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Abstract
Weprovide a fully quantumdescription of amechanical oscillator in the presence of thermal
environmental noise bymeans of a quantumLangevin formulation based on quantum stochastic
calculus. The systemdynamics is determined by symmetry requirements and equipartition at
equilibrium,while the environment is described by quantumBosefields in a suitable non-Fock
representationwhich allows for the introduction of temperature. A generic spectral density of the
environment can be described by introducing its state through a suitableP-representation. Including
interaction of themechanical oscillatorwith a cavitymode via radiation pressurewe obtain a
description of a simple optomechanical system inwhich, besides the Langevin equations for the
system, one has the exact input–output relations for the quantumnoises. Thewhole theory is valid at
arbitrarily low temperature. This allows the exact calculation of the stationary value of themean
energy of themechanical oscillator, as well as both homodyne and heterodyne spectra. The present
analysis allows in particular to study possible cooling scenarios and to obtain the exact connection
between observed spectra andfluctuation spectra of the position of themechanical oscillator.

1. Introduction

Optomechanical systems in the quantum regime are very important for quantum information processing and
for testing fundamental issues of quantummechanics [1–10]. Their theoretical analysis therefore calls for afirst
principle description. In particular since the focus is on quantum effects, the theoreticalmodelsmust be fully
consistent with quantummechanics. Actually the correct quantumdescription of amesoscopicmechanical
oscillator and of the thermal noise affecting it is not a trivial task, and there is not a unique acceptedmodel for
them [11–24].

Thefirst aimof this paper is therefore to obtain an accurate quantummechanical description of a
mechanical oscillator taken to be part of an optomechanical device. The oscillator cannot be considered as a
Brownian particle, but rather as amesoscopicmechanical system, say amovablemirrormounted on a vibrating
structure. Dissipative effects are essentially due to the interactionwith phonons. Our strategywill be to
introduce reasonable physical requirements leading to amaster equation in Lindblad form, valid for any
temperature of the thermal bath.We then translate these results into quantumLangevin equations andwe show
how to obtain a suitable non-Markovian generalization at this level of description. Relying on these results we
can consider the description of the simplest optomechanical system, that is amovingmirror interacting with an
electromagneticmode in a cavity via radiation pressure [1, 5–7, 25]. Again a suitable analysis of the composite
system and of themonitoring of the emitted light calls for a consistent quantumdescription.We shall obtain this
result by the use of quantumLangevin equations, directly deducing them from aunitary dynamics, and
exploiting the theory ofmeasurements in continuous time.

The paper is organized as follows. In section 2we determine the reduced dynamics of themechanical
oscillator. Here, the basic assumption is the use of aMarkovianmaster equationwith a quadratic generator and
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having a unique equilibrium state. Its structure is further determined by suitable symmetry requirements and by
physical constraints on the behaviour of themean values of position andmomentum. In section 3we introduce
the quantumLangevin equations for themechanical oscillator alone; thewhole presentation is based on the
notions of quantumnoise [26, 27] and of input–output fields [28–30], as well as on the use of quantum
stochastic calculus [31, 32]. The Bose fields entering in the unitary dynamics play the role of phonon fields. By
modifying their state without changing the time evolution operator it is possible to introduce non-Markovian
effects, namely a non-flat noise spectrum. The differences with respect to usual approaches are of relevance
especially at low temperatures, where the zero-pointfluctuations play an essential role.

A quantumoptomechanical system is studied in section 4 by using the quantumLangevin approach, within
a fully consistent formulation valid at any temperature. Firstly, the typical effect of laser cooling is discussed.
Then, the continuousmonitoring of the emitted light is introduced in sections 4.3.1 (homodyne detection) and
4.3.2 (heterodyne detection). The treatment is well based in the theory ofmeasurements in continuous time.
Detection of the emitted light is usually assumed to give a directmeasurement of the fluctuations of the position
of themechanical component.We show that this is true, but only for not too low temperatures; at very small
temperatures, interference terms are important and the direct connectionwith suchfluctuations is lost. This
leads to newpredictions on the optical spectra at very low temperature.Wefinally summarize and discuss our
results in section 5.

2.Dampedmechanical oscillator: themaster equation approach

As afirst step towards the construction ofmodels of optomechanical systems valid in the quantum regime at low
temperatures, we consider the reduced dynamics of an openmechanical oscillator. A fully consistent quantum
description of amassive nanomechanical component, kept at the simplest possible level, will be our basic
building block in order to considermore complex dynamics.We therefore formulate in the first instance a
Markovian description for themechanical oscillator, whichwe build up relying on general physical constraints
and symmetry requirements.

A standard approach often considered in the literature is to derive themaster equation for the harmonic
oscillator from effective environmentalmodels of bosonic oscillators [13, 14, 20–24]. However, previous work
[16, 17] has shown that, while using careful approximations a positiveMarkovian dynamics can be obtained in
this framework, the final results are valid only frommedium to high temperatures of the thermal bath. To ask for
aMarkovian dynamics based on symmetry arguments allows to get simpler andmore universalmodels, but
again serious problems appear. The requirement that the equilibrium state should be the canonical thermal state
determined by the standardHamiltonian of a harmonic oscillator is known to be incompatible with positivity
and translational invariance [11, 33, 34]. This incompatibility induced some authors to renounce to
translational invariance [15, 34], or to accept non-positive dynamical equations and to givemore relevance to
obtaining time evolutions very close to the classical ones [13, 14, 35]. A non-positive dynamics can be
satisfactorywhen the system is near the classical regime, but this approach becomes questionable when quantum
effects are searched for [36, 37].We shall show that it is possible tomaintain positivity and translational
invariance byweakening the requests on the equilibrium state. The key point will be a weak formulation of
energy equipartition at equilibrium.Our result is therefore to single out from themany proposals appearing in
the literature a unique consistent dynamics in theMarkov approximation.

2.1. Physical constraints and symmetry requirements
We formulate nowour assumptions, starting from the existence of awell defined positiveMarkovian dynamics,
describing damping and translationally invariant apart from the harmonic potential. Aweak equipartition
condition and the existence of a unique stationary state inGibbs form, as we shall see, will essentially fix the
structure of the reduced dynamics.

Assumption 1. (PositiveMarkovian dynamics with quadratic generator). The evolution of the statistical
operator of the oscillator is governed by aMarkovianmaster equation preserving the positivity of the states. The
generator of the dynamics is atmost quadratic in the position andmomentumoperators of themechanical
oscillator.

Thefirst assumption is to consider a time-homogeneous and linear time evolution. Such a dynamics can be
expressed in the form
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t
t t

d

d
( ) [ ( )], (1)ρ ρ=

with  a suitable generator or Liouville operator, atmost quadratic in the position andmomentumoperators of
themechanical oscillator q and p, so as to have atmost a quadratic potential term and a friction effect
proportional to themomentumof themechanical oscillator. In the case of linear systems it is known that
positivity and complete positivity of the dynamics are actually equivalent [11], therefore according to [38, 39]
the generator  must have the standard Lindblad structure. Themost general quadratic Liouville operator is
obtained in terms of two Lindblad operators [11]

( )R u q v p u v
1

, , , (2)j j j
2= + ∈




and a generic selfadjoint quadraticHamiltonian for themechanical system

H
h

q q p
h

p f q f p
2 4

{ , }
2

,
q p

q pm
2 0 2κ= + + + +

where all the constants are taken to be real, so that  takes the form
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2
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=

Weask now to have a damped oscillator, but not an overdamped one.

Assumption 2. (Damping). The ‘kinetic energy’ term is non-negative and themean values of position and
momentumdecay to zerowith an oscillating behaviour.

Apart from the trivial requirement of a positive kinetic energy term, we further look for a dynamics describing
the oscillating decay of themean values of q and p to zero. This condition complies with theMarkovian and
quadratic approximations, which are expected to be good only for small damping. Denoting by X t〈 〉 themean
value of a quantumoperatorwith the state t( )ρ solution of themaster equationwe have for position and
momentum
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with u v〈 ∣ 〉 the inner product in 2. The eigenvalues of the associated dynamicalmatrix are

u v h hIm 4 p q0
2κ− 〈 ∣ 〉 ± − , so that in order to have an underdamped dynamics we need u vIm 0〈 ∣ 〉 > and

h h4 p q0
2κ < . In particular hp and hq have the same sign and are non-vanishing. Positivity of the kinetic energy

leads to h 0p > and therefore h 0q > . Then, we canwrite h m1p = and h mq m
2Ω= ; the above inequality on 0κ

becomes 40
2

m
2κ Ω< . Finally, the vanishing of the equilibriummeans imply fq=0, fp=0. Introducing the

positive coefficients
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the generator can bewritten in the form
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where in particular the constraints

D D D D D0, 0,
2

0 (5)qq pp qq pp qp
2 m

2
⎜ ⎟
⎛
⎝

⎞
⎠

γ
⩾ ⩾ − − ⩾

hold, which provide the necessary and sufficient conditions for the dynamics described by (4) to be in Lindblad
form and therefore completely positive [11, 38]. An alternative way to get the same positivity condition is to ask
the generalizedHeisenberg uncertainty relation q p p q( { , } 2) 4t t t

2 2 2 2〈 〉 〈 〉 − 〈 〉 ⩾  to hold for any time and any
initial state [40].

Thefirst two assumptions are implicitly or explicitly taken in all theMarkovian approaches. A further
natural requirement is that the interactionwith the environment does not depend on the position of the
oscillator.
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Assumption 3. (Translational invariance). The reduced dynamics is invariant under translations apart from the
harmonic potential term. This requirement is equivalent to the validity of the classical equations ofmotion for
themean values of position andmomentum.

By applying the generic translation q q x↦ + , p p↦ to the generator (4)we see that all the terms are

invariant with the exclusion of the term containing the harmonic potential q q[ , { , }]
mi

2
m

2

ρ− Ω
and the last term

p q[ , { , }]
i( )

4
0 m ρ− κ γ−

. Therefore, the above assumption is satisfied if and only if 0 mκ γ= . The same conclusion is

reached by considering the equations ofmotion for position andmomentum and asking them to be equivalent
to the classical equations inwhich themomentum is proportional to the derivative of the position.

The result of the first three assumptions is therefore that the Liouville operator has the structure (4)with
00 mκ γ= > and 4m

2
m

2Ω γ> ; moreover, the constraints (5) hold. In particular, theHamiltonian part of  turns
out to be

H H q p H
p

m
m q

4
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2
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2
, (6)m 0

m
0

2

m
2 2γ

Ω= + = +

where, besides a contribution in the formof the freeHamiltonian of a harmonic oscillatorwith a strictly positive
frequency ,mΩ one has an additional term in the formof an anticommutator proportional to the damping
constant.

The evolution equations for themean values and secondmoments of position andmomentum then read:
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The dynamicalmatrix giving the evolution of themean values (7) has eigenvalues 2mγ− and

2 i 4m m
2

m
2γ Ω γ− ± − , which naturally leads to introduce the damped frequency mω of themechanical

oscillator in terms of its bare frequency :mΩ

4
. (9)m m

2 m
2

ω Ω
γ

= −

Let us note that according to 4 0m
2

m
2Ω γ> > we have ruled out the case 0mΩ = , which corresponds to a

quantumBrownian particle, that is amassive particle not bounded by a potential in a translation invariant
environment [18, 41–45] (see [46] for a recent review).

At this stagewe further have to determine the diffusion coefficientsDqp,Dqq andDpp appearing in (4).We
will rely on the study of features of the equilibrium state, but to avoid the known incompatibilities with
translation invariance [11]we formulate the equipartition condition in aweaker form, not asking the existence
of an equilibriumGibbs state generated byH0.

Assumption 4. (Equipartition). At equilibrium themean kinetic energy and themean potential energy have to
be equal.

