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Connectivity interplays with age in shaping contagion over networks with vital dynamics
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The effects of network topology on the emergence and persistence of infectious diseases have been broadly
explored in recent years. However, the influence of the vital dynamics of the hosts (i.e., birth-death processes) on
the network structure, and their effects on the pattern of epidemics, have received less attention in the scientific
community. Here, we study Susceptible-Infected-Recovered(-Susceptible) [SIR(S)] contact processes in standard
networks (of Erdos-Rényi and Barabasi-Albert type) that are subject to host demography. Accounting for the vital
dynamics of hosts is far from trivial, and it causes the scale-free networks to lose their characteristic fat-tailed
degree distribution. We introduce a broad class of models that integrate the birth and death of individuals (nodes)
with the simplest mechanisms of infection and recovery, thus generating age-degree structured networks of hosts
that interact in a complex manner. In our models, the epidemiological state of each individual may depend both on
the number of contacts (which changes through time because of the birth-death process) and on its age, paving the
way for a possible age-dependent description of contagion and recovery processes. We study how the proportion
of infected individuals scales with the number of contacts among them. Rather unexpectedly, we discover that
the result of highly connected individuals at the highest risk of infection is not as general as commonly believed.
In infections that confer permanent immunity to individuals of vital populations (SIR processes), the nodes that
are most likely to be infected are those with intermediate degrees. Our age-degree structured models allow such
findings to be deeply analyzed and interpreted, and they may aid in the development of effective prevention

policies.
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I. INTRODUCTION

Epidemiology is no doubt one of the most successful fields
of application of complex network science. It is in fact quite
natural to recognize that individuals cannot be treated “as
average” in terms of pathogen transmissions. For example,
in sexually transmitted or in childhood diseases, the social
behavior of each human host varies her risk of infection, thus
it can enhance or reduce her role as a potential spreader in
the population. A similar heterogeneity emerges in animal
populations, where some nodes—such as the older individuals
in rodents [1] or the nursery swine farms in Ontario [2]—can
play key roles in the spread of infections. This is why
the extensive use of ordinary differential equation (ODE)
approaches to epidemics, rooted in the pioneering work by
Kermack and McKendrick [3], is currently facing a deep
revision in light of the complex networks paradigm.

Particularly studied in this context is the problem of disease
persistence [4,5], because of its crucial role in public health
policies. Being able to identify which individuals are at the
highest risk of infection is in fact a priority for health systems,
and it can benefit much from insight into the dynamics
of contagions [6,7]. While the spreading of diseases over
temporal networks [8] or adaptive networks [9] has been
studied in recent years, the mechanisms by which birth and
death processes can alter the expected outcomes of simple
diseases spreading over an otherwise static but heterogeneous
network have been mostly ignored. This contrasts with the
fact that many of the results on SIR-like epidemic ODE
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models with varying total population size [10] focus instead
on diseases, such as tuberculosis, where the latent period of
exposed individuals is so long that the hosts’ demography
cannot be ignored [11,12].

The issue of whether one should consider a system open,
i.e., subject to demographic variations, is strictly related
to the time scales of disease transmission, the time spent
by individuals in the infected compartment (the so called
infectious period), and the temporal window over which the
disease dynamics is observed. For instance, analyzing the
spreading of one epidemic wave of plague on the island
of Bombay [3] or a single wave of influenza [13] requires
different models than those needed to study the long-term
patterns. Even for diseases characterized by fast cycles (such
as influenza), the introduction of demographic dynamics
into the epidemiological model is crucial to investigate the
temporal characteristics of the persistent disease in the long
run [14].

The recruitment of susceptible individuals that keep dis-
eases at endemic equilibrium is in many cases due to births
(think of measles as a paradigmatic example [15]). However,
since the SIS model offers a simple way of simultaneously
(1) replenishing the susceptible compartment, and (ii) keeping
the network size and structure constant throughout time,
it has been taken as the core mechanism in the great
majority of published studies. As brilliantly synthesized by
Nasell [16], “it turns out that SIR without demography
lead to epidemic infections, while both SIR models with
demography and SIS models, with or without demography,
are associated with endemic infections.” Despite the similarity
of their dynamical outputs in compartmental models, here
we show that SIR and SI(R)S models subject to demogra-
phy over networks mainly affect individuals with different
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degrees, thus providing quantitatively and qualitatively differ-
ent results.

Understanding the effects of demography on the existence
of epidemic thresholds in epidemiological models is surely
important. However, except for a few notable examples [17—
19], research on this topic has been scarce. In contrast with
commonly used epidemiological models on networks, we
therefore account for the hosts’ demography. This allows us
to study the long-term characteristics of epidemics when the
vital dynamics of hosts cannot be considered as frozen during
the period of interest. Also, to disentangle the underlying
causes that generate the degree distributions of infecteds
as found below, we investigate the relationships between
the age of individuals, their degree, and their epidemio-
logical state via an ad hoc model. This is described and
analyzed in the next sections, prior to some concluding
remarks.

