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Abstract: -  The aim of the present paper is to provide the first concise overview of a natural framework for 

arbitrary multi-scale computer science and systems biology computational modeling. To grasp a more reliable 

representation of reality and to get more effective modeling techniques, researchers and scientists need two 

intelligently articulated hands: both stochastic and combinatorial approaches synergically articulated by natural 

coupling. After a brief introduction about traditional modeling vs. fresh QFT approach, we go to the root of the 

problem directly. We present key points solution to arbitrary multi-scale modeling problems. The first attempt 

to identify basic principles to get stronger modeling solution for scientific application has been developing at 

Politecnico di Milano University since the 1990s. The fundamental principles on computational information 

conservation theory (CICT), for arbitrary multi-scale system modeling from basic generator and relation 

through discrete paths denser and denser to one another, towards a never ending 'blending quantum continuum,' 

are recalled. A computational example is presented and discussed. This paper is a relevant contribute towards 

arbitrary multi-scale computer science and systems biology modeling, to show how computational information 

conservation approach can offer stronger and more effective system modeling algorithms for more reliable 

simulation. 
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1 Introduction 
The aim of the present paper is to provide the first 

concise overview of a natural framework for 

arbitrary multi-scale computer science and systems 

biology computational modeling. An organism and 

all the biologically relevant processes that it 

experiences must have an extremely 'many-atomic' 

structure and must be safeguarded against 

haphazard, 'single-atomic' events attaining too great 

importance. In fact, we are thaught that all atoms 

perform all the time a completely disorderly heat 

motion, which, so to speak, opposes itself to their 

orderly behaviour and does not allow the events that 

happen between a small number of atoms to enrol 

themselves according to any recognizable laws. 

Only in the co-operation of an enormously large 

number of atoms do statistical laws begin to operate 

and to represent the behaviour of these assemblies 

with an accuracy increasing as the number of atoms 

involved increases. It is in that way that the events 

acquire truly orderly features. All the physical and 

chemical laws that are known to play an important 

part in the life of organisms can be represented by 

this statistical kind. Any other kind of lawfulness 

and orderliness that one might think of is being 

perpetually disturbed and made inoperative by the 

unceasing heat motion of the atoms. Every 

particular physiological process that we observe, 

either within the cell or in its interaction with the 

cell environment, appears, or appeared ninety years 

ago, to involve such enormous numbers of single 

atoms and single atomic processes that all the 

relevant laws of physics and physical chemistry 

would be safeguarded even under the very exacting 

demands of statistical physics in respect of large 

numbers; this demand illustrated just by the well-

known √n rule. That, the 'naive physicist' tells us, is 

essential, so that the organism may, so to speak, 

have sufficiently accurate physical laws on which to 

draw for setting up its marvellously regular and 

well-ordered working. This is the main reason why 

statistical and applied probabilistic theory became 

the core of classic scientific knowledge and 

engineering applications at system macroscale level. 

It was applied to all branches of human knowledge 

under the 'continuum hypotesis' assumption, reachig 



highly sophistication development, and a worldwide 

audience. Many 'Science 1.0' researchers and 

scientists up to scientific journals assume it is the 

ultimate language of science and it is the traditional 

instrument of risk-taking. How do these 

conclusions, reached, biologically speaking, a priori 

(that is, from the purely physical point of view), fit 

in with actual biological facts?  

Today, we know that this question is generated by 

an ill-posed problem and trying to find a sound 

answer to it requires enlarging our worldview first 

of all. In fact, incredibly small groups of atoms, 

much too small to display exact statistical laws, do 

play a dominating role in the very orderly and 

lawful events within a living organism. They have 

control of the observable large-scale characteristics 

of its functioning; and in all this very sharp and very 

strict biological laws are displayed. The great 

revelation of quantum theory (QT), discovered by 

Max Planck in 1900, is that features of a 

discreteness were discovered in the Book of Nature 

at system microscale (nanoscale) level, in context in 

which anything other than continuity seemed to be 

absurd according to the views held until then at 

macroscale level. On the side of QT it took more 

than a quarter of a century till in 1926-7 the QT of 

the chemical bond was outlined in its general 

principles by W. Heitler and F. London. The 

Heitler-London theory involved the most subtle and 

intricate conceptions of the development of QT at 

that time, called 'quantum mechanics' (QM) or 

'wave mechanics' (WM). In the 1920s the problem 

of creating a QM theory of the electromagnetic field 

originated early quantum field theory. In particular 

de Broglie in 1924 introduced the idea of a wave 

description of elementary systems. In 1925, Werner 

Heisenberg, Max Born, and Pascual Jordan 

constructed such a theory by expressing the field's 

internal degrees of freedom as an infinite set of 

harmonic oscillators and by employing the 

canonical quantization procedure to those 

oscillators. The first reasonably theory of early 

quantum electrodynamics, which included both the 

electromagnetic field and electrically charged matter 

(specifically, electrons) as quantum  mechanical 

objects, was created by Paul Dirac in 1927 [1]. 