Since the eigenvalues of the dynamicalmatrix associated to (8) have a positive real part, existence of a unique
attractive equilibrium state is granted, and thanks to the linearity of the equations the equilibrium state is actually
Gaussian and determined by themean values at equilibrium. Then, our equipartition condition is

p

m
m q

2

1

2
, (10)

2
eq

m
2 2

eq
Ω=

which gives equal weight to themean kinetic and potential energy at equilibrium. By setting in (8) the time
derivatives equal to zerowe come to
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Moreover, the secondmoments at equilibrium turn out to be
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Weexploit finally the residual freedomwehave in the choice of the diffusion coefficients to get aGibbs state
as equilibrium state. However, as we already noticed, it cannot be the state generated byH0, andwe replace it by a
generic effectiveHamiltonian.

Assumption 5. (Gibbs state and temperature dependence). The equilibrium state has aGibbs formwhich is
determined by an effectiveHamiltonian independent from the temperature.

Aswe shall prove below, this assumption implies that the diffusion coefficients have the expressions

D
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and that the equilibrium state has the form
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Heq

m

m

ρ =
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−

In these expressions, Hm is themechanical Hamiltonian (6) and N 0⩾ represents themean number of
excitations in the equilibrium state, namely

N
1

e 1
. (15)

m
=

−β ω

Let us prove the above statements. Thanks to theGaussianity of the equilibrium state, assumption 5means
cHexp { ˜}eqρ ∝ − for a suitable quadraticHamiltonian (without the linear terms, because themeans of position

andmomentumhave to be zero), say H m q p˜ ˜ ˜ { , }
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4
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Ω= + + γ , with ˜ ˜ 02 2 ˜
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ω Ω≔ − >γ in order eqρ to be

a trace-class operator. Then, the eigenvalues of H̃ have the form n˜( 1 2)ω + and, without changing eqρ , we can

redefine c and H̃ in such away that ˜ mω ω= and c β= , a positive constantwhich can be interpreted as the
inverse temperature of the equilibrium state of themechanical oscillator. Then, themean number of excitations
has the expression (15). By equating themean values determined by eqρ with the expressions (12), after some
algebraicmanipulationswe get
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The right hand side of the last equation is greater or equal to 1 by (5) and (11). To have H̃ independent from the
temperature implies that the coefficientsDqq andDpp are both proportional to N2 1+ with temperature
independent coefficients. The equations above, togetherwith ˜ mω ω= , give the expressions (13) and H H˜

m= .

2.2.Master equation for themechanical oscillator
From the previous results we see that a central role is played by themechanical Hamiltonian Hm, which appears
in the commutator part of the Liouville operator and determines the equilibrium state (14). It will be very useful
to diagonalize explicitly Hm by introducing a suitablemode operator. By defining

( )a
m

m q p
1

2
i ,

i

2
, (16)m

m
m

m

m

m

mω
Ω τ τ ω

Ω
γ
Ω

= + = −


we get that themechanicalHamiltonian (6) can bewritten as

H a a
1

2
. (17)m m m

†
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⎝
⎞
⎠ω= +
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The dimensionless quantity τhasmodulus equal to one and a a[ , ] 1m m
† = is satisfied. The inverse formulae

giving q p, in terms of a a,m m
† are

( ) ( )q
m

a a p
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2

, i
2

. (18)
m

m m
† m

2

m
m
†

mω
τ τ

Ω
ω

= + = − 

Let us note that the form (14) of the equilibrium state does not come from a direct requirement, but rather it
follows fromall the considered assumptions. In particular we stress the fact that the operator Hm is not the
Hamiltonian of the isolated oscillator, but includes a term containing mγ which comes from the interactionwith
the bath. Combining (12) and (13)we have in particular

p
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We see that the term related to damping gives a negative contribution to the equilibriummean value Hm eq〈 〉
arising from energy exchangewith the bath. The Lindblad operatorsRj appearing in (2) now read
R N a( 1)1 m mγ= + , R N a2 m m

†γ= so that the Liouville operator can befinally written as
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Let us stress that, despite the fact that the expression (20) has the formof the generator for an optical oscillator
[26], the relations (16), (18) connecting a a,m m

† with q p, account for the description of amechanical oscillator.
Amaster equation for amechanical oscillator with the Liouville operator (20) and the relation (16) between
mode and position/momentumoperators was already proposed in [12 sections 6, 7], inside a scheme of
canonical quantization of dissipative classical systems. The introduction of (16) in order to obtain a quantum
description of themechanical oscillator complyingwith all the natural physical requirements is a key result of
this section, whichwewill later exploit to consistently treat optomechanical systems.

3. Langevin equations for themechanical oscillator

So farwe have obtained a quantummaster equation in Lindblad form for themechanical oscillator, only relying
on general physical constraints and symmetry requirements. However, optomechanical systems are typically
dealt withmaking use of quantumLangevin equations, which provide a suitable and powerful approach for
linear systems [37]; in such a framework not only the systemof interest appears, but also some quantumnoises
representing the environment. It is a general result that for anymaster equation in Lindblad form it is possible to
introduce in a rigourousway a unitary dynamics involving the systemof interest and suitable quantumBose
fields, which at the level of the reduced dynamics of the system exactly reproduces themaster equation. That is,
these quantumBose fields effectively describe the thermal environment affecting themechanical oscillator and
the system/field dynamics is given by a unitary time evolution operator satisfying a quantum stochastic
differential equation of the type introduced byHudson and Parthasarathy [31].Within this formalism the
Heisenberg equations for the systemoperators provide the quantumLangevin equations, while, as shown in
[29], theHeisenberg equations for the Bosefields give the input–output relation ofGardiner andCollet [26, 28].
We thus obtain in a unified framework all relevant physical information [30]. Finally, we shall show in
section 3.2 that this approach allows to treat also non-Markovian effects and to introduce noises with non-flat
spectrum.

Let us start introducing theHudson–Parthasarathy equation or quantum stochastic Schrödinger equation
[31], which gives the evolution equation for the unitary dynamics involving the systemof interest and a
quantumBose field. The propermathematical formulation of this equation relies on the formalism of quantum
stochastic calculus [32]. For the Liouville operator (20) the associatedHudson–Parthasarathy equation reads
(see e.g. [29, 47, 48] or [26 sections 11.2.2, 11.2.7])

{
}

( )

( )

U t H t a B t a B t

N a a N t U t

d ( )
i

d d ( ) d ( )

2
(2 1) d ( ), (21)

m m m th
†

m
†

th

m
m
†

m

γ

γ

= − + −

− + +



withU (0) = , Hm given by (17), and B t( )th a Bose thermalfield satisfying the canonical commutation
relations
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B t B s t s B t B s( ), ( ) min{ , }, ( ), ( ) 0, (22)th th
†

th th
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦= =

and the quantum Itô table

B t B t N t B t B t N t
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†

th
†

th

th th th th
†

= + =
= = =

withN the positive quantity introduced in (15). The commutation rules are better understood by introducing
the formalfield densities: B t b t td ( ) ( )dth th= . Then, these densities satisfy the standard canonical commutation
relations

b t b s t s b t b s( ), ( ) ( ), ( ), ( ) 0. (24)th th
†

th th
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦δ= − =

Equation (21) is a quantum stochastic differential equation in Itô sense and the second line of (21)
corresponds to the Itô correction. The solutionU(t) of (21) is a family of unitary operators on the overall Hilbert
spacewhich represent the dynamics of the closed system corresponding to ‘mechanical oscillator plusfield’. An
heuristic, butmore familiar, picture can be obtained by using the field densities introduced above. The formal
expression of the unitary evolution is indeed [49]

( )U t
H

a b s a b s s( ) T exp
i

( ) ( ) d , (25)
t

0

m
m m th

†
m
†

th

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭∫ γ=
←

− + −


where T
←

denotes the time ordered product. From this formal expression one sees thatU(t) is the time evolution
operator for system and field in the interaction picturewith respect to the free field dynamics. The thermal field
Bth therefore represents the environment, say the phonon field interactingwith themechanical oscillator.

It is possible to show that the physical thermal field B t( )th does not admit a Fock representation. However, it
is useful for computations to have at hand amathematical representation of B t( )th in terms of two commuting
Bose fieldsA1 andA2 in the Fock representation [29, 48]. Thismeans that such fields satisfy the canonical
commutation rules A t A s t s[ ( ), ( )] min{ , }i j ij

† δ= , A t A s[ ( ), ( )] 0i j = and that there exists a commonFock

vacuum, i.e. a normalized vector e(0) annihilated by all these operators: A t e( ) (0) 0k = for k=1, 2. Thefield
defined by

B t N A t N A t( ) 1 ( ) ( ), (26)th 1 2
†= + −

satisfies the canonical commutation relations (22) and the Itô table (23). It is known in quantumfield theory
that there exist non-unitarily equivalent representations of the canonical commutation relations; indeed, B t( )th

cannot be obtained by unitary transformations of Fock fields.
Let us now consider as state of thefield theA-field vacuum e(0). In such a case taking the partial trace over the

Fock space of thefields, which corresponds to take the trace over the environmental degrees of freedom in open
quantum system theory, the reduced system state is given by t U t e e U t( ) Tr { ( ) (0) (0) (0) ( ) }env

†ρ ρ= ⊗ ∣ 〉〈 ∣ ,
with (0)ρ the initial state of the oscillator. Thanks to (21) the reduced dynamics of themechanical oscillator can
be shown to obey exactly themaster equation (20) [30]. Further, we have the important relations

e B t B s e N t s

e B t B s e N t s

e B t B s e

(0) ( ) ( ) (0) ( 1) min{ , },

(0) ( ) ( ) (0) min{ , },

(0) ( ) ( ) (0) 0. (27)

th th
†

th
†

th

th th

= +

=

=

It is worth noticing that the thermal parameterN does not appear in the commutation rules of the field Bth, but
rather in the quantum correlations (27). This expresses the fact thatN depends on the ‘state’ of thefield or,more
precisely,N determines a non-Fock representation of the canonical commutation relations. Note furthermore
that the vacuum e(0) is not annihilated by the fields B t( )th , but it plays the role of a thermal state [48 section 6];
no vacuum state exists for a non-Fock Bose field.

3.1.QuantumLangevin equations and input–output relations
Relying on the previously introduced formalismwe are now in the position to obtain the so-called quantum
Langevin equations, providing the stochastic evolution for the systemobservables in theHeisenberg picture. For
a generic systemoperatorXwe denote as usual theHeisenberg picture as X t U t XU t( ) ( ) ( )†= , withU(t) the
unitary operator describing the closed dynamics of system and environment. Differentiating this expression by
the rules of quantum stochastic calculus, essentially summarized by the Itô table (23), one obtains the quantum
Langevin equations for the relevant systemoperators, namely for themode operator
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a t a t t B td ( ) i
2

( )d d ( ). (28)m m
m

m m th⎜ ⎟
⎛
⎝

⎞
⎠ω

γ
γ= − + −

By (18)we get also the equivalent equations for position andmomentum

q t
p t

m
t C td ( )

( )
d d ( ), (29)q= +

( )p t m q t p t t C td ( ) ( ) ( ) d d ( ), (30)pm
2

mΩ γ= − + +

inwhichwe have introduced theHermitian quantumnoises

( )

( )

C t
m

B t B t

C t
m

B t B t

( )
2

( ) ( ) ,

( ) i
2

( ) ( ) , (31)

q

p

m

m
th th

†

m
m

m
th th

†

γ
ω

τ τ

Ω
γ

ω

= − +

= −





where τ is the pase factor defined in (16). By (22) the newnoises obey the commutation rules

C t C s t s C t C s C t C s( ), ( ) i min{ , }, ( ), ( ) ( ), ( ) 0. (32)q p q q p pm
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦γ= = =

A fundamental advantage of the considered formalism is that, thanks to the unitarity ofU(t), the transformation
X U t XU t( ) ( )†↦ preserves all the commutation rules among systemobservables, in particular theHeisenberg
relations between position andmomentum, as can be checked also directly relying on (32).Warranting
preservation of these fundamental commutation relations is indeed a basic step in providing a true quantum
description of a dissipative dynamics [26 chapters 1, 3].

