
Detour Planning for Fast and Reliable
Failure Recovery in SDN with OpenState

Antonio Capone∗, Carmelo Cascone∗†, Alessandro Q.T. Nguyen∗, Brunilde Sansò†
∗ Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy

Email: antonio.capone@polimi.it, alessandro.nguyen@mail.polimi.it
† Département de génie électrique, École Polytechnique de Montréal, Canada

Email: carmelo.cascone@polymtl.ca, brunilde.sanso@polymtl.ca

Abstract—A reliable and scalable mechanism to provide pro-
tection against a link or node failure has additional requirements
in the context of SDN and OpenFlow. Not only it has to
minimize the load on the controller, but it must be able to
react even when the controller is unreachable. In this paper we
present a protection scheme based on precomputed backup paths
and inspired by MPLS “crankback” routing, that guarantees
instantaneous recovery times and aims at zero packet-loss after
failure detection, regardless of controller reachability, even when
OpenFlow’s “fast-failover” feature cannot be used. The proposed
mechanism is based on OpenState, an OpenFlow extension that
allows a programmer to specify how forwarding rules should
autonomously adapt in a stateful fashion, reducing the need to
rely on remote controllers. We present the scheme as well as two
different formulations for the computation of backup paths.

I. INTRODUCTION

Failure management is one of the fundamental instruments
that allows network operators to provide communication ser-
vices that are much more reliable than the individual network
components (nodes and links). It allows reacting to failures of
network components by reconfiguring the resource allocation
so as to make use of the surviving network infrastructure able
to provide services.

Traditionally, failure resilience has been incorporated in
distributed protocols at the transport (like e.g. SDH) and/or
network layer (like e.g. MPLS) with some optimization of
resources pre-computed for a class of possible failures (like
e.g. single link or node failures) and implemented with sig-
naling mechanisms used to notify failures and activate backup
resources.

With the introduction of the revolutionary and success-
ful paradigm of Software-defined Networking (SDN), the
traditional distributed networking approach is replaced with
a centralized network controller able to orchestrate traffic
management through the programing of low-level forwarding
policies into network nodes (switches) according to simple
abstractions of the switching function like that defined in
OpenFlow with the match/action flow table [1].

Even if SDN and OpenFlow provide huge flexibility and
a powerful platform for programming any type of innova-
tive network application without the strong constraints of
distributed protocols, they can make the implementation of
important traditional functions, like failure resilience, neither
easy nor efficient, since reaction to events in the network must

always involve the central controller (notification of an event
and installation of new forwarding rules) with non-negligible
delays and signaling overheads.

New versions of OpenFlow [2] have recently introduced
a mechanism, namely fast-failover, for allowing quick and
local reaction to failures without the need to resort on central
controller. This is obtained by instantiating multiple action
buckets for the same flow entry, and applying them according
to the status of links (active or failed). However, fast-failover
can be used only to define local detour mechanisms when
alternative paths are available from the node that detects
the failure. Depending on network topology and the specific
failure, local detour paths may not be available or they may
be inefficient from the resource allocation point of view.

A recent proposal (by some of the authors) [3], [4],
named OpenState, has extended the data plane abstraction
of OpenFlow to include the possibility for switches to apply
different match-actions rules depending on states and to make
states evolve according to state machines where transitions are
triggered by packet-level events.

In this paper, we propose a new approach to failure
management in SDN which exploits OpenState ability to react
to packet-level events in order to define a fast path restoration
mechanism that allows to reallocate flows affected by failure
by enabling detours in any convenient nodes along the primary
path. No specific signaling procedure is adopted for triggering
detours, rather the same packets of the data traffic flows are
tagged and forwarded back to notify nodes of the failure and
to induce a state transition for the activation of pre-computed
detours.

We define optimization models for the computation of
backup paths for all possible single node and link failures that
consider multiple objectives including link congestion level,
distance of the reroute point from the failure detection point,
and level of sharing of backup paths by different flows. We
show that the MILP (Mixed Integer Linear Programming)
formulations proposed are flexible enough to incorporate the
optimization of the OpenFlow fast-failover reroutes as a special
case and that path computation for all possible failure scenarios
can be performed within reasonable time for realistic size
networks with state-of-the-art solvers (cplex).