Pascual Jordan and Wolfgang Pauli showed in 1928 

that quantum fields could be made to behave in the 

way predicted by special relativity during coordinate 

transformations (specifically, they showed that the 

field commutators were Lorentz invariant). The 

early development of the field involved Dirac, Fock, 

Pauli, Heisenberg and Bogolyubov. This phase of 

development culminated with the construction of the 

theory of quantum electrodynamics (QED) in the 

1950s [2]. Parallel developments in the 

understanding of phase transitions in condensed 

matter physics led to the study of the 

renormalization group. This in turn led to the grand 

synthesis of theoretical physics, which unified 

theories of particle and condensed matter physics 

through quantum field theory (QFT). This involved 

the work of Michael Fisher and Leo Kadanoff in the 

1970s, which led to the seminal reformulation of 

QFT by Kenneth G. Wilson in 1975 [3]. QFT has 

emerged from a major paradigm shift with respect to 

Classical Physics which still provides the 

framework of the vision of nature of most scientists. 

This change of paradigm has not yet been 

completely grasped by contemporary science so that 

not all the implications of this change have been 

realized hitherto, even less their related applications. 

So, the discreteness approach, developed under the 

'discreteness hypotesis' assumption, in specific 

scientific disciplines, has been considered in 

peculiar application areas only. It has been further 

slowly developed by a few specialists and less 

understood by a wider audience. It is the fresh QFT 

approach. Unfortunately, the above two large 

scientific research areas (continuum based and 

discreteness based) have followed separate 

mathematical development paths with no articulated 

synergic coupling. That is the main reason why QFT 

is still mostly overlooked by traditional scientific 

and engineering researchers for system multi-scale 

modeling, from system microscale to macroscale. 

Unfortunately, the 'probabilistic veil' can be very 

opaque computationally, in a continuum-discrete 

arbitrary multi-scale environment, and misplaced 

precision leads to information dissipation and 

confusion [4].  

 

 

2 The Root of the Problem 
In the past, many attempts to arrive to a continuum-

discrete unified mathematical formulation have been 

proposed, all of them with big operational 

compromises. The most recent ones find their roots 

at the beginning of the 1980s, even if their 

publication date records a later public release. As a 

practical example, let us consider both biological 

tissues and many biomaterials which are complex, 

hierarchical, and heterogeneous structures. It is well 

established that the mechanical properties of tissues 

and biomaterials are important for proper 

functioning of both. It is therefore important to be 

able to characterize the mechanical properties of 

tissues and biomaterials not only to understand their 

functional behavior, but also to diagnose any 

potential pathological conditions of tissues or to 



fine-tune the mechanical properties of synthetic 

biomaterials for their intended function. Biological 

tissues and biomaterials are often made of several 

phases and components that make them highly 

heterogeneous. Moreover, these heterogeneous 

structures are often made at different scales, giving 

rise to certain hierarchical patterns of organization 

that enable tissues and biomaterials to perform 

certain functions. Furthermore, the macroscopic 

shapes of biological tissues are often complex. 

Mechanical characterization modeling of such 

complex structures at the various relevant scales is a 

challenging task (Fig.1) [5].  

 

 
Fig.1 Example of multi-scale modeling hierarchical 

structure for heterogeneous system biomechanical 

characterization [5]. 

 

Since the measurements plotted in the final output 

histograms originate from very complex multi-

component, heterogeneous, and hierarchical 

structures, interpretation of such histograms requires 

application of statistical clustering theories. Their 

modeling is still approached under the 'continuum 

hypotesis'. The resultant contribution of the different 

constituents of the characterized materials will then 

appear in the final histogram that shows the 

probability of measuring a certain range of 

mechanical properties. Current trending approach is 

to use finite mixture models (FMMs) as a tool 

capable of performing such types of analysis. Finite 

Gaussian mixture models assume that the measured 

probability distribution is a weighted combination of 

a finite number of Gaussian distributions with 

separate mean and standard deviation values. For 

instance, FMMs are used for interpreting the 

probability distribution functions representing the 

distributions of the elastic moduli of osteoarthritic 

human cartilage and co-polymeric microspheres [6]. 

Wait a moment, please. We are talking about the 

resultant output data of complex, hierarchical, and 

heterogeneous structures, which we try to infer, 

through sophisticated statistical techniques, both the 

number and single contributes of their unique 

constituents from. This approach will never be able 

to exploit the advantages offered by a discreteness 

approach. 