We now consider theHeisenberg picture for the thermalfields andwe define

B t U t B t U t( ) ( ) ( ) ( ). (33)th
out †

th=

While B t( )th represents thefield before the interactionwith the oscillator, the so-called input field, B t( )th
out is the

field after the interaction, the so-called output field.We stress in particular that an important consequence of the
Hudson–Parthasarathy equation is the identity B t U T B t U T( ) ( ) ( ) ( )th

out †
th= , T t∀ ⩾ , whichwarrants the fact

that the outputfields obey the same commutation relations as the input fields, namely (22); in other words, both
the input and the outputfields behave as free fields. By differentiating the three contributions in
U t B t U t( ) ( ) ( )†

th according to the Itô rules, one gets the input–output relation

B t B t a t td ( ) d ( ) ( )d . (34)th
out

th m mγ= +

The linearity of theHeisenberg equations ofmotion allows for an explicit solution

( ) ( )a t a B s( ) e e d ( ), (35)t
t

t s
m

i
m m

0

i ( )
th

m
m
2 m

m
2∫γ= −ω ω− + − + −γ γ

( )

( )

( )

B t B t B s

a

( )
i

i
( )

i
e d ( )

i
1 e . (36)

t
t s

t

th
out 2 m

2 m
th

m

2 m 0

i ( )
th

m

2 m

i
m

m

m m
m

m
2

m
m

m
2

∫ω

ω
γ

ω
γ

ω

= −
−

+
+
+

+
+

−

γ

γ γ
ω

γ
ω

− + −

− +

γ

γ

The explicit expressions for q(t) and p(t) can be easily obtained from (18) and (35).

3.2. Field state andnon-Markovian dynamics
In theMarkovian approximation considered so far, the temperature enters the theory only through the
parameterN defined in (15). This approximation can be described stating that the system actually sees aflat
noise spectrum, ormore precisely the system is only affected by the value of the bath spectrum at the frequency

mω . Amore general and physicallymore realistic situation is to allow for a structured noise spectrum and this
can be achievedwithout anymodification of the unitary dynamics (21) and of the related Langevin equations
and input–output relations. To this aim it is enough to change the state of the field by takingmixtures of
coherent states [30, 50]. Let us note that considering such amixture of coherent states for the description of the
state of thefield is actually analogous to consider a state with a regular P-representation in the case of discrete
modes (see e.g. [26]), as explained below. Thismodification is new in the context of quantum stochastic calculus
andwill imply that the reduced dynamics of the oscillator is nomoreMarkovian, in the sense that a closed
master equation in Lindblad form for the statistical operator cannot be obtained.
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3.2.1. The field state
In order to consider amore general field state let usfirst introduce theWeyl operators [30, 32] for the FockA-
fields, defined as

g g s A s( ) exp ( )d ( ) h.c. ,A

k
k k

1

2

0

†
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

 ∫∑= −
=

+∞

with gk square integrable functions. The operator g( )A is unitary and the property A t g e( ) ( ) (0)k A =

sg s g ed ( ) ( ) (0)
t

k A
0

∫ holds, so that the action of aWeyl operator on the Fock vacuumgives a coherent state.

Therefore g( )A is nothing but a displacement operator for the Bose fields [49]. Relying on (26), we can
introduce aWeyl operator also for theB-field

f f s B s( ) exp ( ) d ( ) h.c. , (37)T

T

0
th
†

⎧⎨⎩
⎫⎬⎭ ∫= −

where f is a locally square integrable function andT denotes a suitable large time, whichwewill let tend to infinity
in the final formulae describing the quantities of direct physical interest. Now, f e( ) (0)T is not a coherent state
for the Bth-field, but its relevantmoments can be computed by using theA-field representation (26):

f e B t f e f r r

f e B t B s f e f u u f r r

f e B s B t f e N t s f u u f r r

f e B t B s f e N t s f u u f r r

( ) (0) ( ) ( ) (0) ( )d ,

( ) (0) ( ) ( ) ( ) (0) ( )d ( )d ,

( ) (0) ( ) ( ) ( ) (0) min{ , } ( )d ( ) d ,

( ) (0) ( ) ( ) ( ) (0) ( 1) min{ , } ( )d ( ) d . (38)

T T

t

T T

t s

T T

t s

T T

t s

th
0

th th
0 0

th
†

th
0 0

th th
†

0 0

 

 

 

 

∫
∫ ∫

∫ ∫
∫ ∫

=

=

= +

= + +

A crucial step is now to consider f to be a randomprocess and to take the state of thefield characterizing the
environment to be

f e e f( ) (0) (0) ( ) . (39)T Tenv
†⎡⎣ ⎤⎦ σ = ∣ 〉〈 ∣

Again, in the final formulaewewill take the limitT → +∞. This is nothing but an analogue of the regular P-
representation for the case of discretemodes. Indeed, in the case of a singlemode theGlauber–SudarshanP-
representation of a state ρ [26 section 4.4.3] is defined by Pd ( , )2∫ρ α α α α α= ̄ ∣ 〉〈 ∣. If the pseudo-density P is
allowed to become negative and singular, then any state can be represented in this form.When P is a true
probability density, one speaks of a regular P-representation and theGlauber–Sudarshan formula describes
mixtures of coherent states, including in particular thermal states [26 page 113]. In a probabilistic language,
which ismore suitable for generalizations to stochastic processes and fields, the fact that a state ρ has a regularP-
representation can be rephrased by saying that it can bewritten as the expectation value [ ]ρ α α= ∣ 〉〈 ∣ , withα a
complex random variable. In order to construct a thermal state it is enough to consider the case inwhich the
distribution ofα is Gaussianwith vanishingmean [ ] 0α = and secondmoments [ ] 02α = , [ ]2 2α σ∣ ∣ = .
Then, [ ]ρ α α= ∣ 〉〈 ∣ turns out to be a thermal state [26 section 4.4.5].

By analogy, to construct a thermalfield state with a general thermal spectrumwe take f to be aGaussian
stationary stochastic process with vanishingmean, f t[ ( )] 0= , and correlation functions

f t f s f t f s G t s[ ( ) ( )] 0, ( ) ( ) ( ). (40)⎡⎣ ⎤⎦= ≕ − 

Thanks to stationarity, the functionG(t) is positive definite, so that according to Bochner’s theorem [51] its
Fourier transform

G G t tˆ ( ) e ( )d (41)ti∫ν = ν
−∞

+∞
−

is a positive function, whichwe assume to be absolutely integrable, thus implying afinite power spectral density
for the process. Since the field state envσ , defined by (39), turns out to beGaussian, we can characterize it through
themeans and the correlations of the thermalfield Bth, which are immediately obtained from (38) and the
properties of the process f. The only non-zero contributions are given by

B s B t N t s u r G r u

B t B s N t s u r G r u

( ) ( ) min{ , } d d ( ),

( ) ( ) ( 1) min{ , } d d ( ). (42)

t s

t s

th
†

th
env 0 0

th th
†

env 0 0

∫ ∫
∫ ∫

= + −

= + + −
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To better grasp the physical content of the new state and of the formulae (42) let us introduce a set offieldmodes
as in [49]. Using a complete orthonormal set h{ }n in L ( )2  , we can expand the field in terms of discrete
independent temporalmodes by defining them as

c h t B t( ) d ( ).h n thn ∫=
−∞

+∞

We then obtain c 0h envn
〈 〉 = , c 0h

2
envn

〈 〉 = , together with

c c N h f h Nlim ˆ ( ) ( )d ,
T

h h n
L

n
†

env

2 2

n n 2

⎡
⎣⎢

⎤
⎦⎥ ∫ ν ν ν= + =

→+∞ −∞

+∞


wherewe have defined the positive quantity

N N G( ) ˆ ( ) (43)ν ν= +

and ĥ ( )n ν is the Fourier transformof hn(t); by normalization ĥ ( ) d 1n
2∫ ν ν∣ ∣ =

−∞

+∞
. So, the reduced state of the

singlemode chn
is exactly a thermal state expressed in the P-representation. If we take h1 and h2 having non-

overlapping Fourier transformswe also get c clim 0T h h
†

env1 2
〈 〉 =→+∞ , whichmeans that these twomodes are

independent. Then, N ( )ν is naturally interpreted as themean number of phonons in a given fieldmode chwell
peaked around the value ν of the frequency andfieldmodeswith different frequencies are independent. A value
of N ( )ν different from zero in a neighbourhood of ν implies that themechanical oscillator can absorb from the
bath phononswith energy around ν . On the contrary, the approximations are such that the oscillator can emit
phonons of any frequency, evenwhen N ( ) 0ν = . The physically relevant quantity is now the combination of the
two non-negative contributionsN and Ĝ ( )ν , rather than the values of the individual quantities. Note that the
Markovian reduced dynamics of section 2 can be obtained either by considering the non-Fock representation for
the thermalfield, thus assuming a strictly positive N 0> in (26) and taking Ĝ ( ) 0ν ≡ , or equivalently by
considering a standard Fock representation and formally taking the limit of constant spectrum Ĝ ( )ν in all the
physical quantities.

3.2.2. The equilibrium state of themechanical oscillator
According to the definition of reduced dynamics, the time evolved state of themechanical oscillator is still
obtained by taking the partial trace with respect to the field degrees of freedom t( ) limTρ = →+∞

U t U tTr { ( )( (0) ) ( ) }env env
†ρ σ⊗ . However, at variancewith the case inwhich the state of the fieldwas taken to

be theA-field vacuum, by taking the time derivative of this expression no closed evolution equation is obtained
unless N ( )ν is constant. Not to have a closed time-homogeneous equation for the reduced dynamics is indeed a
signature of the non-Markov features of such a dynamics.

In spite of the difficulty of not having a closedmaster equation, the study of the reduced equilibrium state,
namely tlim ( )teqρ ρ= →+∞ , can still be afforded and its expression enlightens the physical role of the various

parameters. Indeed, thanks to the requirement f t f s[ ( ) ( )] 0= , one has that equipartition in the sense of (10)
still holds. Starting from the explicit forms of position andmomentum in theHeisenberg picture (see (35), (18))
one can check that the equilibriummean values of position andmomentum remain equal to zero, while the
variances are still of the form (19)withN replaced by the effectivemean number of excitations

N
N

2

( )

( )
d . (44)eff

m

4 m
2m

2∫γ
π

ν

ν ω
ν=

+ −γ−∞

+∞

Notice that if the quantity N ( )ν introduced in (43) is taken to be the constantN, corresponding to the
Markovian case, then N Neff = . This result suggests that thefinalMarkov approximation should be validwhen
Ĝ ( )ν is approximately constant in a neighbourhood of mω . In fact equation (44) represents a smearing of N ( )ν
around the frequency of themechanical oscillator ,mω themore peaked the smaller the damping constant mγ .

Non-Markovian effects can only be relevant if Ĝ ( )ν appreciably varies in a neighbourhood of width mγ around
,mω being suppressedwith decreasing mγ .
Since the equilibrium state is necessarily Gaussian, by comparing (44)with (14)we get that the new

equilibrium state is again aGibbs state with respect to the sameHamiltonian Hm, but with an effective inverse
temperature effβ defined by setting N (e 1)eff

1eff m= −β ω − .

3.3. Properties of the quantumnoises and quantum stochastic Newton equation
Let us now come back to the quantumLangevin equations for the position andmomentumoperators, so as to
better understand their physicalmeaning and the role of the noises. In order to study the properties of the noises
we transform the Langevin equations (29), (30) in the formof a stochasticNewton equation.

To this aimwe first have to consider the quantumnoises (31) appearing in these quantumLangevin
equations. The commutation relations (32) for these noises, which are state independent, guarantee the
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preservation of the canonicalHeisenberg commutation relations. Their quantum correlations do instead reflect
the physical properties of the field state envσ and can be obtained starting from theB-correlations (42). Note that
Langevin equations for amechanical oscillator of the same form andwith two noises obeying the same
commutations rules (32)were used also in [36]; however, the two point correlations used in [36], taken from
[17], arise from approximations in theCaldeira–Leggetmodel which are valid only formedium/high
temperatures, while in the present treatment they are deduced from the state of the phonon environment and
are valid at any temperature.

