da Vinci” but other new high-tech devices
are spreading to help the surgeons in their medical tasks. Such kind of devices
are useful to decrees the surgeons physical and psychological stress and increas-
ing the overall safety. The surgical room is a complex environment with a lot of
heterogeneous devices made by different producers. Currently the devices work
independently but in order to increase the functionalities to give to the users is
necessary to think how to connect all of them.

For this reason in this paper we propose a methodology that comes from the
Eurosurge European project (FP7-ICT-20) that shows a workflow that allows
to build a surgical robotic software architecture that respect three properties:
modularity, re-usability and safety.

To allow the cooperation between software modules it is important to define
the functionalities of every module and how it is possible to integrate it into
the global software architecture. In this paper we present a method that starts
from the ontology of the components and design the structural model that al-
lows an easy and modular integration. The modularity property is the capability
of changing the connection between software modules without stopping or re-
compiling them. Sometime industrial or research partners want to exchange the
software modules or use the same module in different tasks without a long and
tedious integration phase. For this reasons a good software architecture has to
follow the reusability property.

Surgical ecosystem, as the industrial one, has as primary characteristic the
need of safety so it is important that the software architecture provides the
real-time capability and the supervision capability.

A huge amount of robotic software architecture that allows the connection
between robots and sensors were presented in past [1] but not all of this can
achieve our properties. The Component-based software engineering [2], which
is the base of robotic software architectures like ROS [3],OROCOS [4] and RT-
Middlewere [5], is the technique chosen for our project due to its flexibility. These
architecture, in-fact, allow and easy integration between the software modules



made by different vendors and the possibility of changing the connection topol-
ogy between the software components without recompile everything.

To allow the reusability property it is necessary specify the characteristic
and the role that the components have during the surgical or industrial case.
An Ontology is a ”specification of a conceptualization” [6] that can be used to
formalize the workflow of a surgical procedure.

In our workflow, we use two different ontologies, with two different levels of
granularity:

– The first ontology, named TaskOntology, will describe the considered task. It
contains concepts related to all the possible states, transitions and commands
that the component can assume. It could also contain information about the
level of risk associated to the use of a component and related safety issues.

– The second ontology, named ComponentOntology, describes the set of com-
ponents that participate to the scenario. All the components will be described
by a set of property like inputs, outputs and specifications.

Once the components are described it is necessary to translate them in a
model [7] that defines the interface of the software component (input/output
ports, properties). The idea is that if we define a general description, we can
assure that all the software components generated by different developers but
from the same model can be integrated in the task assuring the reusability
property.

The ”TaskOntology” can be translated into a sequence of actions and auto-
matic decision (i.e. a Finite State Machine) and connections between the com-
ponents (architecture topology) that can change during the task, as required by
the modularity property.

2 Case study

During the ”Eurosurge” project, we chose a simple case study to show how it is
possible to apply the method developed. A needle go to a pre-defined position
and two tracker log the data into a text file. During the task it is possible that
one tracker has a problem so we want to exchange it with another one. Fig 1
shows the hardware devices that compose the case study. To implement the two
ontologies described in the previous section we used the tool ”Protegé” and we
saved the information into a OWL file description. We developed a tool, called
”Oromodel”, that allow to translate the ”ComponentOntology” into a XML
model file and automatically generate the software component skeleton for the
OROCOS/ROS ecosystem. In general it is very easy to use the same XML model
file descriptor also for other component-based architectures.

The OWL file that describe the ”TaskOntology” was translated into a finite
state machine and used to coordinate the surgical task.

Fig 2 shows that during the case of study, the tracker was exchanged and
correctly integrated into the setup thanks to the description made by the com-
ponent structural model.



Fig. 1. In this picture is possible to see the devices that compose the test case. There
is one robot that move the surgical needle and two trackers that save the trajectories

Fig. 2. In this picture there are the data logged by the trackers. It is possible to see that
it was possible to change one broken tracker without stopping the whole architecture



3 Future works

The method proposed in this document allows to design a robotic software archi-
tecture allowing the re-usability, modularity and safety properties. During the
project ”Eurosurge” was done a first trial of connection between the Ontology,
software modelling and real-time robotic software architecture. It is important
to extend this road applying this technique to other contexts like mobile robotic,
cyber-physical systems or industry. It is also important to find new modelling
systems that allows to formally verify the desired properties.

References

1. Mohamed, N.: Middleware for robotics: A survey. Robotics, Automation and
. . . (Ram) (2008) 736–742

2. Heineman, G.T., Councill, W.T.: Component-based software engineering: putting
the pieces together. Recherche 67 (2001) 2

3. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., Ng, A.: ROS : an open-source Robot Operating System. (Figure 1)
(2009)

4. Bruyninckx, H.: Open robot control software: the OROCOS project. In: Robotics
and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on.
Volume 3., IEEE (2001) 2523–2528

5. Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T.: RT-Middleware: Distributed Com-
ponent Middleware for RT (Robot Technology). IEEE/RSJ Conference on Inlelli-
gent Robots and Systems (2005) 3555–3560

6. Gruber, T.: What is an Ontology. (1993) 1–11
7. Hochgeschwender, N., Gherardi, L., Shakhirmardanov, A., Kraetzschmar, G.K.,

Brugali, D., Bruyninckx, H.: A model-based approach to software deployment in
robotics. Intelligent Robots . . . (2013)