On the other hand, in the case of the construction of 

a full collagen fibril mechanics model, 

computational challenges associated with such 

modeling are daunting as the construction of such a 

model would involve billions of atoms for protein 

and solvent, a size that is currently out of reach for 

current protein simulations (Fig.2). The 

computational modeling challenges associated with 

these methods are, however, enormous.  

 

 
Fig.2 Example of  multi-scale modeling hierarchical 

levels for collagen fibril biongineering modeling 

[7]. 

 

In fact, a collagen microfibril mechanics model is 

based on the periodic repetition of a crystallographic 

unit cell, necessitated by the significant 

computational cost associated with simulating this 

large molecular structure. So, collagen fibrils may 

feature additional interfaces and disorder between 

them that could affect the overall mechanical 

properties. All-atom simulations of the collagen 

microfibril with explicit solvent are computationally 

very intense. As an example, the fully solvated (full-

atomistic model contains ≈57,000 atoms (≈25,000 in 

the dehydrated [dry] model), requiring about 6 hours 

per nanosecond modeling on 32 CPUs on a parallel 

machine in [7]. From a mathematical point of view, 

this kind of modeling is subjected to computational 

combinatorial explosion quite easily (Fig.3) We 

need more efficient representation and convenient 

computational multi-scale modeling tools. We need 

a better modeling understanding of the physics at 

the core of 1) arbitrary multi-scale modeling, 2) 



mesoscale modeling and 3) quantum field theory 

interaction dynamics. 

 

2.1 Arbitrary Multi-Scale Modeling 
The most fundamental concept of Mathematical 

Analysis is that of the function. Two sorts of 

functions are to be distinguished. First, functions in 

which the independent variable x may take every 

possible value in a given interval; that is, the 

variable is continuous. These functions belong to the 

domain of Infinitesimal Calculus (IC). Secondly, 

functions in which the independent variable x takes 

only given values; then the variable is discontinuous 

or discrete. In the same way, we talk of continuous 

probability distribution and discrete probability 

distribution. Unfortunately, to discrete variable the 

methods of IC are NOT applicable without 

information dissipation. To deal with discrete 

variables, we need the Finite Differences Calculus 

(FDC).  

 

 
Fig.3 Top-Down (TD) and Bottom-Up (BU) scale-

relative Point-Of-View (POV) in an arbitrary multi-

scale Modeling Framework. 

 

The origin of this Calculus may be ascribed to 

Taylor [8], but the real founder of the theory was 

Jacob Stirling [9], who solved very advanced 

questions, and gave useful methods. Introducing the 

famous Stirling numbers, he paved the way even to 

an important part of modern combinatorics. The 

Stirling numbers form the backbone of FDC. To 

find innovative solution, we just need to remember 

the Relativity’s father inspiration quote: "We cannot 

solve our problems with the same thinking we used 

when we created them." To grasp a more reliable 

representation of reality and to get stronger 

biological and physical system correlates, 

researchers and scientists need two intelligently 

articulated hands: both stochastic and combinatorial 

approaches synergically articulated by natural 

coupling [10]. Let’s say we need a fresh 'Science 

2.0' approach. Unfortunately, the previous two large 

mathematical research areas, discussed in present 

paper introduction, have followed separate 

mathematical development paths with no articulated 

synergic coupling. In the past, many attempts to 

arrive to a continuum-discrete unified mathematical 

approach have been proposed, all of them with big 

operational compromises, and we can go back at 

least to the introduction of the Riemann–Stieltjes 

integral, published in 1894 by Dutch mathematician 

Thomas Joannes Stieltjes (1856–1894), which 

unifies sums and integrals [11]. Every approach that 

uses analytical function applies a top-down (TD) 

point-of-view (POV) implicitly. These functions 

belong to the domain of Infinitesimal Calculus (IC). 

From a system computational perspective, all 

approaches that use a TD scale-free POV allow for 

starting from an exact global solution panorama of 

analytic solution families, which offers a shallow 

local solution computational precision to real 

specific needs (in other words, from global to local 

POV overall system information is not conserved, as 

misplaced precision leads to information dissipation 

[10,12], Fig.3). In fact, usually further analysis and 

validation (by probabilistic and stochastic methods) 