We stress the fact that in the present formulation themomentumoperator is not related to the time
derivative of the position operator according to the classical relation, but rather through (29)where the
quantumnoiseCq(t) explicitly appears. However, the connection to the classical formulation is not completely
lost. In fact from (29)we can derive the relation

( ) ( ) ( ) ( )q t q t

t t t t

p t

m
t

C t C t

t t

1 ( )
d .

t

t q q2 1

2 1 2 1

2 1

2 11

2∫
−

−
−
−

=
−

−

By (31) and (42), themean value of the rhs of the equation above vanishes, while its variance is given by

( )( ) ( )

( ) ( ) ( )

( )
C t C t

t t m t t t t
N

1

2

2 sin

( )d ,
q q

t t

2 1
2

env

2 1
2

m

m 2 1

2

2

2
2 1

2 1
⎛

⎝

⎜⎜⎜⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞

⎠

⎟⎟⎟⎟⎟
∫γ

ω πν
ν ν

−

−
=

−
+

−

ν

−∞

+∞

−



so that in particular also the variance goes to zero for growing t t2 1− . Then the quantity v t p t m( ) ( )= can
actually be interpreted as the ‘coarse grained’ velocity of themechanical oscillator.

If we use the formal field densities b t( )th , b t( )th
† , with commutation rules (24), take as starting point the

quantumLangevin equations (29) and (30) and eliminate themomentum,we can rewrite the quantum
Langevin equations in theNewton form:

mq t m q t m q t t¨( ) ˙ ( ) ( ) ( ), (45)m m
2γ Ω ξ+ + =

wherewe have introduced the formallyHermitian quantumnoise t( )ξ

t C t m C t mC t( ) ˙ ( ) ˙ ( ) ¨ ( ). (46)p q qmξ γ= + +

Most importantly the commutation relations for this noise take the singular expression

t s m
t

t s[ ( ), ( )] 2i ( ). (47)mξ ξ γ δ= ∂
∂
−

While the expectation value of this noise with respect to the field state envσ is zero, its symmetrized correlation
function can be computed from the relations

m

t s
C t C s

m t s
C t C s

N t s G t s

( ) ( )
1

( ) ( )

1 1

2
( ) Re ( ) , (48)

q q p p
m

2

env
m m

2

2

env

m

⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭

γ γ Ω

ω
δ

∂
∂ ∂

= ∂
∂ ∂

= + − + −

 

{ }
t s

C t C s N t s G t s

G t s

1
( ), ( )

1 1

2
( ) Re ( )

2
Im ( ) (49)

q p

m
2

2

env m

m

⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭γ ω
δ

γ

∂
∂ ∂

= − + − + −

+ −



and has the expression

t s
m

t s
N t s G t s

m
t

G t s

1

2
{ ( ), ( )}

1

2
( ) Re ( )

2 Im ( ). (50)

env
m

m
m
2

2

m

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ξ ξ

γ
ω

Ω δ

γ

〈 〉 = + ∂
∂ ∂

+ − + −

+ ∂
∂

−





Note that (45) and (47)were already introduced in [26 section 3.1.2] and [37], where the commutation rules
(47)were actually enforced by the requirement of preservation of the commutation rules between position and
momentum.However, at variance with previous approaches, here we have provided an explicit construction of
the quantumnoise t( )ξ in terms of a quantumBose field, based on a rigorousmathematical construction.

We stress the fact that the stochasticNewton equation (45) ismathematically purely formal due to the
presence in (46) of C t¨ ( )q , which contains the formal derivative b t˙ ( )th and its adjoint.Moreover, if onewere to
take (45), (47) and (50) as starting point for the construction of the quantumLangevin equations for position
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andmomentum, then one should complete (45), which is an equation for q(t) only, with a suitable definition of
p(t). The standard choice in this respect, considered for instance in [1, 25, 37], is to take p t mq t( ) ˙ ( )= . This
works outfine as far as the commutation relations of position andmomentum are concerned.However, in this
case the equation ofmotion (45) and the structure of the noise t( )ξ obeying (46) imply that q t˙ ( ) contains
singular quantum fluctuations, so that it is not awell defined operator. Also p is then not awell defined operator
and its variance is actually infinite. Then, one has to regularize themomentum, by subtracting the noise
responsible of this divergence; this is what our construction does. The identification of themomentum is given
implicitly through thefirst canonical equation (29), which corresponds to the coarse grained velocity, as
discussed above. No divergence appears because thewhole construction is based on thewell defined unitary
evolution (21).

3.3.1. Consistency of the quantumnoises
It is important to stress that if a set of quantumLangevin equations is considered as starting point for the
description of a stochastic quantumdynamics, commutations rules and symmetrized correlations of the noises
cannot be given arbitrarily. In particular, independently of the considered system, if t{ ( )}iξ is a set of operator
valued noises, the quantum correlation function t t( ) ( )i j

†
envξ ξ〈 ′ 〉 has to be positive definite [51], in the sense that

t t h t t t h td d ( ) ( ) ( ) ( ) 0, (51)
ij

i i j j
0 0

†

env
∫ ∫∑ ξ ξ′ ′ ′ ⩾
+∞ +∞

for every choice of the ‘smooth’ test functions h{ }i . Sincewe can always write

{ }t t t t t t( ) ( )
1

2
( ) , ( )

1

2
( ) , ( ) , (52)i j i j i j

† † †⎡⎣ ⎤⎦ξ ξ ξ ξ ξ ξ′ = ′ + ′

the necessary positivity condition introduced above becomes a consistency condition between commutation
rules and symmetrized correlations.

Relying on (48), (49), as well as the commutation relations (32) for the noisesCq andCp, one can
immediately check this fact for themodel at hand. Also for the singular noise ξ constrained by (46) one can show
that the expression t s( ) ( ) envξ ξ〈 〉 is positive definite. These results are due to the fact that the noisefields have
here been explicitly constructed in terms of the quantumBosefields, so that commutation rules and correlations
are not postulated, but rather follow from themathematical expression of themodel.

3.3.2. The noise correlations
For themodel at handwe denote the Fourier transformof the correlation of the noise ξ by

R t t s sˆ ( )
1

2
d e { ( ), ( )} , (53)ti

env∫ν ξ ξ= 〈 + 〉ν
−∞

+∞
−

so that according to (43) and (50) it reads

( )R
m

Nˆ ( )
2 4

( )
1

2
( ), (54)m

m

m
2

m
2 ⎜ ⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⎛

⎝
⎞
⎠ν

γ
ω

γ
ω ν ν ν ν= + + + + → −



where ( )ν ν→ − means to add the same contributionwith ν replaced by ν− . Note in particular that R̂ ( )ν is an
even function of the frequency.

In our treatment, which gives rise to the expression (54), the interactionwith the environment is described
in terms of exchange of quantawith the bosonic field representing the phonons, see (25). Inmodels inwhich the
systemof interest is coupled to other harmonic oscillators, by some approximations it is possible to arrive to a
quantum stochasticNewton equation like (45), butwith a different noise spectrum. A reference expression often
considered in the literature [26 (3.3.9)], [37] for the quantity R̂ is given by

R J J
m

kˆ ( ) ( )coth
2

, ( ) ( ) . (55)GZ ν π ν β ν ν
π

ν ν= ≔ 

The quantity k ( )ν contains information on both coupling constant and density ofmodes of the bath in a
neighbourhood of the frequency ν; J ( )ν is often called spectral density. Also in the case of this choice of the noise
correlations, it is possible to show that the equilibriummean of q t˙ ( )2 diverges and therefore the identification of
themomentumwith mq t˙ ( ) is not possible, but some regularization is needed. A typical choice in this context is
k ( ) mν γ= [26 (3.1.1)], [1, 2, 25, 37]; this is equivalent to J ( )ν ν∝ , which is known asOhmic spectral density.
The function k ( )ν must be even due to the definition (53) and stationarity. Also the commutations rules (47)
and the positivity requirement (51) still have to hold, leading to the requirement R mˆ ( ) 0GZ mν γ ν− ∣ ∣ ⩾ ,
satisfied at any temperature by taking k ( ) 0mν γ⩾ > for all ν. This requirement tells us that in order to have a
consistentmodel satisfying (45), at least at large times, and preservingHeisenberg commutation relations one
cannot consider a spectral density with gaps inside the expression (55) of R̂GZ .
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By a suitable choice of N ( )ν , it is possible to get R̂ ( )ν very similar to R̂ ( )GZ ν , apart from the low temperature
limit. For instance, by taking

( ) ( )
N k( ) ( )

2

e 1
, (56)m

m
2 2

m

ν ν ν ω
Ω ν γ

= ∣ ∣
+ −β ν∣ ∣

we obtain

( )R R m kˆ ( ) ˆ ( )
2

( ) ; (57)GZ
m

2

m
m
2 2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ν ν

γ
ω

Ω ν ν ν= + + − ∣ ∣

note that the difference is independent from the temperature. In (57) the compatibility with the commutation
relations is guaranteed by thefirst term in the square brackets; so, in (56) there is no restriction on the choice of
k ( )ν , apart from k ( ) 0ν ⩾ , and even spectral gaps can be introduced.

Besides the case (56), the freedom in the choice of N ( )ν in (54) allows tomodel quite different
environments, for instancewith a sub-Ohmic or super-Ohmic spectral density [22–24], or with a structured
occupation spectrum. In optomechanical systems the quantity R̂ ( )ν enters experimental quantities, as in the
cases of homodyne/heterodyne detection discussed in section 4.3; so, in principle it is possible to test the formof
R̂ ( )ν . However, essentially a frequencywindowofwidth mγ around mω is experimentally relevant. Some results
at room temperature [52] seem to indicate a non-Ohmic spectral density around ,mω a very interesting
possibility, but not enough to discriminate between R̂ ( )GZ ν and the form (57) for R̂ ( )ν . At zero temperature,
corresponding to N ( ) 0ν = in our case (54) and to β → +∞ in (55), the difference ismost evident, namely

R mˆ ( )
2

(58)m
m
2 2

m
ν γ

Ω ν
ω

= +

versus

R m k kˆ ( ) ( ) , ( ) . (59)GZ mν ν ν ν γ= ∣ ∣ ⩾

These expressions are very different, but to discriminate between themone has to consider very low
temperatures and a ratio m mγ ω that is not too small.

4. Cooling and emission spectra of an optomechanical system

As an application of the quantumdescription of amechanical oscillator developed so far we consider the
simplest optomechanical system [1, 2, 5, 6, 25, 37], namely themechanical oscillator is amirrormounted on a
cantilever and coupled to the light in an optical cavity by radiation pressure. The cavity is of high quality, without
thermal dissipation other than the one due to the coupling between cantilever and phonons and tuned in such a
way that only one electromagneticmode is relevant. Strong laser light is injected and some light is allowed to
leave the cavity so that its spectrum can be analysed.

4.1. The optomechanicalmodel
Themicro-mechanical oscillator (themirror) is described by the operators q, p as in (18) and by the
Hamiltonian Hm (6). The cavitymode is described by the operators ac, ac

† and by the freeHamiltonian a ac c
†

cω .
The free electromagnetic field is in a coherent state describing a perfectlymonochromatic laser of frequency 0ω ;
howeverwe use the equivalent description of inserting a source term for the cavitymode in theHamiltonian and
of taking the externalfield in the vacuum. Thefinal optomechanical Hamiltonian takes the form

( )H t H a a g qa a E a a( ) i e e . (60)t t
om m c c

†
c 0 c

†
c c

† i
c

i0 0ω= + − + −ω ω−  

Note the trilinear term giving the interaction between the position of themirror and the number operator of the
photons in the cavity, which represents the radiation pressure interaction; the coupling constant is usually
expressed as g L0 cω= , where L is the length of the cavity. The laser power is P E0

2
cω γ=  , where cγ is the

cavity decay rate and E the laser amplitude.
In order to include the cavitymode interacting through radiation pressure with themechanical oscillator, as

well as the emission and absorption of the light from the free electromagnetic field, theHudson–Parthasarathy
equation (21) ismodified as follows:
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{
}

( )

( )

U t H t t a B t a B t

N a a N t a a t U t

d ( )
i

( )d d ( ) d ( ) h.c.