II. NETWORK TOPOLOGIES UNDER
BIRTH-DEATH PROCESSES

We model the population as a time-varying network with
N(t) nodes (i.e., individuals). We use k;(t) > 0 for the
current node degree, i.e., the number of links connecting
the ith node. The network is characterized by its degree
distribution, and we name 0 < py(¢) < 1 the fraction of nodes
having degree k = 0,1, ...,k at time ¢ (k < oo denotes the
maximum degree value), therefore ), pi(r) =1 for all ’s.
The possibly time-varying average degree of the network is
denoted by (k) = >, kpi(t). We assume that, during a short
time interval A, an existing node can die, together with all
links departing from it, with probability A, irrespective of
its degree and its current epidemic state (i.e., no virulence).
Such a death process can in principle be more elaborate,
but we want to keep demography as simple as possible
to minimize the potential sources of dynamical complexity.
We therefore assume that each node gives birth to another
node with probability pwA, independently of its epidemic
state. Newborns attach to existing nodes according to the
topology-dependent rules detailed below. Since the natality
and mortality rates are identical, the birth-death process is
neither biased toward population growth nor extinction, and
the network size N(t) is expected to stochastically fluctuate
around a constant value. Although the demographic process
does not change the average number of nodes in the network, it
is interesting to monitor the temporal evolution of the degree
distribution. As proposed by Moore, Ghoshal, and Newman
(see [20]), the number of nodes with degree k at time # + A
can be written as

N@)pi(t + A) = N(O)pr(®) + N A[—pi(t) — kp(t)
+ (k + Dpry1(®) + O pr—1 (1)
— O pr(t) + ], (1)

where ¢; is the probability that a newborn node has degree
k, 9 =), ke is the average degree of newborn nodes, and
;. is proportional to the probability that a newborn node links
to an existing degree-k node. The specific functional forms
of the natality profile ¢, and of the attachment profile
must obey the constraints Y, ¢y = 1 and ), mxpx = 1, and
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they are detailed below for the cases of interest. Each term
in (1) describes one of the possible mechanisms that alter
the degree of a generic node, thus changing the entire degree
distribution of the network (see [20] for details): the removal
due to death [—py], the passage of a node from degree k +
1 to k [(k+ 1)prs1] and from k to k — 1 [—kpi] when a
neighbor dies, the passage of a node from degree k — 1 to k
[O7mr—1 pr—1] and from k to k + 1 [—v 7, pr] when a newborn
node attaches to it, and the insertion of new nodes with degree
k [¢«]. The equations for k = 0 and k = k are slightly different,
in an almost obvious way, and are therefore omitted. Dividing
both sides of (1) by N(¢) and taking the limit for A — O,
we obtain

Di(t) = —pupr(t) — pkp(t) + uk + 1) pry1(t)
+ub i pr_1(t) — uOmpr(t) + udr.  (2)

The resulting degree distribution of the network can be
obtained by integrating Eq. (2) once the functions ¢; and
;. and the initial conditions pi(0), k =0,1,...,k, have
been specified. In other words, the long-term network topol-
ogy is the attractor reached by the dynamical system (2)
starting from a particularly relevant configuration. In the
epidemiological context, the prototypical network struc-
tures used are the Erdos-Rényi network and the scale-free
network.

A. Erdos-Rényi networks

An Erdos-Rényi network (ERN) [21] is obtained by ran-
domly connecting N nodes with a prescribed number of links.
The degree distribution of an ERN with large N and average
degree (k) is given by a Poisson distribution (e.g., [22]),

_ exp(=(k) (k)*

] 3)

Pk

To analyze the effects of the birth-death process on the network
structure, consider the case in which the newborn nodes are
Poisson-distributed too, with a mean ¢, i.e.,

exp (=) ok
bk = — 4)

Also, assume that each newborn individual links to existing
nodes at random, independently of their degrees, i.e., 7y = 1
for all k. In such a case, it can be proved [20] that the
equilibrium of system (2) is a Poisson distribution. If the
initial network is an ERN with distribution (3) and (k) = 9,
the distribution remains unchanged through time. In addition
to the solution provided by [20], we prove that such a fixed
point of system (2) is globally asymptotically stable, and
thus it is reached regardless of the initial degree distribution
p«(0). As a matter of fact, introducing the column vectors p =
[P0, P1s -\ Pks---]" and @ = [¢o,¢1, ... ¢, ...]", Eq. (2)
can be written as

p(t) = A(pp(t) + n®, Q)
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where the matrix

—1 —9m 1
297'[0 -2 — 297'[1
0 197'[1
A(p) = n 0 0

depends on p, in general, because the ;. ’s might do so. In this
specific case, however, w; = 1 for all k, so that A(p) = A is
constant (i.e., independent of the current network topology)
and Metzler (i.e., all off-diagonal entries are non-negative).
Since all column sums of A are negative, its dominant
(Frobenius) eigenvalue is guaranteed to be negative (e.g., [23]).
Therefore, Eq. (5) is a time-invariant, linear, asymptotically
stable system. The unique steady-state degree distribution
of (2) is reached from any initial condition.