The reminder of the paper is presented as follows. In
Section II we first present an overview of OpenState and next
we present the proposed failure recovery scheme in Section III.
Related work is reviewed in Section IV and in Section V two978-1-4799-7795-6/15/$31.00 c©2015 IEEE

headers
+ next-state

…

DEFAULT

…

✳

…

statematch key

…

……

…
…

State table
Flow table

headers
+ state

headers
+ actions

…
…
…

…

actions

…
… …

…
…

headers state
match fields

SET_STATE next-state

pkt headers

Fig. 1: Simplified packet flow in OpenState.

modelling formulations are presented. Computational results
are discussed in Section VI. Conclusions are provided in
Section VII.

II. OPENSTATE

The most prominent instance of SDN is OpenFlow, which,
by design, focuses on an extreme centralization of the network
intelligence at the controller governing switches, which in turn
are considered dumb. In OpenFlow, adaptation and reconfigu-
ration of forwarding policies can only be performed by remote
controllers, with a clear consequence in terms of overhead
and control latency. OpenState is an OpenFlow extension that
enables mechanisms for controllers to offload some of their
control logic to switches. In OpenState, the programmer is
able to define forwarding rules that can autonomously adapt
in a stateful fashion on the basis of packet-level events. The
motivation beside OpenState is that control tasks that require
only switch-local knowledge are unnecessarily handled at
the controller, and thus can be offloaded to switches, while
maintaining centralized control for those tasks that require
global knowledge of the network.

OpenState has been designed as an extension (superset)
of OpenFlow. In OpenState the usual OpenFlow match/action
flow table is preceded by a state table that contains the so called
“flow-states”. First, packets are matched against the state table
using only a portion of the packet header (a programmable
lookup-key), a state lookup operation is performed and a state
label (similar to OpenFlow’s metadata) is appended to packet
headers. A DEFAULT state is returned if no row is matched in
the state table. Packets are then sent to the flow-table where
the usual OpenFlow processing is performed, while a new
SET_STATE action is available to insert or rewrite rows of the
state table with arbitrary values. Figure 1 illustrates the packet
flow in the two tables. OpenState allows also to match packets
using “global-states”, so called because, in contrast to flow-
states, these are globally valid for the whole switch (datapath)
and not just for a given flow. By using flow-states and global-
states a programmer can define flow entries that apply to
different scenarios, and by using state transition primitives she
can control how those scenarios should evolve.

OpenState has been showed to bring tangible benefits in
the implementation of fundamental network applications [4].
An open-source implementation of an OpenState controller and
switch can be found at [5], along with a modified version of
Mininet and few application examples.

III. PROPOSED APPROACH

The approach we take is similar to that used in crankback
signaling [6]. In the context of end-to-end QoS in MPLS and

source
node

reroute
node

detect
node

destination
node

PKT

TAG PKT

primary
path
forward back
path
detour

12

4

source
node

reroute
node

detect
node

destination
node

PKT

TA
G

PK
T

3 PKT

merge
node

merge
node

Fig. 2: Example of failure recovery with OpenState: in (1) the upstream node
detects the failure, tags the packet and forwards it back. In (2) the reroute node
receive the tagged packet, executes a state transition and forward the packet
on the detour. In (3) all the packets received for the considered demand after
the state transition, will be tagged and forwarded on the detour. Finally in (4),
at the end of the detour, the tag is popped and the packet is forwarded on the
primary path, towards its destination node.

GMPLS with RVSP-TE, when a connection or flow setup fails
because of a blocked link or node, crankback is a signaling
technique in which a notification of the failure is backtracked
along the flow path, from the upstream node that faces the
blockage up to the first node (called “repair point”) that can
determine an alternative path to the destination node.

Our solution is based on the same idea, but with the
major difference that, upon link or node failure, the same
data packets, and not a notification, can be sent back on
their original path. We distinguish two situations: (i) the node
which detects the failure is able to reroute the demand, and
(ii) the packet must be forwarded back on it’s primary path
until a convenient reroute node is encountered. In the first
case, solutions like OpenFlow’s fast-failover already guarantee
almost instantaneous protection switching without controller
intervention, while in the second case it would be impracticable
to signal the failure to other nodes without the intervention of
the controller. The novelty of our approach is given by the fact
that, in the second case, a crankback approach is performed
using the same data packets, which are first tagged (e.g. with
a MPLS label containing information on the failure event) and
then sent back trough the primary path. A reroute node who
receives the tagged packet will be able to respond to the failure
by rerouting the tagged packets and by enabling a detour for all
subsequent packets. That said, only the first packets of the flow
are sent back from the detect node. As soon as the first tagged
packet is processed by the reroute node, a state transition is
performed in the OpenState switch, and all subsequent packets
coming from the source node will be forwarded on the detour.
An example of the mechanism described so far is summarized
in Figure 2.