is necessary to get localized computational solution 

of any practical value, in real application. A local 

discrete solution is worked out and computationally 

approximated as the last step in their line of 

reasoning, that started from an overall continuous 

system approach (from continuum to discreteness ≡ 

TD POV). Unfortunately, the IC methods are NOT 

applicable to discrete variable. To deal with discrete 

variables, we need FDC. FDC deals especially with 

discrete functions, but it may be applied to 

continuous function too. As a matter of fact, it can 

deal with both discrete and continuous categories 

conveniently. In other words, if we want to achieve 

an overall system information conservation 

approach, we have to look for a convenient 

(combinatorially explosion-free solution, Fig.3) 

bottom-up (BU) scale-relative POV (from 

discreteness to continuum view ≡ BU POV) to start 

from first, and NOT the other way around! We need 

tools able to manage ontological uncertainty more 

effectively [13,14]. We need a better understanding 

of the mesoscopic modeling level (molecular, 

supramolecular, etc.) related to microscopic and 

macroscopic system representations.  
 

 

2.2 Mesoscale Modeling 
We have to recall that among the discrete set of 

states of a given selection of atoms in such a state 

form a molecule. The point to stress here is, that the 

molecule will of necessity have a certain stability; 



the configuration cannot change, unless at least the 

energy difference, necessary to 'lift' it to the next 

higher level, is supplied from outside. Hence this 

level difference, which is a well-defined quantity, 

determines quantitatively the degree of stability of 

the molecule. It will be observed how intimately this 

fact is linked with the very basis of quantum theory, 

viz. with the discreteness of the level scheme. This 

order of ideas has been thoroughly checked by 

chemical facts; and it has proved successful in 

explaining the basic fact of chemical valency and 

many details about the structure of molecules, their 

binding-energies, their stabilities at different 

temperatures, and so on. I am speaking of concepts 

and experimentations, starting from the Heitler- 

London theory and arriving to QFT, which cannot 

be examined in detail here. We must content 

ourselves with examining the point which is of 

paramount interest for our biological modeling 

problem, namely, the stability of a molecule at 

different temperatures. Take our system of atoms at 

first to be actually in its state of lowest energy. The 

physicist would call it a molecule at the absolute 

zero of temperature. To lift it to the next higher state 

or level a definite supply of energy is required. The 

simplest way of trying to supply it is to 'heat up' 

your molecule. You bring it into an environment of 

higher temperature ('heat bath'), thus allowing other 

systems (atoms, molecules) to impinge upon it. 

Considering the entire irregularity of heat motion, 

there is no sharp temperature limit at which the 'lift' 

will be brought about with certainty and 

immediately. Rather, at any temperature (different 

from absolute zero) there is a certain smaller or 

greater chance for the lift to occur, the chance 

increasing of course with the temperature of the 

scale heat bath. The best way to express this chance 

is to indicate the average time you will have to wait 

until the lift takes place, the 'time of expectation' t. It 

is defined as: 

 

t = τ e
W/kT

.                                                             (01) 

 

where τ is a certain small constant of the order of 

10
-13

 or 10
-14    

s, e is the usual mathematical constant 

reference, W the energy difference itself that is 

required to effect the lift, and kT  the scale 

characteristic energy (characterizing the intensity of 

the heat motion at the scale temperature in 

question), where T is the absolute temperature and k 

is a numerically known constant, called 

Boltzmann’s constant (e.g. 3/2 kT is the average 

kinetic energy of a gas atom at temperature T). It 

stands to reason that the chance for effecting the lift 

is smaller, and hence that the time of expectation is 

longer, the higher the lift itself compared with the 

average heat energy, that is to say, the greater the 

ratio W/kT. What is amazing is how enormously the 

time of expectation depends on comparatively small 

changes of the ratio W/kT. To give an example: for 

W = 30 kT, the time of expectation might be as 

short as 1/10 s, but would rise to about 16 months 

when W = 50 kT, and to 30,000 years when W = 60 

kT! Now, this particular exponential function is not 

an accidental feature. It recurs again and again in the 

statistical theory of heat, forming, as it were, its 

backbone. It is a measure of the improbability of an 

energy amount as large as W gathering accidentally 

in some particular part of the system, and it is this 

improbability which increases so enormously when 

a considerable multiple of the 'average energy' kT is 

required. Actually a W = 30 kT is already extremely 

rare event (from an atomic point of view). That it 

does not yet lead to an enormously long time of 

expectation (only 1/10 s in our example) is, of 

course, due to the smallness of the factor T. This 

factor has a physical meaning. It is of the order of 

the period of the vibrations which take place in the 

system all the time. You could, very broadly, 

describe this factor as meaning that the chance of 

accumulating the required amount W, though very 

small, recurs again and again 'at every vibration', 

that is to say, about 10
13

 or 10
14

 times during every 

second. 

