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Abstract— Artificial arms for shoulder disarticulation need a 

high number of degrees of freedom to be controlled. In order to 

control a prosthetic shoulder joint, an intention detection 

system based on surface electromyography (sEMG) pattern 

recognition methods was proposed and experimentally 

investigated. Signals from eight trunk muscles that are 

generally preserved after shoulder disarticulation were 

recorded from a group of eight normal subjects in nine 

shoulder positions. After data segmentation, four different 

features were extracted (sample entropy, cepstral coefficients of 

the 4th order, root mean square and waveform length) and 

classified by means of linear discriminant analysis. The 

classification accuracy was 92.1% and this performance 

reached 97.9% after reducing the positions considered to five 

classes. To reduce the computational cost, the two channels 

with the least discriminating information were neglected 

yielding to a classification accuracy diminished by just 4.08%. 

I. INTRODUCTION 

The upper limb loss, or its congenital absence, represents a 

remarkable impairment for an individual, as it prevents from 

carrying out a wide variety of activities of daily life. 

Nowadays, upper limb prostheses result to be the most 

effective solutions to this problem, but the higher the level of 

the damage, the more crucial is the need of an active 

prosthesis. Nevertheless, as far as amputation at shoulder 

level is concerned, little effort has been dedicated to the 

control system. This may be due to the relatively low 

incidence of major upper limb amputation and to the 

difficulty to control a high number of degrees of freedom. 

In order to increase user acceptance, less demanding 

electromyographic control methods, able to detect the 

patients’ intention should be devised. This could be done by 

recognizing patterns from SEMG of synergistic muscles 

spontaneously activated in correspondence with a predefined 

motor task, for example, achieving a position in space.  

In the case of major upper limb amputations, trunk 

muscles are particularly suitable to this purpose, as they are 

usually preserved, and their activities are tightly related to 

the intentional movements of the shoulder. A control 
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strategy could take advantage of this information in order to 

control the prosthetic limb position [2], [3]. 

Aim of this study was to experimentally verify whether a 

pattern recognition approach could be useful to classify a 

number of different shoulder movements. To this purpose 

we have implemented a classification algorithm and then 

checked the possibility to reduce the number of muscles to 

be analyzed without losing classification accuracy. 

II. BACKGROUND 

A. Pattern Recognition 

The myoelectric prostheses control underwent a 

significant improvement after the introduction of SEMG 

pattern recognition strategies [1], [4], [7]. This approach is 

based on the assumption that patterns of SEMG signals from 

several muscles include much information about the 

intentional movement of the prosthesis. The aim of this 

method is to match each SEMG pattern to one motion class 

among a multiplicity of preselected movements. Then the 

chosen movement is performed automatically in a pre-

programmed mode by the prosthetic device.  

Unlike the conventional myoelectric control, this method 

exploits the contraction of several synergistic muscles 

related to the movement the amputee wishes to perform, and 

does not require that a single degree of freedom is 

independently controlled. In this way, a more intuitive and 

rapid control can be obtained. Generally, a pattern 

recognition-based control approach involves these 

subsequent stages: 

 

1) Multi-channel SEMG acquisition of several upper limb 

movements. To improve the classification accuracy, the 

higher the number of motion classes to discriminate, the 

greater the number of SEMG acquisition channel that must 

be recorded. 

2) Data segmentation. Each channel has to be segmented 

into a series of time windows, adjacent or overlapping, from 

which a classification will be made. The window length has 

to satisfy real-time constraints that require the delay between 

command and actuation not to be greater than 300 ms, 

otherwise a movement delay will be perceived by the user 

[8]. To use a window length greater than 250 ms, windows 

must be overlapped. Smith et al. [6] suggested that the 

optimum window length for pattern recognition control is 

between 150 ms and 250 ms, depending on the skill of the 

subject. Phinyomark et al. [7] compared eight different 

combinations of window lengths and increments, and 
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highlighted that the best result in terms of robustness is 

obtained with a length of 500 ms and an increment of 125 

ms. The processing of myoelectric signal can be done 

including transients (i.e. at the contraction onset) [2] or 

steady states (i.e. during maintained contraction). Englehart 

et al. [5] showed that steady state data are classified more 

accurately than transient data, and, in the last case, 

classification suffers from less degradation with shorter data 

segments. 