2
(2 1) d

2
d ( ). (61)

om m m th
†

c c em
†

m
m
†

m
c

c
†

c

γ γ

γ γ

= − + + −

− + + −



Here Bth is the thermalfield satisfying (22), while Bem is an independent Bose field in the Fock representation,
describing the electromagnetic field outside the cavity. The relevant Itô rule is B t B t td ( )d ( ) dem em

† = , while all
the other possible products vanish. NowU(t) is the unitary operator describing the dynamics of the two
interacting oscillators and the fields. The latter are in a factorized state given by the tensor product of the thermal
environment state (39) and the electromagnetic vacuum:

e e˜ (0) (0) . (62)env env em emσ σ= ⊗

It is convenient to eliminate the laser frequencyworking in the rotating frame and introducing the unitary
operatorV t U t( ) e ( )a a ti 0 c

†
c= ω , which upon differentiation obeys an equation of the form (61) albeit with

H t( )om substituted by

( )H a a g qa a E a ai , (63)m 0 c
†

c 0 c
†

c c
†

cΔ+ − + −  

with 0 c 0Δ ω ω= − the nominal detuning. For a generic systemoperatorXwe define X t V t XV t( ) ( ) ( )†= , so
that by differentiating according to the rules of quantum stochastic calculus, as done in section 3.1, we get the
following quantumLangevin equations

a t a t g q t a t E t B td ( ) i
2

( ) i ( ) ( ) i d e d ( ), (64)t
c 0

c
c 0 c c

i
em

0⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟Δ

γ
γ= − + + − − ω

aswell as

( )

q t
p t

m
t C t

p t m q t p t g a t a t t C t

d ( )
( )

d d ( ),

d ( ) ( ) ( ) ( ) ( ) d d ( ), (65)

q

pm
2

m 0 c
†

cΩ γ

= +

= − − + +

whereCq andCp are given by (31). Defining the outputfields as in (33) of section 3.1we have besides (34) the
input–output relation for the electromagnetic field

B t B t a t td ( ) d ( ) e ( )d . (66)t
em
out

em c
i

c
0γ= + ω−

In the case of a very intense laser, that is E2 large, the dynamics can be linearized in a neighbourhood of the
equilibriummean values, determined by self-consistency from themeans of the linearized formof the
quantumLangevin equations. The equilibriummean value of themomentum is zero, while setting

a t( )c eqζ = 〈 〉 , wefind

E
q

g

m

i

2
i

, , (67)
c

eq
0

2

m
2

ζ γ
Δ

ζ
Ω

= −
+

〈 〉 =
∣ ∣

wherewe have introduced the effective detuningΔ,

g q g q . (68)0 0 eq c 0 eq 0Δ Δ ω ω= − 〈 〉 = − 〈 〉 −

By inserting the equations (67) into (68)we obtain the self-consistency condition

( )m g E
4

0; (69)m
2

0
c

2
2

0
2 2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟Ω Δ Δ

γ
Δ− + + =

this cubic equation determinesΔ as a function of the laser parameters 0Δ andE.
Inwriting and solving the linearized quantumLangevin equations it is useful to have dimensionless and

selfadjoint systemoperators. It is therefore convenient to set

( )q t
m

q t q p t
p t

m
ˆ ( ) ( ) , ˆ ( )

( )
, (70)m

eq
m

Ω
Ω

= − 〈 〉 =
 

( )
X t

a t a t
Y t

a t a t
( )

( ) ( )

2
2 , ( )

i ( ) ( )

2
. (71)c

†
c c

†
cζ ζ

ζ
ζ

ζ ζ

ζ
= +

∣ ∣
− ∣ ∣ =

−

∣ ∣

Then, the linearized quantumLangevin equations turn out to be

( )w t Aw t t Q t w t q t p t X t Y td ( ) ( )d d ( ), ( ) ˆ ( ), ˆ ( ), ( ), ( ) , (72)
T

⃗ = ⃗ − ⃗ ⃗ =
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where the superscript Tmeans transposition and the dynamicalmatrix is given by

A
A A
A A

A
G

,
0 0

0
, (73)m mc

mc c
mc

m m

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ω Ω= =

A A
0

,
2

2
. (74)m

m

m m
c

c

c

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Ω
Ω γ

γ Δ
Δ γ

= − − =
−
− −

The quantityG, having the dimension of a frequency, will play the role of effective coupling constant and is given
by

G g
m

2
, (75)0

m
ζ

ω
= ∣ ∣ 

so that in particular it depends on the effective detuningΔ through ζ given in (67). The vector of noises is given
by the followingfield combinations:

Q t B t( )
2

( ) h.c ., Q (t) i
2

B (t) h.c ., (76)1
m m

m
th

†
2

m m

m
th
†τ

γ Ω
ω

γ Ω
ω

= + = +

Q t B s

Q t B s

( ) e
2

e d ( ) h.c .,

( ) ie
2

e d ( ) h.c ., (77)

t
s

t
s

3
iarg c

0

i
em

†

4
iarg c

0

i
em

†

0

0

∫
∫

γ

γ

= +

= +

ζ ω

ζ ω

−

−

where τ is the phase factor defined in (16) and the quadratures Q t( )1 and Q t( )2 , apart from amultiplicative
factor due to the change of dimensions, coincidewith the noises (31).

Note the different structure of the two dynamical sub-matrices in (74). Indeed the former describes a
mechanical oscillator and the latter an opticalmode, corresponding to different interactions as discussed in
section 2. The same choice is taken, for instance, in [1, 2, 7, 25, 36, 37], but not in [5, 9, 10].

The linearization around the equilibrium state ismeaningful provided one can ensure the existence of such a
state. Its stability conditions can be obtained by applying the Routh–Hurwitz criterion to the equations for the
mean values, which correspond to the system (72)with the noise term Q td ( )⃗ suppressed; the result is the couple
of conditions

G
4

, (78)2
m m

2 c
2

2
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ω Δ Ω

γ
Δ< +

for 0Δ > , and

( )
G

4
, (79)2

m
c m

c m
c m

2
m

c
2

2
m
2

4
2

2

m c

c
2⎡

⎣

⎢⎢⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦

⎥⎥⎥⎥
ω Δ

γ γ
γ γ

γ Ω γ
γ

Δ
Ω Δ

γ γ
∣ ∣ <

+
+ + +

− −

+

γ

for 0Δ < ; there is no restriction for 0Δ = . The same stability conditions have been found in [25], as their
equations for themean values agreewith ours.

4.2. Energyfluctuations and laser cooling
To introduce thefluctuation spectra of position andmomentumof themechanical oscillator we use a
formulation tailored for (classical or quantum) processes starting at time zero andwe define the gated Fourier
transforms [9]

B
T

B t iˆ ( )
1

e d ( ), th, em, (80)i
T T

t
i

0

i∫ν = =ν

for the Bosefields aswell as for the relevant systemoperators

F T
T

w t t i( ; )
1

e ( )d , 1, 2, 3, 4. (81)i

T
t

i
0

i∫ν = =ν

HereT is a large time going to infinity in thefinal formulae to recover a stationary situation. Then, the spectra of
thefluctuations of position andmomentumof themechanical oscillator are defined, in analogywith the classical
case [54], by the quantum expectations
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{ }

{ }

S F T F T

S F T F T

( ) lim
1

2
( ; ), ( ; ) ,

( ) lim
1

2
( ; ), ( ; ) , (82)

q
T

p
T

1 1

2 2

ν ν ν

ν ν ν

= −

= −

→+∞

→+∞

{ } { }S F T F T F T F T( ) lim
1

4
( ; ), ( ; ) ( ; ), ( ; ) . (83)qp

T
1 2 1 2ν ν ν ν ν= − + −

→+∞

Let us stress that, while useful, these definitions do not correspond to some continuousmonitoring of position
andmomentum, even though S ( )q ν is directly related to the observed optical spectra aswe shall see in
section 4.3.

The Fourier transformed equations ofmotion corresponding to (72) can be solved by purely algebraic
manipulations and the vector F T( ; )ν⃗ can be computed; due to the length of the expressions the result is
reported in appendix A. To compute the spectra above we need also the field correlations, whichwe give
in (A.9).

Due to the vanishing of the field cross-correlations, the spectra (82), (83) decompose in a thermal and a
radiation pressure contribution according to

S S S S S

S S S

( ) ( ) ( ), ( ) ( ),

( ) ( ) ( ). (84)

q q q qp qp

p q p

rp th th

2

m
2

rp th

ν ν ν ν ν

ν ν
Ω

ν ν

= + =

= +

By inserting the expressions (A.1), (A.2) into the definitions (82), (83) and by using (A.9)we get, by some
computations, the expressions for the spectra of thefluctuations:

S
G

d
( )

2 ( ) 4
, (85)q

rp m m
2

c
2

2 c
2

2
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ν

Ω ω γ
ν

Δ
γ

ν=
∣ ∣

+ +

S
R

m d
( )

ˆ ( )

( ) 4
( )

4
( ) , (86)q

th m

2
c

2
2 c

2
2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ν

Ω ν
ν

γ
ν Δ

γ
ν Δ=

∣ ∣
+ − + +



S
d

G N

( )
2 ( )

i
2 2

i

( )
1

2
( ) , (87)

p
th m

m m
2 m

2
m

m 2 c
2

2
m

2⎜ ⎟

⎜ ⎟ ⎜ ⎟
⎪

⎪

⎪

⎪

⎧
⎨
⎩
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⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
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⎛
⎝

⎞
⎠

⎫
⎬
⎭

ν
γ

ω Ω ν
Ω ν ω

γ
Δ

γ
ν

ω Δ ν ν ν

=
∣ ∣

+ − + −

− + + → −

( )

S S
G

d
N( )

2
( )

2 ( )
( )

1

2

2 4
( ) , (88)

qp q
th m

m

th m
2

2

m 2 c
2

2
c m

⎜ ⎟

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝

⎞
⎠

⎡
⎣
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⎝
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⎞
⎠
⎟⎟

⎤
⎦
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⎫
⎬
⎭

ν
γ
Ω

ν
γ Δ

ν
ν

γ
Δ

γ
ν νγ ω ν ν ν

= − +
∣ ∣

+

× + − − + + → −

where ( )ν ν→ − means to add the same contributionwith ν replaced by ν− and the quantity R̂ ( )ν is the Fourier
transformof the quantum correlations of the noise given in (54). The denominator d ( )ν is the characteristic
polynomial of the dynamicalmatrixA given in (73) and (74):

d A G( ) det ( i ) i
2

i
2

. (89)c
2

2 m
2

m
2 2

m⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟ν ν ν

γ
Δ ν

γ
ω ω Δ= + = + − + − −

Note that the quantities (85)–(88) are non-negative as they should be in order to give a sensible
decomposition of the spectra. Another useful way towrite S ( )p

th ν is by putting in evidence its difference from

S ( )q
th ν ; the resulting expression is

S S
G

d
N G( ) ( )

( )
( )

1

2

1

2 2

4
( ) . (90)

p q
th th m m

2

m
2

2 2 m c

m

m
2

m

2 2 c
2

⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦⎥

⎫⎬⎭
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ω γ Δ

Ω ν
ν Δ ν

γ γ
ω

Ω
ω

ν ν Δ
γ
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+ +

+ + − − + → −
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4.2.1. The peaks in the fluctuation spectra
A relevant role in determining the properties of the system is played by the denominator d ( )ν (89); indeed, the
quantity d[ ( i 2) ] ( )m