B. Scale-free networks

Scale-free networks (SFNs) are highly heterogeneous struc-
tures, in which no node can be defined as “typical” since very
few nodes (the hubs) are connected with many others, while
the great majority of the nodes have only a few connections.
The degree distribution of a SFN, at least for large , is a power
law of the form

P~k (7)

where ¢ > 0. In the past decade, SFNs have received
great attention because they emerged in a variety of social
and technological contexts [24-26], including epidemiology
(e.g., [27]). A peculiarity in (7) is that its second moment
k%) = Zk kzpk diverges when N — oo if 2 < ¢ < 3, arange
of values that often appears in data [28].

Consistently with the preferential attachment paradigm
proposed by Barabasi-Albert and used to generate SFNs [24],

0.1 4

©
o
!

0.001 4

degree distribution py,

0.0001

1 10 100

node degree k

FIG. 1. (Color online) Examples of the degree distributions of an
Erdos-Rényi network (ERN), a scale-free network [SFN, Eq. (7),
with ¢ = 3], and an evolved Barabasi-Albert network (EBAN). All
distributions have the same average degree (k) = 10.
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we assume that all newborn nodes in the network evolving on
the basis of Eq. (2) have the same prescribed degree ¢ (thus
¢r = 1 for k = ¥, and O otherwise). Also, we imagine that
newborns preferentially attach their links to nodes with high
degrees (7 = k/(k)). In this case, as proved by [20], the fixed
point of (2) turns out to have a functional form that is not
scale-free but “stretched exponential,” namely

pi~ ke, ®)

We call a network resulting from the process described
above an evolved Bardbasi-Albert network (EBAN), since the
insertion of new nodes follows the standard rules proposed
by [24], yet the network’s evolution is driven by deaths, and
not only births as in the standard Bardbasi-Albert model. Note
that the matrix A(p) of Eq. (5) does depend on the p;’s
because, in this case, mx = k/(k) = k/(3_,, hpn). System (5) is
therefore nonlinear and, although the existence and uniqueness
of the fixed point (8) have been formally proved (see [20]),
the analysis of its stability is far from trivial. Nonetheless,
all numerical simulations we performed indicate that the
fixed-point distribution (8) is reached from all initial degree
distributions, including when p;(0) ~ k€. In other words,
even if the network topology we start from is power-law and
the birth (attachment) mechanism is fully compliant with the
Barabasi-Albert rule for creating SFNs [24], the existence of
a death (detachment) process destroys the attractiveness of
the scale-free distribution. Scale-free networks thus become
transient states rather than attractors of system (2). Notably,
in contrast to what happens with the power-law distribution,
the second moment (k%) of (8) remains bounded even in
the theoretical limit N — oo. This means that the degree
distribution of an EBAN loses its “fat-tail” [20], a feature
that makes SFNs so peculiar.

For a direct and qualitative comparison, some exemplifica-
tive degree distributions of an ERN, a SFN, and an EBAN with
the same average degree are depicted in Fig. 1.

III. EPIDEMIC DYNAMICS ON VITAL NETWORKS

We study a SIRS contact process with demography [29],
which, under the standard “homogeneous mixing” hypothe-
sis [30], is described by the following ODE model:

$(1) = p — ps(t) — Bs(0)y (1) + ar (1),
y(1) = Bs()y®) — (u + y)y(), )
F(1) = yy() — (u+ a)r(t).

Equation (9) is easily derived by normalization of the classical
endemic model presented in [31]. The variables s(z), y(),
and r(t) represent the fraction of susceptible (or infectable),
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infected (thus infective), and recovered individuals in the
population. It must be noticed that the birth and death rates are
per capita and independent of epidemiological states. Also,
no vertical transmission takes place (i.e., all newborns are
susceptible). Notice that the first equation of system (9) is a
simplification of the full equation for the susceptibles,

$(1) = pls@) + y(0) +r®] — us@) — Bs@)y(1) + ar (),
(10)

obtained by using the equality s(¢) + y(¢) + r(t) = 1, and that
the equation for r(¢) is redundant since r(t) = 1 — s(¢) — y(¢).
Besides the birth-death rate u, the parameters appearing in (9)
are the loss of immunity rate «, the recovery rate y, and the
contact rate 8, which can be interpreted as § = p#i, namely
as the product of the disease-specific transmission rate p and
of the effective number of contacts per unit time 7, which is
a characteristic of the population [30]. Provided that 8 is not
too small (8 > u + y), it can easily be verified that system (9)
has a unique endemic equilibrium with

y:&(l_‘””), (1)
atpty B

Such an equilibrium is globally asymptotically stable [32], in
other words the long-term behavior of the epidemiological
process is constant. In the following, we will be mostly
interested in the SIR case, obtained assuming permanent
immunity (o = 0), which is customarily used to describe a
number of diseases, including childhood epidemics such as
measles, rubella, or chicken pox [33].