3) Feature representation. This phase involves two stages: 

feature extraction and feature reduction. The first stage is 

used to extract the hidden information from the SEMG 

signal and to remove the unwanted components. Generally, 

features belong to three main domains: time domain, 

frequency domain and time-frequency domain. The time 

domain (TD) features, based on the signal amplitude, have 

been widely used in most previous studies due to their 

relative computational simplicity [4], [9], [10].The second 

stage is usually implemented to reduce the dimensionality of 

the initial feature space, attempting to preserve classification 

accuracy, while reducing the computational costs and the 

complexity of the classifier [11]-[13].  

4) Classification. The classifier receives as input the reduced 

feature set and it has to match the different patterns with the 

correct movement class as much accurately as possible. 

III. METHODS 

A. Subjects and Data Acquisition 

The experimental data were collected at the Movement 
Biomechanics and Motor Control Laboratory of Politecnico 
di Milano (Milan, Italy). Eight healthy subjects (four males 
and four females) aged 25.0±1.8 yrs took part in this 
experiment. They were informed about the experimental 
procedures and agreed to sign a written consent. All subjects 
declared to have had neither neuromuscular deficit nor 
shoulder trauma. 

Subjects performed a series of eight shoulder movements 
that were repeated ten times each. Every movement included 
four sequential phases, namely: resting, elevation, isometric 
holding and, finally, return to the rest condition. A set of 
eight movements were selected for analysis among the upper 
limb movements performed in the daily-life which mainly 
involve the shoulder joint: shoulder flexion (forward 
elevation, in the sagittal plane) by 45°, 90°, and 110°; 
shoulder hyperextension (backward elevation, in the sagittal 
plane) by -30°; shoulder abduction (elevation in the frontal 
plane) by 45° and 90°; shoulder elevation in a 45° externally 
rotated plane, by 45° and 90°. We focused on these 
movements because, according to [14], usual prosthetic 
solutions for shoulder disarticulation can reasonably control 
only 2 degrees of freedom. For this reason internal/external 
humeral rotation was not considered. Subjects were 
instructed to perform the movements with the hand relaxed, 
to exclude the activation of forearm muscles; in that way, the 
hand was always in the neutral position, i.e. naturally 
pronated without actively rotating the forearm, with the palm 
of the hand always perpendicular to the plane of elevation. 
No humeral axial rotation occurred in these conditions.  

 

 
 

Fig. 1.  Placement of the SEMG electrodes. 

 
After cleaning the skin surface, eight pairs of electrodes 

were placed over the following trunk muscles (see Fig. 1): 
clavicular and sternal heads of pectoralis major (Ch 1 and Ch 
2 respectively), serratus anterior (Ch 3), trapezius descendent 
(Ch 4), trapezius transversalis (Ch 5), trapezius ascendent 
(Ch 6), infraspinatus (Ch 7), and latissimus dorsi (Ch 8). 
These muscles are indeed synergistic in the analyzed 
movements and they are superficial muscles preserved also 
after upper limb amputation [15]. 

SEMG data were recorded by bipolar disposable pre-
gelled Ag/AgCl surface electrodes (26 mm diameter, Bielsan, 
Italy). They were connected to miniaturized, wireless probes 
(BTS- FREEEMG 300, Italy) for digital data collection. Each 
pair of electrodes was placed according to the guidelines 
provided by the Atlas of muscle innervation zones [16] with 
an interelectrode distance of 26 mm. 

Raw SEMG signals were recorded at a sampling rate of 
1.0 kHz and stored for off-line data processing in Matlab 
(The MathWorks, Natwick, USA). 

B. Data Segmentation 

Data analysis considered the only steady state phase 
(isometric hold) in order to be consistent with other studies 
described in literature (see [1], [5]). This phase lasted about 
3s. 