 

 

2.3 QFT Interaction Dynamics 
In quantum physics, the space-time distribution of 

matter and energy has a coarse-grained structure 

which allows its representation as an ensemble of 

quanta (particle representation). The local phase 

invariance is shown to hold if a field exists which is 

connected to the space-time derivatives of the phase. 

In the case of a system made up of electrically 

charged components (nuclei and electrons of 

atoms), as, for instance, a biological system, this is 

just the electromagnetic (e.m.) potential A𝜇, where 𝜇 

is the index denoting the usual four space-time 

coordinates 𝑥0 = 𝑐𝑡, 𝑥1, 𝑥2, 𝑥3. The electric and 

magnetic fields are suitable combinations of the 

space-time derivatives of A𝜇. In order to get the 

local phase invariance, we should assume that the 

system Lagrangian is invariant with respect to 

specific changes of the field A𝜇. Thus a specific 

principle of invariance, named 'gauge invariance,' 

emerges; hence the name 'gauge field' denotes A𝜇. 

Actually it is well known that the Maxwell 

equations just obey the gauge invariance, which in 

quantum physics becomes the natural partner of the 

phase invariance to produce our world. Quantum 



fluctuations give rise to e.m. potentials which spread 

the phase fluctuations beyond the system at the 

phase velocity. This gives an intrinsic 

nonlocalizability to the system and prevents a direct 

observation of quantum fluctuations. Through the 

e.m. potential, the system gets a chance to 

communicate with other systems. Notice that all 

e.m. interactions occur in a two-level way; the 

potential keeps the interacting particles phase-

correlated whereas the combination of its space-time 

derivatives, named e.m. field, accounts for the 

forces involved. The lower level, the potential, 

becomes physically observable only when the phase 

of the system assumes a precise value.The structure 

of electrodynamics makes possible the presence of a 

potential also when both electric and magnetic fields 

are absent, whereas on the contrary fields are always 

accompanied by potentials. The above solution 

which stems from the mathematical formalism of 

QFT [15] opens the possibility of tuning the 

fluctuations of a plurality of systems, producing 

therefore their cooperative behavior. However, 

some conditions must be met in order to implement 

such a possibility. Let us, first of all, realize that in 

quantum physics the existence of gauge fields, such 

as the e.m. potential, dictated by the physical 

requirement that the quantum fluctuations of atoms 

should not be observable directly, prevents the 

possibility of having isolated bodies. For this 

reason, the description of a physical system is given 

in terms of a matter field, which is the space-time 

distribution of atoms/molecules, coupled to the 

gauge field with the possible supplement of other 

fields describing the nonelectromagnetic 

interactions, such as the chemical forces. According 

to the principle of complementarity, there is also 

another representation where the phase assumes a 

precise value; this representation which focuses on 

the wave-like features of the system cannot be 

assumed simultaneously with the particle 

representation. The relation between these two 

representations is expressed by the uncertainty 

relation, similar to the Heisenberg relation between 

position and momentum: 

 

Δ𝑁 Δ𝜑 ≥1/2                                                      (02) 

 

connecting the uncertainty of the number of quanta 

(particle structure of the system) Δ𝑁 and the 

uncertainty of the phase (which describes the 

rhythm of fluctuation of the system) Δ𝜑. 

Consequently, the two representations we have 

introduced above correspond to the two extreme 

cases. (1) If Δ𝑁 = 0, the number of quanta is well 

defined, so that we obtain an atomistic description 

of the system, but lose the information on its 

capability to fluctuate, since Δ𝜑 becomes infinite. 

This choice corresponds to the usual description of 

objects in terms of the component atoms/molecules. 

(2) If Δ𝜑 = 0, the phase is well defined, so that we 

obtain a description of the movement of the system, 

but lose the information on its particle-like features 

which become undefined since Δ𝑁 becomes infinite. 

Such a system having a well-defined phase is 

termed coherent in the physical jargon. In the phase 

representation, the deepest quantum features appear 

since the system becomes able to oscillate with a 

well-defined phase only when the number of its 

components becomes undefined, so that it is an open 

system and able to couple its own fluctuations to the 

fluctuations of the surroundings. In other words, 

such a coherent system, like a biological one, is able 

to 'feel' the environment through the e.m. potential 

created by its phase dynamics. In conclusion, a 

coherent system involves two kinds of interaction: 