To study the dynamics of the birth-death-infection-recovery
process over a network, we follow an approach similar, yet not
identical, to the one that is often used to model epidemics
on networks, based on the assumption that all nodes with
the same degree are statistically equivalent [4,5,28]. Our
3d state variables, with d = k + 1, are the fraction, over the
total population size N(¢), of individuals that have degree k
and are susceptible [s;(¢)], infected [y (¢)], or recovered [r(?)]
at time ¢. Note that here s;(f) + yi(t) 4+ ri(¢) = pi (), and not
unity. The equations governing the temporal evolution of the
state variables incorporate the birth and death mechanisms that
affect all nodes independently of their epidemiological state,
as described in the preceding section. Peculiar to the epidemics
are, instead, the infection of susceptibles, the recovery of the
infected, and the loss of immunity of the recovered. The last
two mechanisms are simple to model, since during a short
time interval A an infected node can recover with probability
y A, while a recovered node can rejoin susceptibles with
probability ¢ A. The infection mechanism is instead more
complex, because a susceptible node, say j, can become
infected with probability pn;A, where n; is the number
of infected nodes among its neighbors. Neglecting degree
correlations, the probability that the neighbor of a node has
degree his g, = hp;,/ (k) (e.g., [26]). Since the probability that
a degree-h node be infected is yj / pj,, the expected number of
infected neighbors of a degree-k node is

_ hpi yu
ex _kzh: T (12)
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Therefore, the number of susceptible nodes of degree k
that become infected during A is pey NsyA. By combining
demography (Sec. II) and epidemiological dynamics, we
finally obtain the following system of 3d equations:

Sp() = —usi(t) — pksi(t) + plk + Dsgy1(2)
+ uO k-1 (1) — pOTEse(f) + ey

h
— pksi(1) E myh(f) + ar(t),
h

k(@) = —pyr) — pkyr) + plk + Dyrp1(2)
+ uO 1 yr—1(t) — pmy(t) (13)

h
+ pksi(t) E %yh(t) — yyi(),
h

rr(t) = —ur(t) — pkri(@) + plk + Drgg (1)
+ g _rk—1(t) — pOmer(t) + yy(t) — ar(t).

Note that the contact rate 8 = p7i of the homogeneous mixing
SIRS model (9) is now replaced by a degree-dependent contact
rate B = pk. The global disease prevalence y(¢), namely the
total fraction of infected in the population, is given by

Yy =) w). (14)
k

It is straightforward to check that the fundamental Eq. (2)
is easily obtained by summing up all 3d equations (13) for
a fixed k. Since s; + yx + ri is not constant over time, we
cannot simplify the study of (13) by eliminating the variables r;
and their equations. However, being the birth-death process
uncoupled from the infection-recovery process, we can ask if
and how the disease spreads in a population that has already
reached its demographic equilibrium. Assuming that Eq. (2)
has reached its steady state, we reduce system (13) by focusing
only on the dynamics of s and yy, since at any time r;, = py —
Sr — Yr. We note that, although it would be interesting to obtain
the SIRS model (9) as a particular case of our model (13), this
is not possible mathematically. Such impossibility can easily
be understood from the epidemiological perspective, because
the random nature of contacts in the homogeneous mixing
approach cannot be reduced to the permanency of the links in
the network model [30].

Let us now focus our attention to the SIR case
(o = 0), for which infected individuals get permanent immu-
nity when recovered. The steady-state behavior of system (13)
is summarized in Fig. 2. The first remarkable consequence
of accounting for vital dynamics in the epidemic process
is the existence of a finite epidemic threshold even in the
EBAN case, an effect of the loss of the fat tail in the degree
distribution. As already evidenced by Piccardi and Casagrandi
for SIS processes [17], this outcome sharply contrasts the
well-known findings of Pastor-Satorras and Vespignani [4,5]
(see also [34] on this subject). The prevalence y in Fig. 2,
which becomes nonzero above suitable thresholds of p and/or
(k), monotonically increases with both quantities, hence
with (B;) = p(k). This is qualitatively consistent with the
homogeneous mixing model (9), as made clear from Eq. (11).
However, a closer analysis reveals that the two models display
non-negligible quantitative differences at low transmission
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FIG. 2. (Color online) The equilibrium value of the disease
prevalence y on the network model (13) for an SIR model (@ = 0)
in the case of EBAN, as a function of the transmission rate p and
of the average degree (k) (similar results—not shown—are obtained
with ERN). In the bottom panel, the contour lines of y = y(p, (k))
(solid red lines) obtained by model (13) are contrasted to the iso-8
lines p(k) = const (dashed black lines), which are the iso-y lines
of the homogeneous mixing model (9). Parameter values (1 = 0.02,
y = 100) fall in the range that [33] considers consistent with measles
dynamics.

