# L-Aspartate oxidase from Sulfolobus tokodaii:

# immobilization studies



Andrea Fiorati,<sup>a</sup> Chiara Allegretti,<sup>a</sup> Lorenzo Cerioli,<sup>a</sup> Luciano Piubelli,<sup>b,c</sup> Loredano Pollegioni,<sup>b,c</sup> Elena Rosini,<sup>b,c</sup> Davide Tessaro,<sup>a,b</sup> Mattia Valentino,<sup>b,d</sup> Paola D'Arrigo<sup>a,b</sup>

- <sup>a</sup> Politecnico di Milano, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- b The Protein Factory, Centro Interuniversitario di Biotecnologie Proteiche, Politecnico di Milano, Università degli Studi dell'Insubria e ICNR-CNR, Via Mancinelli 7, 20131 Milano, Italy
- <sup>c</sup> Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Via Dunant 3, 21100 Varese, Italy
- d ICRM, CNR Via Mancinelli 7, 20131 Milano, Italy

#### Introduction

L-Amino acid oxidases (LAAOs, EC 1.4.3.2) catalyze the stereospecific oxidative deamination of L-amino acids to α-keto acids, ammonia and hydrogen peroxide.<sup>1,2</sup> In our labs L-aspartate oxidase from the thermophilic archaea *Sulfolobus tokodaii* (StLASPO, EC 1.4.3.16) has been efficiently produced as recombinant protein in *E. coli* in the active form as holoenzyme<sup>3</sup> and fully characterized.

The enzyme is active only on L-aspartate and on L-asparagine and it's absolutely stereoselective. StLASPO shows a remarkable stability: up to 80 °C in the 7 – 10 pH range. Plotting the activity (on L-aspartate) against temperature in the 25 – 95 °C range, an increase with no evidence for any plateau or decrease up to 80 °C was apparent. The activity of the enzyme as a function of pH shows a bell-shaped behavior: it is maximal at about pH 10.

### Kinetic resolution of D,L-aspartate

In a previous study StLASPO was used for the resolution of a 50 mM solution of D,L-aspartate, and the full resolution was reached in 4 hours in the 37-70 °C and pH 10-11 range using 0.3 U StLASPO/mL.

The kinetic resolution of D,L-aspartate was now used for evaluating the performance of the immobilized enzyme and was carried out by adding 0.5 mL of a 50 mM D,L-aspartic solution (in water, adjusted to pH 10.0), 200 µL of water and 2 µL of catalase to the StLASPO immobilized on resin. This reaction was performed at 70 °C on a thermomixer set to 600 rpm.

For CLEA preparation the assay was performed by adding 0.5 mL of a 50 mM D,L-aspartic solution in "magic buffer" (160 mM Tris–HCl, 160 mM Na<sub>2</sub>CO<sub>3</sub>, 160 mM H<sub>3</sub>PO<sub>4</sub>, 0.65 mM potassium chloride and 1% glycerol) padjusted to the desired pH (8, 9 or 10) and 1 μL of catalase to the CLEA-StLASPO preparation (1.12 U); the reaction was performed at 70 °C on a thermomixer set to 600 rpm.

# Immobilization on Relizyme™ HA403/SR

| Cycle number | Time<br>(h) | e.e. (%) |
|--------------|-------------|----------|
| 1            | 1           | 100      |
| 2            | 1           | 100      |
| 3            | 1           | 100      |
| 4            | 1           | 87       |
| 4            | 2           | 100      |
| 5            | 1           | 77       |
| Э            | 2           | 100      |

The resin Relizyme™ HA 403/SR (250 mg), which has amino moieties, was treated with 10 mL of 0.125% glutaraldehyde solution in water for 2.5 h on a rotating device at 18 °C. The glutaraldehyde solution was then removed and the resin was washed with 0.1 M phosphate buffer at pH 7.5.