(A) an interaction similar to that considered by 

Classical Physics, where objects interact by 

exchanging energy. These exchanges are connected 

with the appearance of forces. Since energy cannot 

travel faster than light, this interaction obeys the 

principle of causality; (B) an interaction where a 

common phase arises among different objects 

because of their coupling to the quantum 

fluctuations and hence to an e.m. potential. In this 

case there is no propagation of matter and/or energy 

taking place, and the components of the system 

“talk” to each other through the modulations of the 

phase field travelling at the phase velocity, which 

has no upper limit and can be larger than 𝑐, the 
speed of light. The process of the emergence of 

coherent structures out of a crowd of independent 

component particles has been investigated in the last 

decades and is presently quite well understood 

[16,17]. The presence of this field has received 

experimental corroboration by the discovery of the 

so-called 'Lamb shift,' named after the Nobel prize 

winner Lamb [18]. He discovered as far back as in 

1947 that the energy level of the electron orbiting 

around the proton in the hydrogen atom is slightly 

shifted (about one part per million) with respect to 

the value estimated when assuming that no e.m. 

field is present. Further corroboration for the 

existence of vacuum fluctuations is provided by the 

Casimir effect [19]. Therefore a weak e.m. field is 

always present, just the one arising from the vacuum 

quantum fluctuations. We should now pay attention 

to an important mismatch of the scales present in the 

problem we are dealing with. An atom has a size of 



about 1 Angstrom (Å) which amounts to 10
−8

 cm, 

whereas a typical excitation energy is in the order of 

some electron volts (eVs), corresponding to a 

wavelength of the associated e.m. fluctuation in the 

order of some thousand Å. This means that the tool 

(the e.m. fluctuation) able to induce a change of 

configuration in the atom is some thousands of 

times wider than the atom itself. Hence a single 

quantum fluctuation can simultaneously involve 

many atoms. In the case, for instance, of the water 

vapor at boiling temperature and normal pressure, 

the exciting e.m. mode (in this case 12 eV) would 

include in its volume about 20,000 molecules. Let 

us assume now that in the volume 𝑉 = 𝜆3
 of the 

fluctuation there are 𝑁 atoms. Let 𝑃 be the 

probability (calculated by using 'Lamb shift'-like 

phenomena) that an isolated atom is excited by an 

e.m. quantum fluctuation. Therefore the probability 

𝑃𝑁 that one out of the 𝑁 atoms gets excited by the 

fluctuation is given by: 

 

𝑃𝑁 = 𝑃𝑁 = 𝑃𝜆3
 (𝑁/𝑉) = 𝑃𝜆3𝑑,                              (03) 

 

where 𝑑 is the density of atoms. We can see that 

there is a critical density 𝑑crit such that 𝑃𝑁 = 1, 

which means that the fluctuation excites with 

certainty one atom. In such conditions, the virtual 

photon coming out from the vacuum is 'handed over' 

from one atom to another and gets permanently 

entrapped within the ensemble of atoms, being busy 

in keeping always at least one atom excited. 

According to this dynamics atoms acquire an 

oscillatory movement between their two 

configurations. In a short time, many quantum 

fluctuations pile up in the ensemble, producing 

eventually a large field which keeps all atoms 

oscillating between their two configurations. 

Moreover, the field gets self-trapped in the 

ensemble of atoms since its frequency becomes 

smaller; actually the period of oscillation 𝑇 of the 

free field should be extended by adding the time 

spent within the excited atoms. Like in the cavity of 

a laser, the field becomes coherent, that is, acquires 

a well-defined phase, in tune with the oscillations of 

the atoms, which therefore become coherent, too. 

The more realistic case of atoms having a plurality 

of excited states has been also successfully 

addressed and needs a more sophisticated 

mathematics [16]. Among all the excited levels, the 

one selected for giving rise to the coherent 

oscillation is the level requiring the smallest time to 

self-produce a cavity. The region becomes a 

coherence domain (CD) whose size is the 

wavelength of the e.m. mode, where all atoms have 

tuned their individual fluctuations to each other and 

to the oscillation of the trapped field [20]. The size 

of the coherence domain cannot be arbitrary but is 

determined in a selfconsistent way by the dynamics 

underlying the emergence of coherence via the 

wavelength of the involved e.m. mode. A coherent 

system is therefore an ensemble of self-determined 

e.m. cavities. The fact that a biological system 

appears to be a nested ensemble of cavities within 

cavities of different sizes (organs, tissues, cells, 

organelles, etc.) having well-defined sizes is a 

strong indication for its coherence. In a CD there is 

a common phase, specific of the CD, which is 

therefore an object governed by a dynamics which 

eliminates the independence of the individual 

components and creates a unitarily correlated 

behavior of all of them, governed by the e.m. field. 