Data segmentation was performed selecting a window 
length L=500 ms and an increment I=62 ms. 

After a random shuffling of all acquired trials, data were 
split into a training dataset, the first 60%, and a test dataset, 
the last 40%. In order to verify whether the choice of training 
data could affect our results, a cross-validation was 
performed using different portions of data for training and 
testing. Ten independent classifications were performed 
using a 60% training window shifted of 10% of all data. After 
feature extraction from all datasets, the training set was used 
to reduce the dimensionality of the original feature set and to 
train the classifier. Instead, the test dataset was used to 
estimate the classification accuracy. 

C. Feature Selection 

For each of the six segmentations tested, a feature set was 
extracted: the TD feature set proposed in [7] for its 
robustness in time, i.e. sample entropy (SampEn), cepstral 
coefficients (CC) of the 4th order, root mean square (RMS), 
and  waveform length (WL). 

D. Classification 

Classification was performed using linear discriminant 
analysis (LDA) [17]. This classifier was chosen due to its 
advantages: high performance in EMG signal classification, 



  

low computational cost, ease of implementation, high speed 
training and robustness [2], [7], [10]. Furthermore, it does not 
require iterative training, avoiding the potential for under- or 
over-training, and it does not need any parameter adjustment. 

A study carried out by Hargrove et al. [14] compared 
LDA classifier with other more complex classifiers, 
demonstrating that there are no significant differences, in 
terms of classification accuracy. The authors concluded that, 
with an appropriate feature representation, the classification 
task could be reduced to a simple linear problem. 

The performance of the classification system was defined 
in terms of classification accuracy and was evaluated by 
considering three different sets of motion classes. The first 
set was composed by all motion classes described above with 
the rest class in addition. The second set consisted of five 
motion classes: shoulder flexion at 90°, shoulder 
hyperextension at -30°, shoulder abduction at 90°, shoulder 
elevation at 90° along the plane rotated by 45° in relation to 
the sagittal plane, and rest. The last set was composed by four 
motion classes: shoulder flexion at 90°, shoulder 
hyperextension at -30°, shoulder abduction at 90°, and resting 
condition. 

E. Dimensionality Reduction 

After having identified the most accurate method, we 
have investigated the effect of SEMG channel reduction on 
the classification performance. To this purpose, the mean 
value of each feature was calculated for each motion class 
and each acquisition channel. Then, in order to select the 
most relevant channels, the standard deviation of the features 
was used as a metric of dispersion and the channels showing 
the lowest dispersion among the classes were neglected. 

IV. RESULTS 

A. Feature Selection 

The cross-validation showed that the differences in the 

classification accuracy obtained from the different training 

sets were less than 4%, and these differences were mainly 

affecting the performance of the worst cases. The results 

shown are so related to just one of the ten different training 

sets: the one that considers the 60% training window at the 

beginning of the data. 

B. Classification accuracy 

The classification performance was assessed as the 

percentage of correctly classified motions over the tested 

motions included in each motion-classes subset considered. 

The classification accuracy was 100% , 97.94% and 92.11% 

for four-, five- and nine- motion classes, respectively.  

As expected, a deterioration in the classification accuracy 

was observed when increasing the number of classes.  

For the five-motion, resting and hyperextension at -30° 

achieved an accuracy of 100%. Instead, the shoulder 

elevation of 90° in an elevation plane externally rotated by 

45°, with a classification accuracy of 99.7%, was mostly 

misclassified  as abduction at 90° (6.8%) or flexion at 90° 

(3.4%). 

Finally, for the nine-motion, the most misclassified motion, 

with a classification accuracy of only 73.9%, was the flexion 

at 110°, which was misclassified as flexion at 90° (10.2%) or 

as shoulder elevation at 90° in an elevation plane externally 

rotated (3.1%).  The classes that showed the best estimation 

accuracy were, respectively, resting and hyperextension at -

30°, where the best classification accuracy was obtained 

(100%). 

