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research, pilot training and development of any new aircraft design. The goal of the present 
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paper is to provide a review on how effective ground simulation is as an assessment tool for 

unmasking adverse Aircraft-and-Rotorcraft Pilot Couplings (APC/RPC). Although it is 

generally believed that simulators are not reliable in revealing the existence of A/RPC 

tendencies, the paper demonstrates that a proper selection of high-gain tasks combined with 

appropriate motion and visual cueing can reveal negative features of a particular aircraft that 

may lead to A/RPC. The paper discusses new methods for real-time A/RPC detection that can 

be used as a tool for unmasking adverse A/RPC. Although flight simulators will not achieve the 

level of reality of in-flight testing, exposing A/RPC tendencies in the simulator may be the only 

convenient safe place to evaluate the wide range of conditions that could produce hazardous 

A/RPC events.  
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1. Introduction 

The aviation community relies heavily on flight simulators as a fundamental tool for research, 

pilot training and new aircraft design development. In the broadest sense, a flight simulator may 

be defined as a device capable of synthetically replicating the behaviour of the simulated aircraft 

to as high a standard or fidelity as its component parts will allow.  Typically, flight simulators 

are used during the development of an aircraft, to conduct basic aeronautical vehicle or systems 

research or as a means to train pilots and crew. This paper provides the most up-to-date research 

on the former of these, specifically the use of flight simulators to unmask a phenomenon known 
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For training purposes, flight simulators can range from low-cost procedural trainers to high 

fidelity, high-cost simulators. From these early beginnings, pilots now conduct a significant part 

of both their initial and recurrent training through the use of simulated flying time. For example, 

Figure 2 shows the HELISIM facility [34] specially dedicated to helicopter pilot training at 

Eurocopter (now Airbus Helicopters) in France with certified Level D simulators2. The 

advantages of such training flight simulators are recognised and most modern flying 

organisations, both civil and military, use such devices. In 2006, the International Civil Aviation 

Organisation (ICAO) launched the Multi-crew Pilot License (MPL) which was designed to 

drastically reduce the number of real flight training hours required to reach the first-officer seat 

of a fixed wing airliner compared to the more traditional Air Transport Pilot’s License (ATPL). 

The bulk of the flying training for this license is conducted in state-of-the art fixed wing 

simulators, the intent being to reduce the cost for both the airline and the prospective license 

holder. In addition, so-called “zero flight time training (ZFTT)” [3] means that a pilot can gain a 

Type Rating on an aircraft using a training syllabus on a suitably qualified flight simulator. 

ZFTT may be conducted only in a flight simulator qualified in accordance with JAR-STD Level 

C or D simulators [3, 65] and user approved for ZFTT by the Authority.  

 

                                                      

2
The full flight simulators (FFS) can be divided in four levels of fidelity: 1) Level A - A motion system 

is required with at least three degrees of freedom. Airplanes only; 2) Level B - Requires three axis motion 

and a higher-fidelity aerodynamic model than does Level A. The lowest level of helicopter flight 

simulator.3) Level C - Requires a motion platform with all six degrees of freedom. Also lower transport 

delay (latency) over levels A & B. The visual system must have an outside-world horizontal field of view 

of at least 75 degrees for each pilot. 4) Level D - The highest level of FFS qualification currently 

available. Requirements are for Level C with additions. The motion platform must have all six degrees of 

freedom, and the visual system must have an outside-world horizontal field of view of at least 150 

degrees, with a Collimated (distant focus) display. Realistic sounds in the cockpit are required, as well as 

a number of special motion and visual effects.  
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1.2 Flight Simulator Fidelity 

Whilst there is theoretically no limit as to how representative the flight dynamics mathematical 

model of an aircraft in its operating environment can be in a flight simulator, the exact 

duplication of all aircraft characteristics is unlikely to be achieved, regardless of the simulator’s 

computing power. This is because ground-based simulation involves many other component 

parts, including the visual, motion and control loading systems, the control inceptors, pilot 

displays, and audio and vibration environments, all of which contribute to the pilot’s feeling of 

‘immersion’ in the simulation [6]. The capabilities of simulator visual and motion systems, in 

particular, are still limited when compared to reality. To be able to more faithfully replicate the 

real world that flight simulators are intended to represent, the associated technologies need to be 

advanced further. In this sense, there is a need to define first the term ‘simulator fidelity’ to be 

used in this paper.  