2
c

2Ω Δ ν γ ν− + is sometimes interpreted as the effectivemechanical susceptibility; see
equation (17) of [25].Most importantly note that the zeros of d ( )ν determine the positions and thewidths of the
peaks of the fluctuation spectra: even though in principle they can be obtained by solving the fourth order
algebraic equation d ( ) 0ν = , it ismuchmore convenient to have simple expressions, even if approximate. An
analysis of these zeros is given in appendix A.1 in the case inwhich d ( )ν can bewritten in the form

d ( ) i
2

i
2

. (91)c
2

eff
2 m

2

eff
m 2⎜ ⎟ ⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟ν ν Γ Δ ν Γ ω= + − + −

The stability conditions (78), (79) guarantee the strict positivity of the effective damping constants cΓ and mΓ . The
quantity eff

mω is known as optical spring rigidity, while the ratio ( )m m mΓ γ γ− is called co-operativity [5, 9].
An exact expression for the zeros is foundwhen mΔ ω= , which allows us to put into evidence a crossing of

the frequencies of the hybridized optical andmechanicalmodes [9]. If also the condition

G4 ( ) (92)2
c m

2γ γ< −

holds, the result is

u
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2 2
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8
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−
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Always for mΔ ω= , under the conditions
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we get instead the result

x x
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, , , (98)c m
c m
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mΓ Γ
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Δ ω= =
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= =± ∓
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4
. (99)m
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ω
γ γ

ω
γ γ
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−
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−

±

The two alternatives in (98) are completely equivalent; there is no reason to associate the frequency x+ to the
cavity and x− to themechanical oscillator, or viceversa. A striking feature of the case mΔ ω= is the change in
the behaviour of the zeros at the critical point ¯c cγ γ= , solution of G ( ) 42

c m
2γ γ= − ; recall thatG2 depends on cγ

due to (67) and (75).
In the general case, an approximate expression can be obtained under the conditions

1, ( ) 1, ( ) 1
4

1, (100)m

c

2

m
2

c
2

m
2
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γ

χ Δ χ Δ Δ
ω

γ
ω

≪ ∣ ∣ ≪ ∣ ∣ − − ≪

where

( )( )( ) ( )
G

( ) . (101)
2

m

( )

4 m
2 ( )

4 m
2c m

2
c m

2
χ Δ ω Δ

Δ ω Δ ω
=

+ − + +
γ γ γ γ− −

The result for the damping constants is

( )( ), ( )( ). (102)m m c m c c c mΓ γ χ Δ γ γ Γ γ χ Δ γ γ≃ + − ≃ − −
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The expressions for eff
m 2ω and eff

2Δ are then obtained by inserting mΓ and cΓ in the equations (A.12). The
compatibility conditions (A.13) have to hold. As one can see, when 0Δ > (red detuning), we have an increasing
of themechanical damping constant, m mΓ γ> , and a decreasing of the spring rigidity, eff

m
mω ω< .

4.2.2. Themean values at equilibrium
By integrating in their frequency dependence the fluctuation spectra one obtains the secondmoments of
position andmomentum in the equilibrium state:

q q
m

S p
m

S
2

( )d ,
2

( )d , (103)q p
2

eq eq
2

m

2
eq

m∫ ∫π Ω
ν ν Ω

π
ν ν− 〈 〉 = = 

 

q p S
1

2
{ , }

2
( )d . (104)qpeq ∫π ν ν〈 〉 = 



All these quantities are finite since the integrands behave as 2ν− for ν∣ ∣ → +∞.Moreover, the reduced
equilibrium state of themechanical oscillator is a Gaussian state characterized by (103) and (104) togetherwith
q g m( )eq 0

2
m

2ζ Ω〈 〉 = ∣ ∣ , p 0eq〈 〉 = .

On the contrary the integral of S ( )q
2ν ν , whichwould give the fluctuations at equilibriumof m q̇mΩ  ,

does not exist. This fact is related to the features of the noise in the thermal part and, as already noticed right
before section 3.3.1, this noticeably implies that the standard identification of mq̇ withmomentum is not
possible. The expression of S ( )q ν coincides with the one given in [1, 25], where however R̂ ( )GZ ν withOhmic

spectral density appears instead of R̂ ( )ν .While in the case of [1, 25] S ( )q
3ν ν≍ − , still q̇2 does not have afinite

mean and also in this case the identification ofmomentum and velocity is not possible. Notice that the
expressions for S ( )p ν and S ( )qp ν have not been obtained before. In particular S ( ) 0qp ν ≠ implies that the
fluctuations of position andmomentum are actually correlated.

Themean energy of the harmonic oscillator at equilibrium takes the form

H m q H
1

2
, (105)m

eq m
2

eq
2

flΩ= 〈 〉 + 〈 〉

where the contribution due tofluctuations is given by

( )H S S S
4

d ( ) ( ) ( ) . (106)q p qpfl m m
⎡⎣ ⎤⎦∫π ν Ω ν ν γ ν〈 〉 = + +



It is convenient and natural to split this contribution into three distinct terms, distinguishing a radiation pressure
term from the rest and further dividing the thermal contributions into two, putting into evidence a contribution
which is not proportional to position fluctuations and does not have a definite sign.We thus introduce the
dimensionless quantities

S S
1

2 2
( )d ,

1

2
( )d , (107)q qrp

m
2 2

m m

rp
th

m

m

th ∫ ∫π
Ω ν

ω Ω
ν ν

π
ω
Ω

ν ν= + =
 

aswell as

( )G

d
G

N

( )
1

2
d

2 ( )

1

2 2

4
( )

1

2
( ) , (108)

th

2
m

2
2 c m

m

2 2 c
2

⎜ ⎟

⎧⎨⎩
⎡
⎣⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎫⎬⎭

 ∫Δ
π

ν
γ Δ

ν
Δ ν

γ γ
ω ν

ν Δ
γ

ν ν ν

=
∣ ∣

− + +

× − − + + → −



so that the fluctuation contribution can bewritten as

( )H ( ) ; (109)fl m rp th th  ω Δ〈 〉 = + +

by constructionwe have ( ) 1 2rp th th   Δ+ + ⩾ . As it appears, themean energy density cannot be
obtained from the knowledge of Sq alone, but extra terms are present.Moreover, the contribution proportional
to ( )th Δ can be negative. Depending on the parameter values, the extra terms can be actually quite small. It is
important to stress that the given expression for themean energy of the resonator holds for any temperature of
the phonon bath, including the case of zero temperature.

We further stress that there is not strict energy equipartition. This can be expected since themechanical
oscillator is coupled to the cavity through its position and also the counter-rotating terms contribute to the final
result. In the thermal part the lack of equipartition is due to the terms proportional toΔ, which are present in
S ( )p

th ν and not in S ( )q
th ν . In the radiation pressure part the termwith m

2Ω comes from the position and the one

with 2ν comes from themomentum and give different contributions to themean energy.
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4.2.3. Vanishing effective detuning
For a vanishing effective detuning 0Δ = all the computations can be performed analytically. The second
thermal contribution ( )th Δ vanishes and the coupling constant takes the value G g E m8 ( )2

0
2 2

m c
2ω γ=  . For

the spectra of the fluctuations the explicit expressions reduce to

( ) ( )
S

G

S
N

( )
2 ( )

,

( )
2

( )

( )
( ) , (110)
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=
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=
+

− +
+ → −

γ γ γ

γ

leading upon integration to
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( )
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2

c

m 4 m
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m
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m
2

m
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2
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⎞
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+

= + +
+

〈 〉 = − +

γ γ

γ γ

+

+

 

 



with Neff as in (44). These expressions show that equipartition of themean energy is not valid just due to the
radiation pressure contributions. However equipartition approximately holds for 2c mγ γ≫ , which is the case
typically considered inmany theoretical studies and experiments.We further have for the fluctuation
contributions to themean energy

( )
( )

G
N

4

,
1

2
, ( ) 0.rp

2
m c

m 4 m
2

th eff th
m c

2⎛
⎝⎜

⎞
⎠⎟

  γ γ

γ ω
Δ=

+

+
= + =

γ γ+

Themean equilibrium energy of themechanical oscillator is thus increased due to the interactionwith the cavity
as a consequence of the presence of the strong laser in resonance. For the values considered infigure 1we have

1.6 10rp
4 ≃ × corresponding to a temperature of about 7.9 K.

4.2.4. Laser cooling
As discussed inmany papers [1, 3, 5, 6, 53], an important effect which can be described by the quantummodels
of cavity optomechanics is the laser cooling of themechanical resonator. Since, as already discussed, we cannot
expect equipartition of themeanmechanical energy, we cannot speak of temperature in a strict sense. A natural
way to speak about laser cooling is the comparison of themean energy of the fluctuations of themechanical
oscillator in the presence or the absence of the stimulating laser (corresponding to 0ζ = ). So, we have to study
the value of thefluctuation contribution (109) and to compare it to its value for 0ζ = , which is given by
H fl 0〈 〉 ∣ζ= Hm eq 0=〈 〉 ∣ζ= N( )m eff

1

2
ω= + .

To obtain explicit analytical formulae for themean energywe consider the case of a constant noise spectrum,
that is N ( ) const Neffν = = . To actually perform the calculations we need the expressions of the zeros of d ( )ν ;
here we consider the generic case given by theAnsatz (91). By lengthy computations the integrals over ν can be
exactly performed, leading to involved formulae explicitly given in appendix A.2. In order to describe cooling
effects the relevant contributions can bewritten in the form

N N
1

2
, ( )

1

2
, (111)th

m

m
eff th

m

m
eff⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠   γ

Γ
Δ

γ
Γ

= + = +

where the quantities  and  are given in equations (A.16) and (A.17). The expression for rp is given in
(A.15). Note that, while  is always positive, depending on the values of the parameters the quantity  can be
also negative. For a large choice of the parameters  turns out to be close to 1.

In the followingfigures we describe the effective cooling of themechanical oscillator, by considering as a
figure ofmerit the cooling factor
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( ). (112)m

m
  γ

Γ
= +

We study two cases, corresponding to the parameter regions forwhich an exact or approximate analytic
evaluation of the different contributions to themean energy has been provided. In both casesmass and bare
frequency of themechanic oscillator are taken to be m 2.5 10 10= × − kg and 2 10m

7Ω π= × Hz,while the
mechanical damping factor is 2 10m

2γ π= × Hz.We consider a cavity of length 5 10 4× − mand resonance
frequency c2 (1064 10 )c

9ω π= × − Hz, driven by a laser with a power of 5 10 2× − W.For the sake of
comparison the values of the fixed parameters are taken from [25].

We start by exploring the case mΔ ω= , studied in section 4.2.1, in which the location of the poles can be
evaluated exactly, provided one distinguishes two regions according to the value of the ratio G( ) 4c m

2 2γ γ− . No
approximation is taken in the expression of the integrals giving themean energy. If this ratio is above one,
verified for a cavity damping ¯c cγ γ> , where the critical damping c̄γ is introduced in the comments after (99) and
corresponds for the considered parameters to ¯ 4.1 10c

7γ ≃ × , the effective damping rates mΓ (93) and cΓ (94) are
actually distinct, while eff eff

mΔ ω= and their expression is given by (95). By numerical computationswe see that
the cooling factor  is amonotonic increasing function of the cavity damping rate ,cγ and around the starting
point c̄γ the cooling factor takes the value 2.9 10 5× − . In the complementary region, corresponding to

G( ) 4c m
2 2γ γ− belowone, the cooling factor is a decreasing function of the cavity damping rate, so that the

optimal cooling is obtained for ¯c cγ γ= . In this region, corresponding to ¯c cγ γ< , we have m cΓ Γ= with value
given in (98), while the effective frequencies effΔ and eff

mω are given by the expressions (98). To assess the
relevance of the various contributions in (112) we report the values for ¯c cγ γ= : we have 3.05 10m m

5γ Γ ≃ × − ,
.997 ≃ and 4.18 10 2 ≃ − × − ; then, (112) gives 2.91 10 5 ≃ × − , which is a very strong cooling factor.