With this approach, flow-states are used to distinguish
the forwarding of each traffic demand at each switch. The
DEFAULT state implies that the demand can be forwarded
towards the next node on the primary path, other arbitrary
states are used to describe the specific failure that can affect

the demand, so that the same reroute nodes can react differently
according to the specific failure event. Global-states are instead
used to describe the operational status of switch ports (up or
down). In this case global-states are completely equivalent to
“port liveness” states used by OpenFlow fast-failover feature.

Our proposal is currently independent of the way failures
are detected, because it does not influence the modeling aspect
of the solution. We assume it could be implemented either via
Loss Of Signal (LOS) or Bidirectional Forwarding Detection
(BFD) [7] mechanisms. In both cases, as soon as the state of
the failed port is updated, our solution guarantees instantaneous
reaction with ideally zero packet-loss.

IV. RELATED WORK

Failure management in SDN is a topic that has been already
explored by the research community. In [8] the authors analyze
the case of restoration for OpenFlow networks, showing how
hard it is to achieve fast (< 50ms) recovery times in large
networks. Restoration is also taken into consideration in [9],
where the controller is entitled to monitor link status on
the network, and, in case of failure, it computes a new
path for the affected demand and replaces or deletes flow
entries in switches, accordingly. In [10] an end-to-end path
protection scheme is proposed: OpenFlow 1.1 is extended
by implementing in the switches a monitoring function that
allows to reduce processing load on the controller. Such a
function is used in conjunction with OpenFlow fast-failover
feature, thus allowing nodes to autonomously react to failures
by switching to a precomputed end-to-end backup path. In [11]
a segment protection mechanisms is proposed only for the case
of link failure. Backup paths are pre-installed, and OpenFlow
is extended to enable switches to locally react to connected
failed links. Another way to reduce the load at the controller
is presented in [12]. The authors propose a centralized moni-
toring scheme and a model to reduce the number of monitoring
iterations that the controller must perform in order to check all
links. A completely different and creative approach is proposed
in [13], where classic graph search algorithms are presented
to implement a solution based on the OpenFlow fast-failover
scheme, where backup paths are not known in advance but
nodes implement an algorithm to randomly try new routes to
reach the destination.

V. PROBLEM FORMULATION

Let G(N,A) be a symmetric directed graph so that N
represents the set of network switches, and A the set of links
between switches. The demands are assumed to be known
in advance. Also assumed is the fact that each demand will
be routed using a primary path optimized as a shortest-path
with link capacity constraints. Our main problem then focuses
on the evaluation of backup paths for each demand, for
every possible single failure scenario in the primary path. The
significance of a failure scenario will be clearly indicated in
the next subsection. For comparison purposes we also present,
at the end of the Section, a congestion avoidance version of
the same backup path problem.

A. Backup Path Problem Formulation

In the forthcoming model, we refer to “failure detection
event” rather than simply “failure state” to indicate that a

failure has been perceived. Moreover, instead of making an a
priori distinction between the case of link and the case of node
failure, a “fault detection event” f = (n,m) may be either.
The notation simply indicates that node n detects a failure
while transmitting to a downstream node m. Therefore two
distinct situations are considered: (i) a failure on link (n,m)
(e.g. disconnected or truncated cable, etc.) and (ii) a scenario
where downstream node m fails implying the disconnection of
all its adjacent links. When evaluating the backup path for a
given demand, we always consider the worst-case scenario of
a node failure, thus completely avoiding to forward packets to
m, except for the case where m is also the destination node
of the considered demand (m = td). In such a case, we try to
deliver packets to m avoiding the failed link (n,m).

Let us now define the following parameters:

Parameters

D set of demands to be routed;
sd source node of demand d;
td destination node of demand d;
βdij is equal to 0 if link (i, j) belongs to the primary

path for demand d, otherwise 1;
bd requested bandwidth for demand d;
cij total capacity of link (i, j);
wcap percentage of the link capacity available;
F set including all the possible failure detection

events (n,m) that can affect at least one primary
path;

Dnm subset of D including all the demands affected by
the failure detection events (n,m);

Dnm
1 subset of Dnm including all the demands d affected

by the failure detection event (n,m), when m is
not the destination node of the considered demand
and thus m 6= td;

Dnm
2 subset of Dnm including all the demands d affected

by the failure detection event (n,m), where m is
the destination node of the considered demand and
thus m = td;