rates p, where the network model systematically predicts
that the threshold values for (k) under which the disease is
eradicated be lower than those for the homogeneous mixing
model (9). Also, above such thresholds, the prevalence y is
always larger in the network model. Overall, the network
model predicts quite a stronger capability of the infection,
if compared to the homogeneous mixing model, and a better
ability of sustaining and propagating diseases characterized by
small contact rates 8.

The most interesting results are obtained from network
model (13) when, instead of computing global quantities such
as the prevalence y, we analyze how the disease is distributed
among nodes with different characteristics. Figure 3 shows
that, as one may expect, the distribution of the infected yy
through the nodes with different degree k essentially (and not
surprisingly) replicates the degree distribution p;. However,
if we compute the proportion of infected yi/px, that is, the
probability that a degree-k node will be infected, the result is
quite unexpected. For ERNs, y;/pr monotonically increases
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up to a plateau level, meaning that the nodes with large
degree are the main carrier of the disease and thus the main
reason for its propagation. This result is fully consistent with
the well-known findings on SIS epidemics propagating in
networks with no demography [4,5].

The epidemiological scenario of EBANs is, however,
completely different from that of ERNs, despite the qualitative
similarity of their degree distributions (see again Fig. 1): in
EBANS, not only the infected y;, but also their proportion
Yyk/ Pk, follow a distribution that qualitatively replicates the
degree distribution py (see Fig. 3). In other words, if we group
the individuals by their number of contacts &, the probability of
finding infected individuals is largest in the most represented
set. On the contrary, such a probability tends to zero for
larger and larger values of k. This means that, contrary to
a widespread belief regarding both human (e.g., [6,7,35,36])
and animal diseases (e.g., [37]), the most connected nodes are
not necessarily at highest risk of infection when demography is
stretching the network topology, even if the original contacts
followed a scale-free distribution. This may obviously have
implications in the design of effective prevention policies.

It is interesting to discuss if—and to what extent—the
above result depends on the specific assumptions used to
describe the demographic evolution of the network. In Fig. 3,
we used two prototypical models: ERN, where the natality
profile ¢ is Poisson and the attachment profile ;. is uniform
(or “flat,” i.e., my = 1 for all k), and EBAN, where ¢, is
a singleton (i.e., a spike distribution at k = ) and m; is
“preferential” (in the manner of Barabdasi-Albert). We can
easily swap the assumptions and generate, for example, two
types of “hybrid” networks, one with Poisson natality and
preferential attachment and another with singleton natality and
flat attachment. The two degree distributions are obtained by
letting the demographic system (2) evolve, from feasible initial
conditions, until the unique equilibrium distribution is reached.
The dynamics of the epidemics on such networks is then
obtained by model (13). As displayed in Fig. 4 [panels (a) and
(b)], the results are consistent with those of the EBAN above,
with the largest proportion of infected y;/p; at intermediate
degrees, where the degree distribution of the individuals also
peaks, independent of their epidemiological state. Since Eq. (2)
allows for highly flexible definitions of ¢ and m;, we can also
test less idealized assumptions. For example, we can consider
a Poisson natality with a truncated tail (i.e., we let ¢ = O for
all k larger than a prescribed value, renormalizing ¢ to have
unit sum) to avoid unrealistically large degrees of newborns.
Again, the result is qualitatively the same [panel (c) of Fig. 4].
Therefore, our result that the largest probability of infection
is for nodes at intermediate degrees seems to be quite general
for the SIR epidemic process, with the ERN case being the
exception.