Instead, infigure 1we consider the case c mγ ω≫ , that is a cavity dampingmuch bigger than themechanical
oscillator frequency. In the exact formulae for the integrals we use the approximate expressions for mΓ and cΓ
given in (102), relying on the conditions (100). The stationary value of the energy of themechanical systemhas a
marked dependence on the effective detuningΔ and the optimal cooling region, corresponding to  of the order
of 10−3, is obtained for cΔ γ≲ . In this parameter region rp can be neglectedwith respect to Neff , unless the
phonon bath is below 1 K, so that indeed the quantity  given in (112) properly describes the cooling effect.
When the detuningΔ goes to zero the cooling factor rapidly increases in agreementwith the discussion in
section 4.2.3 showing the presence of heating at 0Δ = ; in this parameter region, the cooling effect disappears
alsowhenΔ grows.

4.3.Optical spectra
Weconsider now themonitoring of the emitted light by balanced homodyne and heterodyne detection [56
section 7.2]. The aim is to seewhich kind of information on themechanical oscillator can be obtained by
detection of the emitted light.

Figure 1.Plot of the cooling factor  for the case inwhich the cavity damping ismuch bigger than themechanical oscillator frequency.
We explore the dependence of the cooling factor on both the effective detuningΔ and the cavity damping rate ,cγ both expressed inHz.
It appears that the best cooling factor is of the order 10−3 and corresponds to cΔ γ≲ .
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4.3.1. Homodyne spectrum
The case of a perfect coherentmonochromatic local oscillator of frequency 0ω with detection of thewhole
emitted light [49, 55] corresponds to the continuousmeasurement of afield quadrature of the type

Q t B r( ; ) ie e e d ( ) h.c. ; (113)
t

ri iarg

0

i
em

†0∫ϑ = +ϑ ζ ω− −

ϑ is a free parameter which depends on the optical path and determines the observed quadrature. As a
consequence of the definitionwe have that Q t Q s[ ( ; ), ( ; )] 0ϑ ϑ = . By the properties of the outputfields,
discussed after equation (33), the commutation rules are preserved; this gives that the output current
Q t U t Q t U t( ; ) ( ) ( ; ) ( )out †ϑ ϑ≔ satisfies Q t Q s[ ( ; ), ( ; )] 0out outϑ ϑ = . This is the key property expressing the
fact that Q t( ; )out ϑ can bemeasuredwith continuity in time. Similarly to (80)we introduce the gated Fourier
transforms

Q
T

Q t Q
T

Q t( ; )
1

e d ( ; ), ( ; )
1

e d ( ; ). (114)T

T
t

T

T
t

0

i out

0

i out∫ ∫ν ϑ ϑ ν ϑ ϑ= =ν ν

From the above relations we obtain the second key relationwhich guarantees the presence of commuting
observables and therefore the consistency of the theory:

( )Q Q( ; ), ; 0. (115)T T
out out⎡⎣ ⎤⎦ν ϑ ν ϑ′ =

The homodyne spectrum is then given by the expression

{ }S Q Q( ; ) lim Tr ( ; ) ( ; ) ˜ , (116)
T

T T
out out

0 envν ϑ ν ϑ ν ϑ ρ σ= − ⊗
→+∞

where the environmental state is given by (62) and 0ρ is any initial state for themechanical oscillator and the
cavitymode.Note that this expression is nothing but the spectrumof the classical stochastic process representing
the output, and not an ad hoc quantumdefinition [49 section 4]. The commutation property (115) implies that
the homodyne spectrum S ( ; )ν ϑ is an even function of ν.

As shown in appendix B.1, the homodyne spectrumhas both an elastic and an inelastic component

S S S( ; ) ( ; ) ( ; ), (117)el inelν ϑ ν ϑ ν ϑ= +

which turn out to have the expressions

S

S S S
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Note that all the contributions are indeed positive as shown in appendix B.1. It is important to stress that the
connection between S ( )q ν and S ( ; )inel ν ϑ is far from simple. In particular the last contribution in (120) comes
from the interference of the electromagnetic part of the signal with the shot noise, as detailed in appendix B.1.
This is a completely new term, in principle detectable in experiments at very low temperatures.

Let us further stress that different quadratures are incompatible and actually one can prove the general
inequality [49, 55]

S S( ; ) ( ; 2) 1, (121)inel inelν ϑ ν ϑ π± ⩾
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which is just a formof theHeisenberg–Robertson uncertainty relations coming from the canonical
commutation relations of the involved Bose fields. As a result quite different physical information can be
extracted from the different quadratures.

The case 0Δ = . Thefirst striking example of strong dependence onϑ is in the case 0Δ = . For 2ϑ π= we
get S E( ; 2) 32 ( )el

2
cν π π δ ν γ= and S ( ; 2) 1inel ν π = : only the shot noise contributes to the inelastic spectrum.

On the contrary, for the quadraturewith 0ϑ = we get S ( ; 2) 0el ν π = and

( )
S

G
S( ; 0) 1

2
( ), (122)qinel

c m
2

m 4
2c

2
ν

γ ω

Ω ν
ν= +

+γ

where S ( )q ν is now explicitly given by (110). An important point is that in this case the interference term
vanishes exactly andwe have a direct connection of the homodyne spectrumwith the fluctuation spectrumof
the position of themirror. This result has been found also in [37], butwith the substitution R Rˆ ( ) ˆ ( )GZν ν→ in
the expression (86) for S ( )q

th
0ν ∣Δ= . As a result, at least in principle, when 0Δ = the homodyne observation of

the quadraturewith 2ϑ π= can give direct experimental information on the correct expression for R̂ ( )ν . At
zero temperature one could experimentally discriminate between our result (58) and the standard
proposal (59).

In other cases the interference termdoes not vanish, but it can be negligible at high temperatures. For
instance, when the interference term is negligible, at least in the regionwhere N ( ) 1ν ≫ , we recover for
S ( ; 0)inel ν the result given in [1 section 3]. At high temperatures the inelastic homodyne spectrum allows to
reconstruct thefluctuation spectrumof position, while no direct information on thefluctuation of the
momentum and on the cross-correlation is obtained.Moreover, at high temperatures we have also
S S( ) ( )q q

thν ν≃ ; by using the explicit expressions of S ( )q
th ν (86) and R̂ ( )ν (54) we get

( )( )( )
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⎠ν γ γ
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ν
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+ + +

∣ ∣
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γ γ

This expression highlights the dependence of the homodyne spectrumon the thermal spectrum N ( )ν and the
characteristic polynomial d ( )ν (89) of the dynamicalmatrix (73) of the full optomechanical system.

Squeezing.An important information about the non-classical nature of the light generated by
optomechanical systems can be obtained considering the quadrature with 4ϑ π= − . In the simple case of
vanishing detuning 0Δ = and vanishing temperature N ( ) 0ν ≡ , it is possible to show from (117)–(120) that
we have S (0; 4) 1inel π− < , at least in a certain region of the parameters. Thismeans that in a neighbourhood of

0ν = we have S ( ; 4) 1inel ν π− < and the emitted light is squeezed. This result shows that such a kind of
optomechanical systems can generate non-classical light [3, 7]. Note that, if light squeezing is present for certain
values of the parameters, then the inequality (121) implies that the complementary quadrature is antisqueezed.
Of course, experimentally it could be difficult to tune the values of the various free parameters in order to have
squeezing;moreover, the elastic peak in the spectrum tends to hide the squeezing around 0ν = in the inelastic
spectrum.

4.3.2. Heterodyne spectrum
In the case of heterodyne detection the local oscillator and the stimulating light are produced by different laser
sources; now, the stimulating laser frequency 0ω and the local oscillator frequency, say μ, are in general different.
Moreover, the phase difference cannot bemaintained stable and this erases some interference terms. It can be
shown [30, 50 section 3.5] that the balanced heterodyne detection scheme corresponds to themeasurement in
continuous time of the observables

I t B s( ; ) e e d ( ) h.c ., (123)
t

t s s

0

( ) 2 i i
em∫μ = ϰ +μ α−ϰ − +

where α is a phase depending on the optical paths and e t 2ϰ −ϰ , 0ϰ > , represents the detector response
function. Aswe shall see, the heterodyne spectrumdoes not depend onα. In theHeisenberg description the
observables become the ‘output current’

( )
I t U t I t U t

B s a s s

( ; ) ( ) ( ; ) ( )

e e d ( ) e ( )d h.c.
t

t s s s

out
†

0

( ) i i
em c

i( )
c2 0∫

μ μ

γ

=

= ϰ + +α μ μ ω− − + −ϰ

By the definition of I t( ; )μ and the properties ofU(t) we get I t I s[ ( ; ), ( ; )] 0out outμ μ = , which says that the
output current at time t and the current at time s are compatible observables.

While in the homodyne scheme the spectrumof the output is analysed, in the heterodyne scheme it is usual
to register only the output power as a function of the frequency μ of the local oscillator. Themean output power
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of the detection apparatus at large times is proportional to

{ }P
T

t I t( ) lim
1

d Tr ( ; ) ˜ ; (124)
T

T

0
out

2
0 env∫μ μ ρ σ= ⊗

→+∞

the limit is in the sense of the distributions in μ. As a function of μ, P ( )μ is known as power spectrum. Note that to
change μmeans to change the frequency of the local oscillator, that is to change themeasuring apparatus. In
general I t( ; )out μ and I s( ; )out μ′ do not commute, even for t= s. Then, there is no reason for the power spectrum
to have some symmetry in μ. The heterodyne power spectrum can be decomposed in an elastic and an inelastic
part
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The inelastic part of the spectrum is computed in appendix B.2. Again it is possible to identify a radiation
pressure contribution and a thermal part
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For simplicity we give only the expressions for 0ϰ ↓ :
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c
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Σ μ
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Ω μ ω Δ
=

−
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Both contributions are positive as it follows from the expressions (130) and (B.7). Note the presence of the
interference term in (129). By simple computations one can check that

( ) S S( ) ( ; ) ( ; 2); (131)inel 0 inel 0 inel inelΣ ν ω Σ ω ν ν ϑ ν ϑ π+ + − = + +

this is a fundamental relation [56 equation (9.61)] connecting heterodyne and homodyne spectra.Moreover, by
inserting the definitions of the relevant quantities given in (54), (85) and (86), an explicit expression for inelΣ can
be obtained fromwhich it is apparent that ( ) 1inelΣ μ > : in the heterodyne detection the phase dependencies are
lost and it is impossible to detect squeezing in the emitted light.

As in the homodyne case, the interference term in (129) is negligible when N 1≫ andwe get

( )( )
G

S( ) 1 ( ). (132)qinel
c m

2

m 4 0
2

0
c

2
Σ μ

γ ω

Ω μ ω Δ
μ ω≃ +

+ − −
−

γ

When this approximation holds, the inelastic heterodyne spectrum too allows to reconstruct the asymptotic
dynamics of themirror through the position fluctuations.

To explore the behaviour of the spectrumwe take N ( )ν as given by (56) with aOhmic spectral density.
Then, by using the explicit expressions of Sq

rp and Sq
th and by setting 0ν μ ω= − , we get
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ν Δ
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From this expressionwe see that themain features of the spectrumwill be determined by the zeros of the
denominator d ( ) 2ν∣ ∣ ; for instance, as discussed in section 4.2.1, for mΔ ω= we can have one or two resonance
frequencies depending on the value of the cavity decay rate cγ . Infigure 2we show this phenomenon: the two
distinct peaks coalesce as cγ increases. For these values of the parameters one can check that themain
contribution to the inelastic heterodyne spectrum comes from the thermal part thΣ . It can be checked that in
this parameter region the behaviour of the inelastic homodyne spectrum S ( ; 0)inel ν is very close to the
heterodyne one as depicted infigure 2. Let us notice that the behaviour shown infigure 2 does not uncover the
whole rich structure of the spectrumwhich appears by exploring other parameter regions.