A peculiar feature appears in the case of water. The 

coherent oscillation of the water molecules, which 

induces the formation of the CDs, occurs between 

the molecule’s ground state and an excited state at 

12.06 eV, which is slightly below the ionization 

threshold at 12.60 eV. The electron cloud of the 

water molecule oscillates between a configuration 

where all electrons are tightly bound (in this 

configuration water is an insulator and a mild 

chemical oxidant, since it is able to bind an extra 

electron) and a configuration where one electron is 

almost free (in this configuration water becomes a 

semiconductor and a chemical reducer, since it is 

able to release electrons). In conclusion, liquid 

water (which contributes about 70% of the total 

mass and 99% of the total number of component 

molecules of a living organism) exhibits a twofold 

inner dynamics [20]. This feature confirms the 

proposal of Schrodinger [21] about the need of 

negative entropy (negentropy) for the appearance of 

order in living systems. The theoretical framework 

outlined above has increasingly received support by 

a growing body of evidence. First of all, one should 

realize that the QFT picture satisfies the two main 

requirements demanded by biological evidence: the 

existence of selective recognition and attraction 

among biomolecules (organic codes) and long-range 

connections among biocomponents which cannot be 

accounted for by the very short-range interactions 

implied by a purely chemical dynamics. Secondly, 

'Science 1.0' researchers and scientists are unware 

that QFT picture is already well present and 

hardwired in our current computational tools. This 

new awareness leads to our exploitation of more 

efficient and competitive computational modeling 

tools. 

 



3 Results 
CICT is a natural framework for arbitrary multi-

scale computer science and systems biology 

computational modeling in the current landscape of 

modern QFT [10,12]. We have selected an example 

to show how leading zeros in positional notation 

representation system for CICT Q Arithmetic do 

count effectively to get coherent phased 

representation correctly. They can even model the 

quantum-classical system transition quite 

efficiently. With no scale related coherent inner 

phase information, we get system decoherence, 

entropy generation, information dissipation and 

algorithmic quantum incomputability on real 

macroscopic machines. Our results are presented in 

term of classical power series to show the close 

relationships to classical and modern control theory 

approaches for causal continuous-time and discrete-

time linear systems. Usually, the continuous Laplace 

transform is in Cartesian coordinates where the x-

axis is the real axis [22] and the discrete z-transform 

is in circular coordinates, where the rho-axis is 

mapping the Real axis [23].  

Traditional knowledge on significant figures of a 

number teaches that any 0 digit that comes before 

the first nonzero digit (leading zeros) can be omitted 

in a number string in positional notation 

representation system [24]. When leading zeros 

occupy the most significant digits of an integer, they 

could be left blank or omitted for the same numeric 

value [25]. Therefore, the usual decimal notation of 

integers does not use leading zeros except for the 

zero itself, which would be denoted as an empty 

string otherwise [26]. However, in decimal fractions 

between 0.0 and 1.0, the leading zeros digits 

between the decimal point and the first nonzero digit 

are necessary for conveying the magnitude of a 

number and cannot be omitted [24]. Let us introduce 

a convenient LTR symbolic compression operator as 

SCO ≡ <M│DS>, where DS is a finite digit string 

of length L and M is the number of times DS is 

repeated to get our unfolded digit string in full (e.g. 

(4│1) ≡ 1111 or (2│123) ≡ 123123). Usual 

symbolic string operations can be applied to SCO. 

Then, we can write usual rational number 

OpeRational Representation (OR) corresponding to 

their Symbolic Representation (SR) as [27]: 

...001001001001001001001001001001001.0
999

1

3

1
3

...0101010101010101010101.0
99

1

2

1
2

...11111111111.0
9

1

1

1
1
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in a more compact RFD QL format as: 







001.0
999

1

3

1
3

01.0
99

1

2

1
2

1.0
9

1

1

1
1

D
Q

D
Q

D
Q

   .                                   (05) 

 

In the same way, we can write: 





142857.0
7

1

4

1
4

as...857142857714285714242857142851.0
7

1

4

1
4

D
Q

D
Q

.(06)) 

On the other hand, we have: 

.form)compressedsecond(or)7105(.0
142857

1

5

1
5

form)compressedfirst(either000007.0
142857

1

5

1
5

aswritten...000700000707000007000000070000.0
142857

1

5

1
5
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                                                                             (07) 

Now, we can realize that Q4 RFD is related by Q5 

RFD and vice-versa by periodic scale relativity 

(precision length) L = 6 [27]. So, to conserve the full 

information content of rational correspondence 

between Q4 and Q5, we realize that we have to take 

into account not only the usual Q4 and Q5 modulus 

information, but even their related periodic 

precision length information L = 6 (external world 

representation phase). As far as it concerns D5 it 

comes almost automatically, but the same it is not 

true for D4 (see (06)) because we wrote digit 7 only 

as denominator, without its five leading zeros, 

according to traditional knowledge on significant 

figures of a number. In that way, we lose the 

rational correspondence intrinsic period information 

(coherence) which an inner relative phase for each 

RTL (right-to-left) string generator can be computed 

from (i.e. from their optimized exponential cyclic 

sequences (OECS) of RL [12]). With no scale related 

coherent inner phase information, we get system 

decoherence, entropy generation and information 

dissipation. In fact, misplaced precision leads to 

information opacity, fuzzyness, irreversibility, 

chaos, complexity and confusion. Therefore, 

rational information can be better thought to be 

isomorphic to vector information rather than to 

usual scalar one, at least. Now, from (07) second 

compressed form, it is immediate to verify the 

following phase relations: 