A different conclusion is obtained if, instead of considering
diseases that confer lifelong immunity, we analyze SIRS
processes (o > 0). This mechanism to yield susceptible
individuals—qualitatively different from birth—produces, in
a sense, dominant effects over those induced by the previously
discussed underlying demographic dynamics. Such epidemics
becomes, in many respects, similar to those that would be
obtained with an SIS without demography, as in fact we recover
in that case the well-known behavior evidenced by [4,5],
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FIG. 3. (Color online) The infected y; (left column) and the proportion of infected y; / py (right column) in SIR model (¢ = 0), as a function
of the node degree k, for ERN (upper panels) and EBAN (lower panels). Parameter values are p = 20, (k) = 20, u = 0.02, y = 100.

where the larger the degree of a node is, the higher is its
probability of being infected [Fig. 4(d)]. The role of vital
demography, however, makes our case more involved. SIR
and SIRS processes fundamentally differ in the relationship
between the infected state of individuals and their age. Indeed,
in the SIR process, the eldest individuals tend to accumulate in
the compartment of the recovered, whereas this has no reason
to occur if immunity is lost during life as in the SIRS process.
To explore in detail the implications of such subtle but crucial
differences, and to investigate why the ERN case is so peculiar,
we explicitly account below for the age of individuals in our
mathematical model.

IV. AN EPIDEMIC MODEL WITH AGE
AND DEGREE STRUCTURE

We generalize the description of the disease dynamics on
vital networks so that at any time ¢ each individual (node) is
characterized by (i) its degree k, (ii) its epidemiological state
(susceptible, infected, or recovered), and (iii) its age a, defined
as the time passed since the node was added to the network.
We denote by Si(a,t), Yi(a,t), and Ri(a,t) the distributions of,
respectively, susceptibles, infected, and recovered that at time
t have age a and degree k. For any k, ¢, and a, we obtain the age
distribution of degree-k nodes Pi(a,t) as equal to Si(a,t) +

a
0.0002 + ( ) (b) - 0.0002
-
&
~< - L
= 0.0001 0.0001
o
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8
3
L‘a 0.0000 T T T T T T T T 0.0000
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node degree k node degree k

FIG. 4. (Color online) The proportion of infected y;/p; obtained with model (13) as a function of the node degree k, for a few networks
with mixed features. (a) SIR process (o« = 0): Poisson natality, preferential attachment. (b) SIR process: Singleton natality, flat attachment.
(c) SIR process: Poisson natality truncated at k = 30, flat attachment. (d) SIRS process (¢ = 10): EBAN (singleton natality, preferential
attachment). Other parameter values are p = 20, (k) = 20, u = 0.02, y = 100.
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Yi(a,t) + Ri(a,t). These newly introduced quantities relate to
the (age-independent) ones formerly used in Egs. (2) and (13)
as follows:

+00 +oo
5e(t) = / Sua.nda, () = / Yo(a.nda,
0 0 (15)

+00 ~+00
ri(t) =/ Ri(a,t)da, pi(t) =/ Pi(a,t)da.
0 0

The equations governing the dynamics of the newly intro-
duced variables can be obtained with the standard procedure
used to derive, in population dynamics, age-structured models
in continuous time [38]. Since # and a grow at the same rate,
the basic balance law for, e.g., degree-k susceptibles takes the
form

Sy(a + At + A) = Si(a,t) + (inflow — outflow) A, (16)

where the inflow and outflow terms account for all the
mechanisms that alter either the degree or the epidemic state of
a node, as evidenced in Egs. (2) and (13). Letting A — 0, we
obtain the following system of partial differential equations:
aS(a,t)  9Sk(a,t)
da + ot
= —uSi(a,t) — pkSi(a,t) + plk + 1)Sit1(a.1)

+ ud w1 Sk—1(a,t) — udmSi(a,t)

h
— pkSi(a,0) ) o +aR@n,
h

dYi(a,t) n dYi(a,t)
da at
= —uYi(a,t) — ukYi(a,t) + pk + )Y 11(a,t)

17)
+udm 1 Yii(a,t) — pdmYi(a,r)

h
+pkSi(a,n)) T = Y@,
h

dRy(a,t) n dRy(a,t)
da at
= —uRi(a,t) — nkRi(a,t) + pulk + 1)Riy1(a,t)
+ udtmi_ Ri—1(a,t) — udmp Re(a,t)
+yYi(a,t) — aRi(a,t).

Note that the flow of new infecteds pkSi(a,t) Y, (h/{k))yn(t)
depends on the yj, i.e., the age-independent distribution of
infecteds over the node degrees. Indeed, the probability that
a susceptible with age a will become infected is obviously
independent of the age of the infected with whom she comes
into contact. Because of this specific term, the above model
is actually an integrodifferential model, with y, depending
on Yj(a,t) as specified in (15). In the case of no vertical
transmission, i.e., when all newborns are susceptibles, a
plausible set of boundary conditions is
S (0,1) = pey, Yi(0,t) =0, Rp(0,0)=0, Vr=>=0.
(18)

Model (17) describes the spread of a SIRS process over a
network with vital demography, and it accounts both for the
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number of contacts of individuals and for their age. The model
could be refined along many directions. The biological param-
eters «, y, and p could, for example, be made age-dependent.
The same holds for the mortality u, with the only caveat being
to constrain its mean value to equal the natality rate in order
the keep the population constant in demographic terms.