Lm subset of A that will include all the links incident
to node m;

unmij represents the used capacity of link (i, j) when
link (n,m) fails. Note that in this parameter we
consider only the link capacity allocated for those
demands for which the primary path does not
include neither (m,n) or (n,m);

vmij is the used capacity of link (i, j) in case of failure
for node m. In this case we consider only the
link capacity allocated for those demands that are
not affected by a failure of node m, in other
words those demands which primary path does not
include any of the links incident to m;

pkd represents the link (i, j) in the k-th position of
the primary path for demand d, where k = 1
is intended as the first link of the primary path
starting from node sd;

λnmd is the number of nodes that a packet of demand
d traverses on the primary path, before reaching
node n of failure detection event (n,m). λnmd = 0
means that the failure has been detected by the first
node of the path.

Decision variables

ynmdij is equal to 1 if link (i, j) belongs to the backup
path of demand d in case of failure detection event
(n,m), otherwise 0;

hnmd non-negative integer that represents the number of
backward hops that a tagged packet of demand d
must perform in case of failure detection event
(n,m), before reaching the reroute node that will
enable the detour. When hnmd = 0 we mean that
node n that detected the failure is also the reroute
node;

zdij equal to 0 if (i, j) is not used by any backup
path (for every possible failure) for demand d,
otherwise 1.

Objective Function

min
∑

(n,m)∈F

∑
d∈Dnm

whh
nm
d

+
∑

(n,m)∈F

∑
d∈Dnm

∑
(i,j)∈A

wyy
nm
dij

+
∑
d∈D

∑
(i,j)∈A

wzβdijzdij (1)

The objective function is composed of three weighted terms.
The first minimizes the length of the reverse path that tagged
data packets must travel in case of failure. The second min-
imizes the length of backup paths. The third term minimizes
the number of links allocated to the backup paths for a given
demand, in other words we want more backup paths of the
same demand to share the same links. By using the three
weights wh, wy , and wz we are able to characterize the
behavior of the objective function in different ways.

Link availability constraints∑
(i,j)∈Lm

ynmdij ≤ 0 ∀(n,m) ∈ F,∀d ∈ Dnm
1 (2)

ynmdnm + ynmdmn ≤ 0 ∀(n,m) ∈ F,∀d ∈ Dnm
2 (3)

These constraints disable the use of certain links when
evaluating the backup path for a given demand.

Link capacity constraints

unmij +
∑

d∈Dnm

bdy
nm
dij +

∑
e∈Dmn

bey
mn
eij ≤ wcapcij

∀(n,m) ∈ F,∀(i, j) ∈ L (4)

vmij +
∑
n∈N :

(n,m)∈F

∑
d∈Dnm

bdy
nm
dij ≤ wcapcij

∀m ∈ N, ∀(i, j) ∈ L (5)

The above constraints insure that for every possible failure,
when allocating the backup paths, the link capacity must be
respected. The first set of constraints is specific for the case

of link failure, while the second set is specific for the case of
node failure. Because we do not know the exact nature of a
failure detection event, we want our solution to be valid (in
terms of resource allocation) in case of both link and node
failure.

Flow conservation constraints

∑
j∈N :

(i,j)∈A

ynmdij −
∑
j∈N :

(j,i)∈A

ynmdji =

1, if i = sd;

−1, if i = td;

0, otherwise.

∀i ∈ N, ∀(n,m) ∈ F,∀d ∈ Dnm (6)

These constraints assure that there is continuity in backup
paths.

Cycle avoidance constraints∑
j∈N :

(i,j)∈L

ynmdij ≤ 1 ∀i ∈ N, ∀(n,m) ∈ F,∀d ∈ Dnm (7)

These constraints avoid the creation of cycles in the backup
paths.

Reverse path constraints
λnm
d∑
k=1:

(i,j)=pkd

(1− ynmdij) ≤ hnmd

∀(n,m) ∈ F,∀d ∈ Dnm : λnmd 6= 0 (8)

These constraints are needed to evaluate the variable hnmd .

Capacity use constraints

zdij ≥ ynmdij ∀(i, j) ∈ A,∀(n,m) ∈ F,∀d ∈ Dnm (9)

These constraints are needed to evaluate the variable zdij .

Having reviewed the main backup path formulation, we
now present, in the the next subsection a congestion avoidance
formulation to be used for comparison purposes.

B. Congestion Avoidance Formulation

Let us first define the following additional variables:

µij represents the maximum capacity used on link
(i, j) w.r.t. all possible failure detection events;

φij represents the cost of using link (i, j) when the
capacity used is µij .