 

Generally, there is not an agreed definition of ‘fidelity’ and its related terminology [7]. The 

classic use of the term ‘fidelity’ refers to the ‘physical fidelity’, i.e. ”the degree to which the 

device must duplicate the actual equipment" [9]. In this context, dimensions such as the visual 

scene simulation, cockpit environment representation and motion accelerations are relevant 

aspects of physical fidelity [8, 9, 12]. The physical fidelity approach to simulators based on 

designing and measuring simulator physical components can also be seen in the Federal 

Aviation Administration (FAA) categories of flight simulators used for training [65- 68]. 

However, more recently, there has been a trend to shift simulator fidelity from physical fidelity 

towards ‘perceived fidelity’ or “cognitive fidelity” [10, 77, 80], i.e. “the degree to which the 

device can induce adequate human psychomotor and cognitive behaviour” for a given task and 

environment. Conceivably, in the future, comprehensive fidelity assessment methodologies will 

be adopted for the assessment of simulator fidelity utilising physical fidelity, together with 
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perceived and cognitive measures, to systematically capture pilot opinion. For the moment 

though, physical fidelity, as the most common use of the term fidelity will be used throughout 

this paper.  

1.3 Aircraft/Rotorcraft Pilot Couplings 

One field of aviation research using ground-based simulators that is particularly sensitive to the 

representativeness of the simulation component parts is the ability to reveal the existence of 

adverse aircraft/ rotorcraft pilot couplings (A/RPCs) in an aircraft. In general, A/RPCs are 

“rare, unexpected and unintended excursions in aircraft attitude and flight path caused by 

anomalous interactions between the aircraft and pilot” [13]. In the past, the key causal factor of 

A/RPCs appeared to be the pilot. As such, they were initially known as Pilot Induced 

Oscillations (PIO)3 and Pilot Assisted Oscillations (PAO)4. This moniker indicated that the pilot 

was considered to be mainly responsible for these phenomena. Generally, for modern aircraft, it 

has become increasingly clear that the pilot is not necessarily at fault and that it is the rapid 

advance in the field of flight-control-systems (FCS) that has increased the pilot-vehicle system’s 

sensitivity to the appearance of unfavourable A/RPC events, by creating, along with the 

intended beneficial  effects, unforeseen opportunities for unfavourable interaction (e.g. 

delays, saturations, “disconnection” between the inceptor motion and the actual motion of 

the control surfaces in higher control modes) [111]. The fact that different pilots may show 

different degrees of proneness to adverse A/RPC does not absolve the design of the vehicle 

system from its prominent role played in such phenomena. Recently, high-fidelity ground-based 

simulations have been used to design the active control systems of modern aircraft. 

                                                      

3
Pilot Induced Oscillation (PIO) occurs when the pilot inadvertently excites divergent vehicle 

oscillations by applying control inputs that are in the wrong direction or have phase lag. Since active 

involvement in the control loop is occurring, pilot induced oscillations will cease when the pilot releases 

the controls, stops control motion or changes control strategy.  
4 Pilot Assisted Oscillation (PAO) is the result of involuntary control inputs of the pilot in the loop that 

may destabilize the aircraft/rotorcraft due to inadvertent man-machine couplings. Since passive 

involvement of the pilot’s biodynamic response to vibration occurs, these pilot assisted oscillations are 

generally much more dangerous because releasing the controls will not cease the oscillations.
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Unfortunately, the simulation testing sometimes failed to uncover certain problems which were 

only uncovered during in-flight testing [13]. This ultimately led to aircraft damage and loss and 

the corresponding subsequent expensive system redesign efforts and replacement costs. As the 

level of system automation is likely to both increase and be extended to smaller aircraft types 

that, hitherto, have relied on manual control in the future, it follows that A/RPCs are likely to be 

very different, perhaps more complex and certainly more varied from those encountered in the 

past. There is therefore a need to draw upon present experience to better understand both the 

future simulator fidelity requirements needed to unmask A/RPCs and the differences that exist 

between ground-based simulation and in-flight testing.  

The ARISTOTEL project - Aircraft and Rotorcraft Pilot Couplings – Tools and Techniques for 

Alleviation and Detection (2010-2013) in Europe performed a series of simulator test 

campaigns to understand and advance the state-of-the-art in the prediction of A/RPC 

phenomena using flight simulators (in relation to both biodynamic and active pilot in the loop 

testing) [14-33].  The goal of the present paper is to review the findings of the ARISTOTEL 

project, specifically in relation to ground-based simulator testing to unmask A/RPCs. The 

project concentrates mainly on APCs of future fixed-wing aircraft involving structural elasticity 

and on low and high-frequency RPCs of conventional helicopter configurations. In this sense, 

the A/RPC problem domain has been divided into two regions of interest, based upon the 

characteristic frequency range of such phenomena. These are: 1) ‘rigid body’ RPCs 

characterised by low frequency flight dynamics modes (below 2Hz) with an ‘active’ pilot who 

is concentrating on performing his/her mission task i.e. closed loop tasks and 2) ‘aeroelastic’ 

RPCs with excitation modes of vibration with a bandwidth of 2Hz to 8Hz, usually involving a 

‘passive’ pilot response.  
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1.4 Can ground-based simulators reveal the existence of adverse 

A/RPC? 