After that, 1 mL of StLASPO (2 U) was added to the resin, with 1 mL of 0.1 M phosphate buffer at pH 7.5 and the mixture was incubated on a rotatory shaker for 24 h at 18 °C.

StLASPO was immobilized with a full yield in terms of activity.

The resin was then washed with 50 mM phosphate buffer at pH 7.5, and stored at 4 °C in the same conditions.

The immobilized enzyme showed an activity of 8 U/g matrix

The influence of D,L-aspartate concentration on enzymatic (2 U/118 mg resin) resolution was also evaluated, by adding 0.5 mL of a D,L-aspartic solution at different concentration (from 50 to 500 mM) at pH 10.0.

| L-aspartate conversion (%) |          |     |     |    |     |    |    |    |    |
|----------------------------|----------|-----|-----|----|-----|----|----|----|----|
| Final D,L- Asp             | Time (h) |     |     |    |     |    |    |    |    |
| (mM)                       | 0.5      | 1   | 2   | 3  | 4   | 5  | 7  | 21 | 42 |
| 35                         | 100      | -   | -   | -  | -   | -  | -  | -  | -  |
| 70                         | 62       | 100 | -   | -  | -   | -  | -  | -  | -  |
| 110                        | 12       | 36  | 100 | -  | -   | -  | -  | -  | -  |
| 140                        | -        | -   | -   | 67 | 100 | -  | -  | -  | -  |
| 180                        | -        | -   | -   | -  | 53  | 69 | 84 | -  | -  |
| 360                        | -        | -   | -   | -  | 17  | 21 | 21 | 21 | 21 |

#### **Analytical**

At predetermined intervals, 25  $\mu$ L aliquots were withdrawn from the reaction mixture and diluted in 100  $\mu$ L of distilled water. 10  $\mu$ L of this solution were derivatized with 25  $\mu$ L of OPA-NAC reagent, diluted with 25  $\mu$ L of 50 mM eluent and analyzed by HPLC cromatography (column Gemini 5 $\mu$  C18 Phenomenex; eluent: 50 mM sodium acetate buffer pH 5.2 / MeOH 90/10; flux of 0.8 mL/min; detection at 340 nm).

OPA-NAC reagent is a basic aqueous-methanolic solution of ortho-phthalaldehyde and N-acetylcysteine which are able to react with free amine giving a fluorescent derivate.

#### Other supports tested

Also other solid supports were evaluated:

Sepabeads EC-EP/A, Relizyme<sup>TM</sup> EP113, Relizyme<sup>TM</sup> HA403, Relizyme<sup>TM</sup> HA113, Eupergit<sup>®</sup> C, IDA-3 Sepharose<sup>®</sup> yielded poor results in term of immobilization except for IDA-3 resin: this matrix showed a high immobilization yield but the enzyme was leached out due to the non-covalent interaction with the matrix.

#### Immobilization on resin SEPABEADS EC-EP/S

| Cycle  | Time | e.e. |
|--------|------|------|
| number | (h)  | (%)  |
| 1      | 3    | 68   |
|        | 4    | 100  |
| 2      | 2    | 66   |
|        | 4    | 100  |
| 3      | 2    | 65   |
|        | 4    | 100  |
|        | 2    | 59   |
| 4      | 4    | 81   |
|        | 6    | 100  |
| 5      | 2    | 28   |
|        | 4    | 45   |
|        | 6    | 73   |
|        | 8    | 80   |
|        | 10   | 100  |

One unit of pure StLASPO was added to 60 mg of Sepabeads EC-EP/S, with oxirane moieties, and to 0.3 mL of 1.25 M KH<sub>2</sub>PO<sub>4</sub> buffer at pH 8.0.

The mixture was incubated on a rotatory shaker for 18 h at 25 °C: approximately 50% of the enzymatic activity was present in solution suggesting that half of the starting enzyme has been immobilized.