5. Summary and outlook

In this article we have shown how to give a fully quantumdescription of a dissipativemechanical oscillator.
The combined use ofmaster equations and quantumLangevin equations allows for the construction of a
dissipative dynamics respecting symmetries and physical constraints, such as the energy equipartition at
equilibrium, and subject to dissipationwith an arbitrary noise spectrum. A crucial feature allowing for these
results is that for amechanical oscillator the definition of the creation and annihilation operators am and am

†

in terms of position andmomentum is not the usual one, but rather depends on the damping constant mγ , as
discussed in section 2.2; the standard result is only recovered for a vanishing damping constant as can be seen
from (16).Moreover, the quantumLangevin equations for the system, and the input–output relations for the
noises, for both themechanical oscillator and for the optomechanical system, given in section 3.1 and
section 4.1 respectively, need not be postulated: they are nothing but theHeisenberg equations ofmotion
determined by theHudson–Parthasarathy unitary evolutions (21) and (61). In this framework it appears that,
in order to preserve theHeisenberg uncertainty relations, themomentumoperator can be interpreted as the
time derivative of the position operator only in a ‘coarse grained’ picture. An help in comparing our approach
to others and in discussing the structure of the noises comes from the quantumLangevin equation inNewton
form, see section 3.3, which at the price of introducing singular noises does not contain themomentum

Figure 2.Plot of the inelastic heterodyne spectrum inelΣ as a function of ν for a range of values of the cavity damping cγ around the
critical value c̄γ discussed in section 4.2.4. It appears how the two distinct peaks of the spectrum coalesce at the critical value. The
spectrum is plotted for mΔ ω= , while the other parameters are as in section 4.2.4.

24

New J. Phys. 17 (2015) 083004 ABarchielli and BVacchini



operator. Indeed in the quantum case important constraints on the correlation functions of the operator
noises come from the fact that they need to be positive definite and compatible with the commutation rules of
such noises. In this formalism, we are further able to introduce a field analog of the P-representation for the
state of the environment and this opens the possibility of treating an arbitrary noise spectrum as done in
section 3.2.

Our description of themechanical oscillator is not very different fromother proposals atmedium and high
temperatures of the phonon bath. Differences become relevant for very small temperatures. Indeed the
dynamics we have constructed is fully ‘quantum’ at all temperatures and this opens the possibility of
constructingmodels of optomechanical systemswhich are reliable also in a deep quantum regime. As an
examplewe have studied a prototypical system: amechanical resonator interacting via radiation pressure with a
single opticalmode in a cavity. For this case we have given explicit general formulae for the fluctuation spectra of
position andmomentumof themechanical resonator and for themeanmechanical energy at equilibrium. By
using detection theory in continuous time, we have obtained the full expressions of the homodyne and
heterodyne spectra of the emitted light. For not too low temperatures, usual results are recovered, such as laser
cooling and connection between the light spectra and the fluctuations of position of themechanical component.
However, our description is valid also at very low temperatures, when semi-classical reasoning is not valid and
the observation of the spectra of the emitted light is not giving a directmeasurement of themechanical
fluctuations.

Many generalizations are possible [57–60], which could benefit of a systematic and consistent treatment.
The simplest generalization is to include imperfections in the detection scheme and noise in the stimulating laser
light [5, 7, 30, 50]. But also direct detection can be included [30] or the entanglement between resonator and
opticalmode can be studied.Moreover, thewhole theory has in some sense ‘modular’ properties and can be
applied tomore complicated systems, saywhenmoremechanical resonators andmore opticalmodes are
involved.
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AppendixA. Computation of thefluctuations

The Fourier transformed equations of motion corresponding to (72) can be solved by purely algebraic
manipulations; essentially the problem reduces to compute the inverse of the matrix A iν+ . By using
the characteristic polynomial d ( )ν of the dynamical matrix A (89) the final result for large T turns out
to be
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To compute the spectra (82), (83)we need also thefield correlations. From the correlations (42) and the fact
that Bem is a Fock field in the vacuum state we get

B B B B N

B B B B N
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while the cross-correlations involving both Bth and Bem vanish. Also thefluctuations of the cavitymode
operators and the correlations oscillator/mode could be computed by using all the components (A.1)–(A.4), but
we do not study them in this work.

A.1. The zeros of d ( )ν
Let us assume that d ( )ν has two zeros of the form i 2m eff

m
mν ω Γ= − and i 2m eff cν Δ Γ= − with 0eff

mω ≠ and
0effΔ ≠ ; by the property d d( ) ( )ν ν= − , the other two zeros are mν− and cν− . Therefore, we canwrite d ( )ν in

the form (91) or

( ) ( )d ( ) ( ) ( ) . (A.10)m m c cν ν ν ν ν ν ν ν ν= − + − +

By equating this expression to (89)we get the algebraic system
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The stability conditions (78), (79) guarantee 0mΓ > and 0cΓ > . By assuming c mΓ Γ≠ , from this systemwe get
in particular
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The case mΔ ω= . An exact expression for mΓ and cΓ can be foundwhen mΔ ω= .We study only the case of d ( )ν
of the form (A.10)with four distinct zeros.

In the case c mΓ Γ≠ we set x c mΓ Γ= − and insert (A.12) and c m c mΓ Γ γ γ+ = + into the last equation of the
system (A.11); in such awaywe get

x x G16 ( ) 64 16 ( ) 0.4
m
2

c m
2 2 2

m
2

m
2

c m
2⎡⎣ ⎤⎦ω γ γ ω ω γ γ+ − − + − − =

Then, by using the solution of the equation for x2 and equations (A.12), wefind the result (93)–(96). By
imposing cΓ , mΓ , eff

2Δ to be real and strictly positive and c mΓ Γ≠ , we get the necessary and sufficient
condition (92).

By the choice c mΓ Γ= , from the system (A.11)we get directly the result (98), (99), togetherwith the
conditions (97).
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An approximate expression.To compute approximately mΓ we adapt a suggestion given in [5, 25] and based
on an approximation of themechanical susceptibility. In the expression of d ( )mν taken from (89)wemake the
approximation ( i )( i ) ( i )( i )m 2 m 2 m 2 m 2

c c c m c mν Δ ν Δ ω Δ ω Δ+ + − + ≃ + + − +γ γ γ γ γ γ− −
andwe solve

d ( ) 0mν = for mΓ under the conditions (100), (101). By using also thefirst equation of the system (A.11)we get
the expression (102) for the damping constants. Oncewe have mΓ and cΓ , we can compute eff

m 2ω and eff
2Δ from

the equations (A.12), which do not contain approximations.
For consistencywe need the positivity of eff

2Δ and eff
m 2ω , whichmeans the positivity of the right hand sides of

equations (A.12). Under the approximations (100)–(102), this gives
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because ( )χ Δ has the same sign asΔ, conditions (A.13) give true restrictions only for 0Δ > .We see also that
conditions (A.13) are violated forΔ positive and small. In this situation the cavity is overdamped and the
decomposition of d ( )ν takes the form d ( ) ( i )( i )( i )( i )eff

m
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m
2 2 2

m m 1 2ν ν ω ν ω ν ν= − + + + + +Γ Γ Γ Γ ; we do not
study this case.

A.2. Computation of themeanmechanical energy
The integrals over ν in (107), (108) can be performed by the residuemethod, under the Ansatz (91) and
N N( ) effν ≡ . First we set

( )
D

L

4
4 ,

4
, 4. (A.14)

2
eff

2
eff
m 2 c m

2 2

eff
m 2

eff
2

c
2

c
2

2
eff

2
eff
m 2

eff
m 2

m
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟Δ ω

γ γ
ω Δ

γ Γ
Δ Δ Ω ω Γ

= + +
+

−

=
∓
− ± = +±

With this notationwe have

( )

( )
( )

G

D

G

4 2 4

4
, (A.15)

rp

2
c

m c
2

2
m

c
2

m
2 m m

2
c

2 c
2

m c m c

2
m
2 c m

2

c m

⎧
⎨⎪
⎩⎪

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎫
⎬⎪
⎭⎪

 γ
Γ Γ

ω Δ

ν ν
γ Ω γ Δ

γ
γ γ γ γ

Δ ω
γ γ

γ γ

= + + + +

+ + +
+

+

where c
2

m
2ν ν∣ ∣ ∣ ∣ is given by the last of (A.11). The thermal contributions th and ( )th Δ are given in (111) in

terms of the expressions
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Note that, while  is always positive,  can also take on negative values.
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Appendix B. Computation of the optical spectra

B.1. The homodyne spectrum
The homodyne spectrum (116) involves the quantity Q ( ; )T

out ν ϑ (114); by the rules of quantum stochastic
calculuswe can compute Qd ( ; )T

out ν ϑ , which turns out to contain the quantities (A.3), (A.4). Then, by
integrationwe obtain

Q
T

T
Q Q( ; ) 4 sin e

sin 2
( ; ) ( ; ), (B.1)T

T
T T

out
c

i 2 th emν ϑ γ ζ ϑ ν
ν

ν ϑ ν ϑ≃ ∣ ∣ + +ν

Q E B E B( ; ) ( ; ) ˆ ( ) ( ; ) ˆ ( ) ,T
T Tth

th th th th
†ν ϑ ν ϑ τ ν ν ϑ τ ν= + − −

( )Q E B

E B

( ; ) ( ; ) ie ˆ

( ; )ie ˆ ( ) ,

T
T

T

em
em

i( arg )
em 0

em
i( arg )

em 0
†

ν ϑ ν ϑ ν ω

ν ϑ ω ν

= − +

+ − −

ϑ ζ

ϑ ζ

−

− −

( )E G L( ; )
2

i ( ; ), (B.2)th m c
m

m⎜ ⎟
⎛
⎝

⎞
⎠ν ϑ γ γ

γ
ν ω ν ϑ= − + +

E
G L

( ; )
i( )

i( )

i e ( ; )

i( )
, (B.3)em

2

2

m c
2 i

2

c

c c
ν ϑ

ν Δ

ν Δ
ω γ ν ϑ

ν Δ
= −
− −

+ −
+

+ −

γ

γ

ϑ

γ

( )
L

d
( ; )

sin i cos

( )
. (B.4)2

c

ν ϑ
Δ ϑ ν ϑ

ν
=

+ +

−

γ
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By long computations this relationcanbe verified also explicitly byusing the expressionsof E ( ; )th ν ϑ and E ( ; )em ν ϑ .
By using (B.1), (B.5) and (A.9), from (116)we get the decomposition of the homodyne spectrum expressed

by equations (117), (118) with
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Note that S ( ; ) 0th ν ϑ ⩾ and S ( ; ) 0rp ν ϑ ⩾ . To compute the thermal part we note that E ( ; )th
2ν ϑ∣ ∣ can be

written by using R̂ ( )ν (54); by taking S ( )q
th ν from (86), we get (119).

To compute the radiation pressure component of the spectrum,we need the squaremodulus of Eem (B.3),
which is the sumof two terms. So, we have the squaremodulus of thefirst term (the shot noise), the square
modulus of the second term (the signal) and the double product (the interference term):
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By inserting this expression into (B.6)we get
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Finally, by elaborating the argument of the real part and by using the expression (85) for S ( )q
rp ν we get

equation (120).

B.2. The heterodyne spectrum
By a procedure similar to the one used in appendix A and appendix B.1, in the limit of 0ϰ ↓ , tϰ → +∞, we get
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By using thefield correlations (A.9)we can compute the heterodyne spectrum; again, by the vanishing of the
field cross-correlations, the thermal contribution and the electromagnetic contributions decouple in the
expression of the spectrum. By some longmanipulations and by recalling that the limit in (127) is in the sense of
distributions, we get (128)with the thermal part given by (130) and
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which becomes (129) by expanding the absolute value and using (110).
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