For rigid-body phenomena, the most common cause of dangerous A/RPCs during demanding 

piloting tasks is ‘large’ time delays (more than 200 ms) in the vehicle’s control path [26]. Such 

delays can and do occur in the flight controls of modern aircraft and can result in differences 

between the levels of command gain and of phase lag [35] desired by the pilots and those 

resulting in the control laws. Phase lag can be introduced into the pilot's command path by the 

flight control system. Contributors include prefilters, structural filters, antialiasing filters, 

computational delays, actuation lags, etc. This lag can be significant, especially in fly-by-wire 

(FBW) rotorcraft. Here, typical values range between 70 ms to more than 200 ms, usually as a 

result of the control stick dynamics. The effect on the pilot’s perception of the vehicle’s 

response to his/her control inputs as a result of these large delays can be quite dramatic, and can 

result in dangerous A/RPCs when performing demanding tasks. In such tasks, the pilot must 

correct errors rapidly with the controls, and even relatively small delays degrade task 

performance. To do this, pilots must mentally compensate the phase lag by acting as lead 

regulators, but the amount of lead that can be applied to voluntary control is limited by the 

pilot’s bandwidth. When the bandwidth of the task exceeds that of the pilot, not enough lead can 

be used, and the phase margin of the pilot-vehicle system reduces, resulting in a loss of stability 

of the pilot-vehicle system. In keeping with this view that the pilot behaves as a servo element 

in a closed-loop control system, the terminology "high-bandwidth" has emerged for tasks that 

require frequent and prompt attention. In a high-bandwidth task, the sudden loss of control and 

A/RPC that can result are also referred to as a flying qualities “cliff phenomena” i.e. there is 

little or no warning that the phenomena is about to occur. It is therefore of immediate concern 

for future aircraft to learn to avoid these dangerous “cliff-edges” early in the design process and 

this can most readily be achieved using ground-based simulators.  
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It has already been stated, however, that it is unlikely that a flight simulator will ever be able to 

satisfactorily recreate all of the different elements of an actual flight to the highest fidelity. The 

specialist literature in this field reveals contradictory evidence for the effectiveness of ground-

based simulation facilities as an A/RPC assessment tool. The general view is that ground-based 

simulators are not reliable in revealing the existence of adverse A/RPC tendencies. This is 

mainly because [13]:  

 

1) simulators contain distortions of reality due to the simulator visual environment and a 

reduced level of visual scene texture which alters the piloting strategy used and the overall 

pilot/vehicle closed-loop performance;  

2) there are improper acceleration cues and unrepresentative vibratory environments delivered 

by the simulator motion platform dynamics which also alter the piloting strategy used and 

the observed pilot/vehicle closed-loop performance; 

3) in many simulation models, there is an inadequate representation of major flight control 

system (FCS) details, especially inceptors and FCS characteristics that come into play when 

pilot-vehicle system (PVS) operations are at or near transitions or other conditions that 

define performance margins; 

4) the pilot may have a reduced level of urgency in the simulator environment when compared 

to the real flight scenario as it is known that the simulation can be halted if necessary. In 

particular, the simulators are flown by experienced test pilots that tend to adapt very quickly 

to new aircraft, and they may unconsciously compensate for deficiencies in the PVS system 

without unmasking the A/RPC event.  

 

However, it is also recognised in the literature that simulators can indeed reveal the existence of 

adverse A/RPC tendencies. For example, ground simulators were successfully used to 

understand the A/RPC mechanism involved in, for example, the Space Shuttle Orbiter [40, 41], 

the well-known SAAB JAS-39 Gripen accidents [42, 43] and the Sikorsky CH-53E RPC events 
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[44]. Mitchell considers that “ground simulation appears to mask the positive characteristics of 

good airplanes and the negative characteristics of bad airplanes” [45]. His conclusion is based 

on the examination of two simulation experiments: the first experiment is related to a simulator 

replication of the HAVE PIO flight programme [46] conducted in 1996; the second one is 

related to NASA Ames Research Center [48] simulator testing conducted in 1998. Another 

study performed in the 1990’s using NASA data from a transport aircraft [35] suggested that 

motion-base ground simulation does not predict the effects of time delays in the control system 

for these types of aircraft. Figure 5 from [35] does indeed suggest that the effects of delays on 

piloting and PIO tendency can be better seen during in-flight simulation than in ground-

simulation. 