The problem can then be formulated as follows

Objective function

min
∑

(i,j)∈A

φij (10)

This new objective function is a classical non-linear con-
gestion related optimization function that aims at minimizing
the load on each link. As we will later see, the function will
be linearized in order to treat the integer problem.

TABLE I: Topologies summary

Topology | N | | A | | Nedge | | Ncore | | D |
Polska 12 36 9 3 72

Norway 27 102 16 11 240
Fat tree 20 64 8 12 56

Link capacity constraints

Previous constraints (2), (3) and (6) are maintained, while
link capacity constrains (4) and (5) are substituted by the
following:

unmij +
∑

d∈Dnm

bdy
nm
dij +

∑
e∈Dmn

bey
mn
eij ≤ µij

∀(n,m) ∈ F,∀(i, j) ∈ L (11)

vmij +
∑
n∈N :

(n,m)∈F

∑
d∈Dnm

bdy
nm
dij ≤ µij

∀m ∈ N, ∀(i, j) ∈ L (12)

µij ≤ wcapcij ∀(i, j) ∈ L (13)

(11) and (12) evaluate the maximum load on link (i, j)
for all considered failure detection events (m,n), while (13)
stipulates that even for the maximum value the capacity of the
link must be respected.

Linearization constraints

Given that φij in (10) is a non-linear performance function,
it should be linearized by the following constraints:

φij ≥
µij

wcapcij
∀(i, j) ∈ A (14)

φij ≥ 3
µij

wcapcij
− 2

3
∀(i, j) ∈ A (15)

φij ≥ 10
µij

wcapcij
− 16

3
∀(i, j) ∈ A (16)

φij ≥ 70
µij

wcapcij
− 178

3
∀(i, j) ∈ A (17)

φij ≥ 500
µij

wcapcij
− 1468

3
∀(i, j) ∈ A (18)

This set of equations represent the linearized load cost
function shown in Fig. 3.

VI. COMPUTATIONAL RESULTS

The model was tested on three different network topologies
portrayed in Figure 4. Two real backbone topologies, namely
Polska and Norway, taken from [14], and a fat tree, which is
an example of a symmetric topology well known for its degree
of fault-resiliency [15], and widely used in data centers. For
each topology, nodes are divided in two sets: edge nodes and

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

µij/(wcapcij)

φ
ij

Fig. 3: Load cost function φij

core nodes. Edge nodes act as source and destination of traffic
while core nodes are only in charge of routing.

As mentioned in Section V, one of the inputs of the model
is a set of primary paths evaluated as shortest paths for every
traffic demand. Once such input was known, backup paths were
found by varying weights wh,wy , and wz of objective function
(1). Three types of instances were evaluated for comparison
purposes: those referring to the backup problem with a given
set of weights, those referring to the congestion avoidance
formulation and those referring to a classic end-to-end path
protection formulation. A summary of such instances is given
below:

BP111 all three terms of the objective function are taken
into account;

BP100 only the first term is considered, thus the model is
forced to find a solution that minimizes the length
of the reverse path, converging to a solution
where failure detection node and reroute node are
the same;

BP010 only the second term is considered by minimizing
the length of backup paths from sd to td;

BP001 only the third term is considered, thus trying to
minimize the number of links allocated for all
backup paths of each demand;

BPCA congestion avoidance formulation of the BP prob-
lem, minimizing the maximum load for each link;

E2E classic end-to-end path protection problem for-
mulation.

The instances were executed assuming 2 different link
capacity sets ci,j : (i) capacity is set to the minimum value to
obtain a feasible solution, and (ii) links are over-provisioned
with very high capacity. For each test the requested bandwidth
for each demand is always set to bd = 1, and the available link
capacity parameter is fixed to wcap = 80%.

The models were formalized and solved to optimality with
AMPL-Cplex, using PCs with 8 CPU cores Intel Core i7 and
8GB of RAM. For all executions a solution was found in less
than 30 seconds, except for the case of BPCA evaluated for
the Norway topology, where the execution required about ten
minutes.

The solutions were compared evaluating the trade-off with
respect to the following parameters:

(a) (b) (c)

Fig. 4: Network topologies used in test instances: (a) Polska, (b) Norway, and (c) Fat tree

• Backup path length: this measure was assessed with
respect to the primary path length. A value of 100%
means that the length of the backup path is twice the
primary path length, whereas 0% indicates that the
two paths have the same length.

• Link capacity occupation: is the percentage of the
total link capacity allocated for all primary and backup
paths that use the considered link.