Here our main goal, however, is to gain insight into the
solutions of the age-independent model (13) discussed in the
preceding section. For that, we will restrict our attention to
steady-state solutions. In such conditions, we first derive the
distribution of infected y; from (13) and plug it into (17).
Being at equilibrium, time derivatives are nullified. We obtain
the following system of ordinary differential equations:

ds,
% = —uSi(a) — ukSi(a) + nlk + 1)Siy1(a)
+ utmp_1Sp—1(a) — udmSi(a)
h
= PkS@) ) v+ aRia),
3
dy,
;;a) = —uYi(a) — ukYi(a) + wk + )Y 1(a)
+udmi_1Yio1(a) — pdmYi(a) (19)
h
+pkSi(@)y qg v h@,
3
dR
# — —Ru(a) — pkRe(@) + putk + DRis1 (@)

+ utmi_ Ry—1(a) — uomi Ri(a)
+yYi(a) — aRi(a).

Solving Eq. (19) with initial conditions S;(0) = u¢y, Yx(0) =
0, R, (0) = 0 gives the steady-state distribution profiles S(a),
Yi(a), and Ry (a) of degree-k susceptibles, infected, and recov-
ered, as a function of age a. A representative visualization of a
prototypical and exemplificative solution for the SIR process
(¢ = 0) is displayed in Fig. 5, where the age distribution Y (a)

infected Yk (a)

T

degree k

0 50

FIG. 5. (Color online) The steady-state distribution of infected
Yi(a) as a function of age a and degree k of individuals, for the
SIR process on ERN. Parameter values: p = 20, (k) = 20, u = 0.02,
y = 100.
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FIG. 6. (Color online) The mean age (a) of the entire population
7 and (b) of the infected 7 as a function of the node degree k.
All curves refer to the SIR process (o = 0) except EBANgRs, for
which o = 10. The horizontal dashed line is the average lifetime
1/u. Parameter values: p = 20, (k) = 20, u = 0.02, y = 100.

of infecteds is plotted in a range of the degree k. For all degrees,
the marginal distribution of infecteds with respect to age is
monotonically decreasing. The maximal risk of infection is at
birth.

Furthermore, a few measures better complement our under-
standing and lend themselves an insightful interpretation of the
results. In Fig. 6, panel (a) shows the mean age distribution ty
of the population, that is, the mean age of all individuals at the
demographic equilibrium as a function of their degree k:

+00
aPy(a)da, (20)

Ty = —
Pk Jo

where Pi(a) = Si(a) + Yi(a) + Ri(a). Notice that t; only
depends on the vital demography (i.e., on the natality
and attachment profiles), and not on the peculiarities of
the epidemic process. It turns out that, in all cases but
one, the highly connected individuals (i.e., nodes with large
k) are old individuals too, namely their mean age is largely
above average. ERN is the only exception, with a flat 7; at the
level of the average lifetime 1/u. Thus, only the combination
of the assumptions of Poisson natality and flat attachment
yields such a singular case. Such a peculiarity becomes even
more pronounced if we consider the mean age distribution of
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infected T

1 +o0
i =— aYi(a)da. 1)
Yk Jo
In Fig. 6, panel (b) reveals that, in the ERN case, infected
nodes with high connectivity (i.e., large k) are even younger
that average, whereas in all other cases they are older [similarly
to the entire population, as shown in panel (a)].
Another set of quantities that can be derived from (19)
concerns the distribution of age profiles for the fractions of
susceptibles, infected, and recovered:

- Zk Sk(a) = Zk Yi(a)
Sta) = =250 Yoy = =50
W= @ "% h@
Y, Ri(a) @
Ra) = 2t R
@ =% P

Note that S(a) + Y (a) + R(a) = 1 for all a. Figure 7(a) shows
that, for the SIR process, the fraction Y (a) of infecteds decays
to zero as age a increases. Therefore, there are practically no
infecteds among the oldest part of the population, which, on
the other hand, contains the most connected individuals, as
discussed above. This explains the result highlighted in the
preceding section, i.e., the vanishing proportion of infected
Vk/ pr among the most connected nodes. As already pointed
out, the only exception is the ERN case in which all age
classes are represented among the set of nodes with large
degree k, which thus [see again Fig. 7(a)] contains a non-
negligible fraction of infected. Finally, if we consider the SIRS
process (o > 0), we immediately note from curve EBANgrs
in Fig. 7(b) that the loss of immunity has the effect that the
infecteds spread over all age classes and, consequently, over all
degree classes as well. For that reason, we find a nonvanishing