C. Dimensionality Reduction 

The features extracted from the SEMG signals of the 

selected muscles showed a different level of sensitivity to 

the motion classes. For each feature, the channels that 

showed the lowest sensitivity to the variations observed 

among all motion classes were detected. As dispersion 

metric, the standard deviation of the mean values of each 

feature, among all motion classes and for all subjects, were 

considered. The channels that showed the lowest dispersion 

(defined as a percentage of the standard deviation reported in 

the first column) were the latissimus dorsi (Ch 8), the sternal 

head of the pectoralis major (Ch 2) and, to a lesser extent, 

the trapezius transversalis (Ch 5). 
 

Thus, these channels have been removed and the 

processing has been reapplied. Comparing the six-channel 

classification system with the eight-channel one, it can be 

observed that: for the four-class problem, the accuracy keeps 

the value of 100%; for the five-class problem, the channel 

reduction leads to a decline of classification accuracy of 

2.41%; while, for the nine-classes problem, the classification 

accuracy suffers from a deterioration of 4.08%. 

V. DISCUSSION 

In literature, several researches have focused on different 
kinds of upper-limb prosthetic control based on the 
myoelectric signal. However, they have considered the most 
common levels of amputation, i.e. transradial and 
transhumeral levels. The present work, instead, has taken into 
account the shoulder disarticulation.  

The primary aim of this study was to develop a SEMG 
classification system able to correctly estimate the intentional 
movement of a subject within a set of motion classes, at 
shoulder level. We considered, for data segmentation, a 
window length L=500 ms and an interval I=62 ms. Feature 
extraction plays an important role in the pattern recognition-
based control system. Indeed, a large number of previous 
papers investigated which feature set returns the best 
classification performance, mainly for transradial and 
transhumeral amputation level. In this study, we have chosen 
a feature set among the ones proposed in the previous works 
that proved to produce the lower classification error. When 
applied to the shoulder disarticulation problem, our results 
showed that the feature set composed by SampEn, CC, RMS 
and WL, whose advantages are its temporal robustness, as 
demonstrated in [7], and its definition in time domain, which 
results into an easy implementation, provides good 
performance. In the four-classes problem all of the 
movements are correctly classified. The addition of the 
elevation to 90° along the inclined plane, in the five-classes 
problem, yields an accuracy reduction equal to 2.61%, due to 
the misclassification with the flexion to 90° and the 
abduction to 90°. This result can be explained by the fact that 
this movement was a combination of the two classes just 
mentioned. Finally, in the nine-classes problem, the 



  

classification accuracy further decreases to 92.56%. This 
value was mainly due to the misclassification of the flexion 
to 110° with the flexion to 90°. This confusion can be 
ascribed to the closeness between these two motion classes. 

Furthermore, when reducing the SEMG channels from 
eight to six, the results suggest that, even when choosing the 
signals with the less discriminating information, this 
reduction yielded a significant reduction in classification 
accuracy in the nine-classes problem; whereas, in the four- 
and the five-classes problem, it produced a very slight 
decline. Indeed, the more the classes of movement to be 
discriminated, the higher the number of acquisition channels 
required [2]. Therefore, in the four- and five-classes 
problems, only six of the eight channels can be used without 
compromising the classification accuracy. In this way, we 
can reduce the complexity, the weight, and the cost of the 
prosthesis [2]. 

VI. CONCLUSION 

This paper focused on the SEMG acquisition and signal 

processing aiming to implement a classification system 

based on pattern recognition to be used for controlling an 

active prosthesis for major upper limb amputations. 

An EMG pattern recognition-based control system was 

implemented and evaluated in terms of classification 

accuracy. 

Finally, the reduction of the number of acquisition SEMG 

channels and its influence on the classification performance 

was assessed. In a future work, the validity of the proposed 

method will be tested on shoulder amputees. Moreover, 

other applications of this movement intention classification 

approach will be explored for neuroprostheses development, 

i.e. for controlling Functional Electrical Stimulation based 

systems Error! Reference source not found., Error! 

Reference source not found., for controlling rehabilitation 

robotics or exoskeletons, as well as in the field of domotic 

systems, for assisting severely disabled persons. 
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