• Reverse path length: is the portion of the primary
path that a tagged packet has to traverse before being
rerouted. A value of 100% indicates that the packet
has to go back to the source node of the demand,
while a 0% means that the packet is rerouted from
the same node that detected the failure.

The complete set of results is shown in Table II and in
chart form in Figure 5.

In all instances BP111 offers the best trade-off in terms of
backup path length and reverse path length, with no major
drawbacks. BPCA produces better solutions in terms of link
capacity occupation, especially when considering instances
with minimum capacity cij (see Figures 5c, 5f and 5i for a
clearer view). The drawback of using BPCA is represented
by longer backup paths. In fact, for Norway and Polska
topologies, BPCA produces solutions with the longest backup
paths, about the double in both cases (Figures 5a and 5d).
However, note that in the case of an on-line scenario BPCA
would guarantee more residual capacity and thus a higher
probability of accepting new traffic demands.

Concerning the reverse path length, the best solution is
obtained with configuration BP100 (Figures 5b, 5e, 5h). The
drawback in this case is represented by longer backup paths,
about the double when compared to primary paths. It is
interesting to note that for the fat tree topology with cij = 100
(Figure 5h) BP100 returns a solution with reverse path length
equal to 0%. This is worth mentioning because this solution
would be suitable to be implemented with OpenFlow fast-
failover, where detect node and reroute node are always the
same. Unfortunately such a solution is not always feasible, as it
strongly depends on topology and capacity constraints. Indeed,
for all other cases, BP100 is unable to provide a solution with
0% reverse path length. Thanks to this result we can show
how our solution based on OpenState, which is able to handle
reverse paths, guarantees an higher degree of fault-resiliency
when compared to a solution based on OpenFlow fast-failover.

It is also interesting to note that for the Norway topology
the given set of primary paths has no feasible solution for
the E2E model. This is due to the fact that in the classic
formulation of E2E path protection, primary paths and backup
paths must be evaluated at the same time, thus avoiding the
situation where for a given primary path is impossible to
find a completely disjoint backup path. We show in this case
the flexibility of our approach by always providing a feasible
solution.

Finally, it is interesting to note how for the case of the fat
tree topology, the results obtained from BP111 are the same
of the E2E model, always having backup path length equal to
primary paths, and reverse path length equal to 100%. This
means that in case of failure, packets will be always rerouted
from the source node of the demand. In this case a solution
adopting OpenState would guarantee less disruption thanks to
the fact that nodes would be able to automatically switch to
the backup path, whereas OpenFlow would require to forward
packet to the controller to enable the backup path at the source
node by installing the respective forwarding rules.

VII. CONCLUSION

In this paper we have presented a new failure management
framework for SDN and a mathematical modeling approach
specifically designed to exploit the capabilities of OpenState.
The framework considers both single link and single node
failure. The protection scheme is based on the idea that, upon
failure detection, packets can be tagged and backtracked along
the primary path to signal the failure to the first convenient
reroute node, automatically establishing a detour path. Such
scheme aims at having zero packet loss after failure detection,
and doesn’t require controller intervention. The models were
tested on three well-known topologies and comparative results
were obtained, showing the superiority of the scheme with
respect to a classic end-to-end path protection scheme an with
respect to an approach based on the OpenFlow fast-failover
mechanism. We are currently working on the dimensioning
problem and developing the OpenState application to experi-
mentally validate the proposed solution.

Polska

BP111 BP100 BP010 BP001 BPCA E2E
0

20

40

60

80

100

48

80

47
52

103

85

48

105

47 50

103

79

Model

B
ac

ku
p

pa
th

le
ng

th

cij = 14 cij = 100

(a)

BP111 BP100 BP010 BP001 BPCA E2E
0

20

40

60

80

100

36

6

50

92

75

100

43

4

69

97

81

100

Model

R
ev

er
se

pa
th

le
ng

th

cij = 14 cij = 100

(b)

BP111 BP100 BP010 BP001 BPCA E2E
0

20

40

60

68 69 68
64

54

64

9 10 9 9 7 9

Model

L
in

k
ca

pa
ci

ty
oc

cu
pa

tio
n

cij = 14 cij = 100

(c)

Norway

BP111 BP100 BP010 BP001 BPCA
0

20

40

60

80

100

32

79

29

40

99

29

94

27

36

107

Model

B
ac

ku
p

pa
th

le
ng

th

cij = 30 cij = 300

(d)