This immobilized StLASPO preparation yielded full conversion of L-isomer of aspartate in 4 hours for 3 cycles. For the following cycles, the full resolution was obtained in a longer time, requiring up to 10 hours in the fifth cycle.

## Immobilization as CLEA

The precipitation of StLASPO as a CLEA<sup>4</sup> was conducted by adding to 0.5 mL of enzyme solution (2.24 U/mL), 4.5 mL of a 60% w/v  $(NH_4)_2SO_4$  solution, in 0.1 M phosphate buffer at pH 7.5 and 20 µL of glutaraldehyde.

The mixture was incubated on a rotatory shaker for 2.5 h at room temperature: no residual enzymatic activity was detected in the solution.CLEA-StLASPO was then washed twice with 0.1 M phosphate buffer at pH 7.5 and was stored at 4 °C in 0.05 M phosphate buffer at pH 7.5.

Before each cycle, the CLEA-StLASPO preparation was incubated with 1 µL of FAD for 30 min in 0.1 M phosphate buffer at pH 7.5.

| 0,0.0     | ricaction. | c.c. (70) | c.c. (70) | c.c. (70) |
|-----------|------------|-----------|-----------|-----------|
| number    | time (h)   | pH8       | pH 9      | pH 10     |
|           | 2          | 49        | 32        | 53        |
| 1         | 4          | 87        | 100       | 100       |
|           | 6          | 100       | -         | -         |
|           | 2          | 49        | 63        | 66        |
| 2         | 4          | 97        | 100       | 100       |
|           | 6          | 100       | -         | -         |
|           | 2          | 69        | 69        | 64        |
| 3         | 4          | 73        | 100       | 100       |
|           | 6          | 100       | -         | -         |
|           | 2          | 88        | 54        | 42        |
| 4         | 4          | 100       | 100       | 68        |
|           | 6          | -         | -         | 100       |
|           | 2          | 91        | 91        | 40        |
| 5         | 4          | 100       | 100       | 69        |
| 3         | 6          | -         | -         | 95        |
|           | 7          | -         | -         | 100       |
|           | 2          | 0         | 0         | 31        |
| 6         | 4          | 0         | 0         | 56        |
| U         | 6          | 0         | 0         | 80        |
|           | 8          | 0         | 0         | 100       |
| ully rood |            | مر المال  | duga taa  | 10d :0    |

Reaction e.e. (%)<sup>a</sup> e.e. (%)<sup>a</sup> e.e. (%)<sup>a</sup>

In the first cycle, the conversion was fully reached at all pH values tested, in a comparatively shorter time at highest pH. On the contrary, starting from the fourth cycle, the full oxidation of L-aspartate was obtained in a shorter time at pH 8 and 9.

# Conclusions

Due to the very interesting properties of this enzyme, we propose the immobilized StLASPO as an attractive tool for biotechnological applications. We recognize that CLEA technique or Relizyme<sup>TM</sup> HA403/SR as solid support represent the best conditions for StLASPO immobilization: this step will allow to improve the stability as well as enzyme reusability.

- [1] P. Macheroux, O. Seth, C. Bollschweiler, M. Schwarz, M. Kurfurst, LC Au, S. Ghisla, Eur J Biochem, (2001) 268, 1679-1686.
- [2] L. Pollegioni, P. Motta, G. Molla, Appl. Microbiol. Biotechnol. (2013), Vol. 97, Issue 21, 9323-9341.
- [3] D. Bifulco, L. Pollegioni, D. Tessaro, S. Servi, G. Molla, Appl Microbiol Biotechnol (2013), Vol. 97, Issue 16, 1-11.
- [4] R. Schoevaart, M.W. Wolbers, M. Golubovic, M. Ottens, A.P.G. Kieboom, F. van Rantwijk, L.A.M. van der Wielen, R.A. Sheldon, Biotech. and bioeng. (2004) VOL. 87, NO. 6, 754 762