ERN | - 0.0006
EBAN |
¢ Poisson, | prefer.
) singletoh 7 flat - 0.0003
s (a)
a
N~
|z : : 0.0000
2 I
3 i
< EBANg ks : - 0.06
|
| - 0.03
|
| (b)
f T 0.00
50 100 150

age a

FIG. 7. (Color online) The fraction Y (a) of infected as a function
of age a. Panel (a) refers to the SIR process (¢ = 0) (the four
curves are visually indistinguishable because practically coincident);
panel (b) refers to the SIRS process (¢« = 10) on EBAN. The vertical
dashed line is the average lifetime 1/u. Parameter values: p = 20,
(k) =20, u =0.02, y = 100.
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FIG. 8. (Color online) A sample of the results of the simulations of the SIR process with individual-based probabilistic cellular automata,
on ERN (top panels) and EBAN (bottom panels). Left panels: the mean age of the entire population 7 (blue circles) and of the infected 7, (red
triangles) as a function of the node degree k. Right panels: the proportion of infected y, / p; as a function of the node degree k. In all panels, the
solid black lines are the outcome of the differential equation models (13) and (19). In the left panels, the horizontal dashed line is the average

lifetime 1/p.

fraction yi/py of infected at large degrees k in this case too,
as evidenced in the preceding section.

We finally mention that, in order to rule out possible artifacts
induced by approximating the time evolution of networks and
epidemic processes by differential equations (13) and (19), the
above findings have been validated by means of individual-
based simulations based on probabilistic cellular automata.
All the above-defined network configurations (i.e., natality
and attachment kernels) have been considered, and SIR and
SIRS epidemic processes have been simulated on networks of
different size. A sample of the results, which highlights some
of the most peculiar results discussed in the paper, is reported
in Fig. 8 [39]. In all instances, we found very good agreement,
both qualitative and quantitative, between the results of the
simulations on probabilistic cellular automata and the output
of the differential equation models.

V. CONCLUDING REMARKS

Incorporating birth and death processes into simple in-
fection mechanisms (of both SIR and SIRS types) over
homogeneous and heterogeneous networks can qualitatively
change the epidemiological outcomes. As Moore and coau-
thors [20] have shown, demographic dynamics alone destroys
the degree distribution structure in scale-free networks, even
if the newborn nodes are added as in the Barabasi-Albert
algorithm (i.e., preferential attachment of links) and the dying
nodes are detached at random. The emerging distribution [here
called the evolved Barabasi-Albert network (EBAN)] is not
fat-tailed anymore, so not surprisingly we find that SIR and
SIRS processes can persist if and only if their contact rates
are above a finite threshold. Less evident is the fact that the
fraction of infected individuals in SIR processes over vital
networks does not necessarily grow with the node degree—as
is the case for SIS processes with or without demography

on networks. For SIR processes, that peculiar result occurs
only in the case of ERNS, i.e., Erdos-Rényi networks subject
to Poisson births and homogeneous (i.e., degree-independent)
attachment. In all other cases that we analyzed, such a pro-
portion of infected nodes peaks at intermediate node degrees,
exactly where the degree distribution of the total population
does. The mechanism of immunity loss (SIRS instead of SIR
process) changes the picture completely because, independent
of the network structure, the fraction of infecteds increases
monotonically with the node degree.

To understand why qualitatively different results are ob-
tained by two apparently similar mechanisms of feeding the
network with susceptible individuals (i.e., birth or immunity
loss), we developed a model that also accounts for the age
of the nodes (i.e., the time since their first appearance in
the network). The age distributions of network individuals
in different epidemiological states reveal that susceptibles in
SIR models can only be the youngest, i.e., those who have
never been in contact with the disease. In contrast, if a loss
of immunity is accounted for (as in SIRS models), susceptible
individuals can have entered the population either via birth
(for younger nodes) or via a complete loss of immunity (for
recovered nodes that were infected even long before). These
two different kinds of susceptible individuals are characterized
by different degrees and are not interchangeable in terms
of epidemic spread. As a consequence, control strategies for
SIR epidemics that are mainly based on degree distributions
can fail, despite their proven efficacy when applied to SIRS
processes over static networks. Identifying which individuals
are at maximum risk of infection is therefore dependent
in an articulate manner on (i) the network structure, (ii)
the epidemiological state of the individual, and (iii) the
path followed by the individual to join the susceptibles
compartment of the population (either by birth or by immunity
loss).
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In this paper, the proposed age-degree model has been stud-
ied only to disentangle the underlying causes of the different
outcomes obtained for SIR and SIRS processes. There are of
course many diseases (ranging from pertussis to tuberculosis,

PHYSICAL REVIEW E 91, 022809 (2015)

just to restrict our attention to humans) for which the age of the
hosts influences both the demographic and the epidemiological
parameters. In all these cases, our age-degree model can
become a very useful tool for researchers and health managers.
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