BP111 BP100 BP010 BP001 BPCA
0

20

40

60

80

42

15

57

91

61

31

4

59

93

61

Model

R
ev

er
se

pa
th

le
ng

th

cij = 30 cij = 300

(e)

BP111 BP100 BP010 BP001 BPCA
0

20

40

60 59
61

58

53

45

6 7 6 5 4

Model

L
in

k
ca

pa
ci

ty
oc

cu
pa

tio
n

cij = 30 cij = 300

(f)

Fat tree

BP111 BP100 BP010 BP001 BPCA E2E
0

20

40

60

80

100

0

67

0 0

103

00

75

0 0

20

0

Model

B
ac

ku
p

pa
th

le
ng

th

cij = 13 cij = 100

(g)

BP111 BP100 BP010 BP001 BPCA E2E
0

20

40

60

80

100
100

4

97 100

85

100100

0

89

100

84

100

Model

R
ev

er
se

pa
th

le
ng

th

cij = 13 cij = 100

(h)

BP111 BP100 BP010 BP001 BPCA E2E
0

10

20

30

40

50

59
57

52
50 50 50

6
8 7 6 6 6

Model

L
in

k
ca

pa
ci

ty
oc

cu
pa

tio
n

cij = 13 cij = 100

(i)

Fig. 5: Result charts for the three topology examinated

TABLE II: Computational results

Instance Model Backup path length Link capacity occupation Reverse path length
min max avg (var) min max avg (var) min max avg (var)

BP111 0% 300% 48% (61%) 29% 79% 68% (10%) 0% 100% 36% (41%)
BP100 0% 900% 80% (103%) 43% 79% 69% (9%) 0% 100% 6% (19%)

Polska BP010 0% 300% 47% (61%) 43% 79% 68% (9%) 0% 100% 50% (45%)
cij = 14, ∀(i, j) ∈ A BP001 0% 300% 52% (60%) 43% 79% 64% (12%) 0% 100% 92% (24%)

BPCA 0% 700% 103% (123%) 7% 79% 54% (20%) 0% 100% 75% (43%)
E2E 0% 300% 85% (75%) 29% 79% 64% (13%) 100% 100% 100% (0%)

BP111 0% 300% 48% (61%) 4% 12% 9% (2%) 0% 100% 43% (45%)
BP100 0% 600% 105% (118%) 5% 16% 10% (2%) 0% 100% 4% (16%)

Polska BP010 0% 300% 47% (61%) 6% 12% 9% (1%) 0% 100% 69% (43%)
cij = 100, ∀(i, j) ∈ A BP001 0% 300% 50% (61%) 4% 11% 9% (2%) 0% 100% 97% (16%)

BPCA 0% 700% 103% (136%) 2% 11% 7% (3%) 0% 100% 81% (39%)
E2E 0% 300% 79% (77%) 3% 12% 9% (2%) 100% 100% 100% (0%)

BP111 0% 500% 32% (55%) 3% 80% 59% (20%) 0% 100% 42% (43%)
BP100 0% 900% 79% (98%) 17% 80% 61% (18%) 0% 100% 15% (31%)

Norway BP010 0% 500% 29% (53%) 7% 80% 58% (20%) 0% 100% 57% (42%)
cij = 30, ∀(i, j) ∈ A BP001 0% 500% 40% (54%) 7% 80% 53% (20%) 0% 100% 91% (25%)

BPCA 0% 1600% 99% (137%) 0% 80% 45% (25%) 0% 100% 61% (49%)
E2E - - - - - - - - -

BP111 0% 500% 29% (51%) 0% 12% 6% (3%) 0% 100% 31% (39%)
BP100 0% 1400% 94% (131%) 1% 14% 7% (3%) 0% 100% 4% (17%)

Norway BP010 0% 500% 27% (52%) 0% 12% 6% (3%) 0% 100% 59% (42%)
cij = 300, ∀(i, j) ∈ A BP001 0% 500% 36% (53%) 0% 12% 5% (3%) 0% 100% 93% (23%)

BPCA 0% 1400% 107% (138%) 1% 10% 4% (3%) 0% 100% 61% (49%)
E2E - - - - - - - - -

BP111 0% 0% 0% (0%) 15% 77% 59% (13%) 100% 100% 100% (0%)
BP100 0% 500% 67% (70%) 31% 77% 57% (13%) 0% 100% 4% (13%)

Fat tree BP010 0% 0% 0% (0%) 23% 77% 52% (13%) 0% 100% 97% (18%)
cij = 13, ∀(i, j) ∈ A BP001 0% 0% 0% (0%) 15% 77% 50% (14%) 0% 100% 100% (0%)