...,,3,2,1Nfor)710)1N(65(.0
142857N

1

N

1
N

)71017(.0
571428571428571428

1

3

1
3

)71011(.0
571428571428

1

2

1
2

)7105(.0
142857

1

1

1
1

DD
QQ
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QQ
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QQ
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QQ

.                                                                            (08) 



Therefore, we can write the following final relation: 

 




 142857.0
)710(

1

4

1
4

CD
CQ

. (09) 

According to our SCO approach, the coherent 

representation CD4 emerges out of an LTR (left-to-

right) infinity of symbolic structured infinite length 

sequences as in (09). By this point of view, 

traditional natural numbers, according to human 

common knowledge, appear as just the rightmost 

approximated part of those sequences. So, CD4 in 

(09) is the correct coherent relation representation of 

traditional scalar modulus D4 in (06) as 

denominator, while scalar modulus D4 in (06) can 

be interpreted as the decoherenced relation 

representation of CD4 denominator in (09). Leading 

zeros in positional notation representation system 

for CICT Q Arithmetic do count effectively, and can 

model the quantum-classical system transition quite 

efficiently. Finally, our knowledge of RFDQL and 

corresponding RFDRL can allow reversing LTR 

numeric power convergent sequence to its 

corresponding RTL numeric power divergent 

sequence uniquely [27]. Reversing a convergent 

sequence into a divergent one and vice-versa is the 

fundamental property to reach information 

conservation, i.e. information reversibility. 

Eventually, OECS have strong connection even to 

classic DFT algorithmic structure for discrete data, 

Number-Theoretic Transform (NTT), Laplace and 

Mellin Transforms [12]. Scale related, coherent 

precision correspondence leads to transparency, 

ordering, reversibility, kosmos, simplicity, clarity, 

and, as you saw from previous discussion, to 

algorithmic quantum incomputability on real 

macroscopic machines [14]. CICT fundamental 

relation (see [10]) allows to focus our attention on 

combinatorially optimized number pattern generated 

by LTR or RTL phased generators and by 

convergent or divergent power series with no further 

arbitrary constraints on elementary generator and 

relation. Thanks to subgroup interplay and intrinsic 

phase specification through polycyclic relations in 

each solid number (SN) remainder sequence [27], 

word inner generator combinatorial structure can be 

arranged for 'pairing' and 'fixed point' properties for 

digit group with the same word length [12]. 

Actually, since space is limited, the discussion here 

will not be extended further to the subgroup 

interplay of the family group and polycyclic groups. 

We refer the interested reader to good general 

references on polycyclic groups [28,29].  

 

 

4 Conclusion 
The final result is CICT new awareness of a 

hyperbolic framework of coded heterogeneous 

hyperbolic structures, underlying the familiar 

Euclidean surface representation system. CICT 

emerged from the study of the geometrical structure 

of a discrete manifold of ordered hyperbolic 

substructures, coded by formal power series, under 

the criterion of evolutive structural invariance at 

arbitrary precision. It defines an arbitrary-scaling 

discrete Riemannian manifold uniquely, under 

hyperbolic geometry (HG) metric, that, for arbitrary 

finite point accuracy level L going to infinity under 

scale relativity invariance, is isomorphic (even 

better, homeomorphic) to classic Riemannian 

manifold (exact solution theoretically). In other 

words, HG can describe a projective relativistic 

geometry directly hardwired into elementary 

arithmetic long division remainder sequences, 

offering many competitive computational 

advantages over traditional Euclidean approach. 

More generally, CICT is a natural framework for 

arbitrary-scale computer science and systems 

biology modeling in the current landscape of 

modern Geometric Science of Information (GSI). 

Specifically, high reliability organization (HRO) 

[30], mission critical project (MCP) system [31], 

very low technological risk (VLTR) and crisis 

management (CM) system will be highly benefitted 

mostly by these new techniques. The present paper 

is a relevant contribute towards arbitrary-scale 

computer science and systems biology modeling, to 

show how computational information conservation 

can offer stronger and more effective system 

modeling algorithms for more reliable simulation. 
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