BPCA 0% 150% 103% (128%) 0% 77% 50% (15%) 0% 100% 85% (35%)
E2E 0% 0% 0% (0%) 15% 77% 50% (15%) 100% 100% 100% (0%)

BP111 0% 0% 0% (0%) 1% 11% 6% (2%) 100% 100% 100% (0%)
BP100 0% 400% 75% (75%) 3% 12% 8% (2%) 0% 0% 0% (0%)

Fat tree BP010 0% 0% 0% (0%) 2% 12% 7% (2%) 0% 100% 89% (31%)
cij = 100, ∀(i, j) ∈ A BP001 0% 0% 0% (0%) 0% 12% 6% (2%) 100% 100% 100% (0%)

BPCA 0% 200% 20% (35%) 1% 11% 6% (2%) 0% 100% 84% (36%)
E2E 0% 0% 0% (0%) 0% 12% 6% (3%) 100% 100% 100% (0%)

ACKNOWLEDGMENT

This work has been funded by NSERC Discovery Grant
and by the European Community BEBA project. Luca Pollini
and Davide Sanvito were part of the team that coded the
algorithms in an OpenState emulator. We are grateful for their
input that allowed us to assess upfront the feasibility of the
proposed modeling approaches.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Mar. 2008.

[2] Open Networking Foundation, “OpenFlow switch specification ver 1.4,”
Tech. Rep., Oct. 2013.

[3] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState: pro-
gramming platform-independent stateful OpenFlow applications inside
the switch,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 2, pp.
44–51, Apr. 2014.

[4] G. Bianchi, M. Bonola, A. Capone, C. Cascone, and S. Pontarelli,
“Towards wire-speed platform-agnostic control of OpenFlow switches,”
arXiv preprint arXiv:1409.0242, 2014.

[5] “OpenState SDN project home page,” http://www.openstate-sdn.org.
[6] A. Farrel, A. Satyanarayana, A. Iwata, N. Fujita, and G. Ash,

“Crankback Signaling Extensions for MPLS and GMPLS RSVP-TE,”
RFC 4920 (Proposed Standard), Internet Engineering Task Force, Jul.
2007. [Online]. Available: http://www.ietf.org/rfc/rfc4920.txt

[7] D. Katz and D. Ward, “Bidirectional Forwarding Detection (BFD),”
RFC 5880 (Proposed Standard), Internet Engineering Task Force, Jun.
2010. [Online]. Available: http://www.ietf.org/rfc/rfc5880.txt

[8] D. Staessens, S. Sharma, D. Colle, M. Pickavet, and P. Demeester,
“Software defined networking: Meeting carrier grade requirements,”
in Local Metropolitan Area Networks (LANMAN), 2011 18th IEEE
Workshop on, Oct 2011, pp. 1–6.

[9] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“Enabling fast failure recovery in OpenFlow networks,” in Design of
Reliable Communication Networks (DRCN), 2011 8th International
Workshop on the, Oct 2011, pp. 164–171.

[10] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takacs, and P. Skold-
strom, “Scalable fault management for OpenFlow,” in Communications
(ICC), 2012 IEEE International Conference on, June 2012, pp. 6606–
6610.

[11] A. Sgambelluri, A. Giorgetti, F. Cugini, F. Paolucci, and P. Castoldi,
“OpenFlow-based segment protection in ethernet networks,” Optical
Communications and Networking, IEEE/OSA Journal of, vol. 5, no. 9,
pp. 1066–1075, Sept 2013.

[12] S. Lee, K.-Y. Li, K.-Y. Chan, G.-H. Lai, and Y.-C. Chung, “Path
layout planning and software based fast failure detection in survivable
OpenFlow networks,” in Design of Reliable Communication Networks
(DRCN), 2014 10th International Conference on the, April 2014, pp.
1–8.

[13] M. Borokhovich, L. Schiff, and S. Schmid, “Provable data plane connec-
tivity with local fast failover: Introducing Openflow graph algorithms,”
in Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’14. ACM, 2014, pp. 121–126.

[14] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski, “SNDlib 1.0
survivable network design library,” Networks, vol. 55, no. 3, pp. 276–
286, 2010.

[15] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, “PortLand: A scal-
able fault-tolerant layer 2 data center network fabric,” in Proceedings
of the ACM SIGCOMM 2009 Conference on Data Communication, ser.
SIGCOMM ’09. ACM, 2009, pp. 39–50.