 

 

Figure 5 Comparison of PIO tendency between total in flight simulation (TIFS) and NASA’s 

Visual Motion Simulator (VMS) [35] 

 

Celere et. al. [52] consider that, in order for simulation devices to act as a valid means to 

unmask A/RPCs, one has to ensure that, during simulator testing, the test pilot is always in a 

“high pilot gain” mode and thus he/she should be capable of triggering a PIO. In general, 

simulator testing experience has shown that the pilot gain can vary significantly. This is 
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especially true towards the end of the flight test sortie when physical fatigue has a strong 

influence on the pilot’s ability. McRuer [13], discussing the prediction of A/RPC in a simulator, 

found that such devices were able to reproduce some, but not all cases of in-flight experienced 

APCs. Aircraft configurations which demonstrated ‘severe’ APC characteristics in flight also 

exhibited APC tendencies in simulation for all pilots. However, somewhat better performance 

was seen in simulation that in actual test aircraft. Finally, for APC-prone and APC-resistant 

cases, major differences in workload and ease of control were observed between configurations 

flown in the simulator and in-flight.  

 

Overall then, testing for aircraft A/RPC proneness in ground-based simulators must be 

approached carefully and the results treated with caution. Although flight simulators will likely 

never achieve the level of reality of in-flight testing, exposing A/RPC tendencies in the 

simulator may be the only safe place to evaluate the wide range of conditions that could produce 

hazardous A/RPC events. Flight simulators are presently intensively used in industry for 

handling qualities assessment although, again, the results achieved are not always completely 

reliable[46]. Furthermore, flight simulators are considered to be an indispensable tool in the 

development of any FCS, particularly when used to examine the effects of mode transitions on 

handling qualities during high gain tasks (this allows the potential impact of A/RPC triggering 

mechanisms to be evaluated). Quoting Mitchell again from [45]: “As such - and with the trend 

toward shrinking money for flight testing, for the foreseeable future – simulation will be used 

increasingly to investigate PIO”.  

 

With all of the above in mind, the goal of the present paper is to provide a critical review of the 

practices to be used for flight simulators in order to unmask A/RPC problems. The paper 

concentrates mainly on rigid body A/RPC as they involve the active pilot in the simulator but 

also to the aeroelastic A/RPCs. It demonstrates that, when the testing is undertaken carefully, 

the results from ground-based simulators can be effective in unmasking A/RPC tendencies. A 
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proper selection of the forcing functions (in the case of biodynamic testing) and proper piloting 

tasks (in the case of pilot in the loop testing) is shown to be fundamental in detecting A/RPC 

tendencies. The paper elaborates extensively on not only the simulator motion cueing and visual 

system requirements but also the control loading and aircraft model characteristics to be used 

for unmasking unfavourable A/RPC. Useful practices and simulator methodologies are given to 

assess A/RPC incipience.  

2. Simulator characteristics relevant to the A/RPC problem 

Flight simulators are complex systems that rely on the representation of appropriate 

performance within their constituent parts (motion, visual and control loading systems, 

mathematical model, sensor feedback generation, sensory display devices, human operator, 

etc.). Figure 6 shows the simulator environment in relation to the human perception 

environment. The simulator environment (the upper element of the Figure (taken from ref. 

[36]) shows the many components of a simulator that need to be considered when assessing the 

fidelity of a given device. The pilot perception environment (the lower element of the Figure 

(taken from [37] shows the pilot senses and utilizes the simulator environment.  

 

The human operator takes in visual, auditory, proprioceptive, and vestibular information 

provided by the simulator sensory devices (displays, speakers, G-seat, motion base, cockpit 

control inceptors, etc.).  Each of these will now be briefly dealt with in turn. The benefits of 

providing motion (or not) in a flight simulator is often a subject of controversy (see more 

discussion on this in Section 3). However, the primary effect of the motion system is to 

provide acceleration cues
5
 (both linear and angular accelerations), which arrive at the pilot 

usually through the motion of the vehicle seat. A more detailed discussion of motion cueing 

                                                      

5
In Webster's Dictionary, a cue is defined as "a feature indicating the nature of something perceived". 

For simulator, a cue is a cluster of sensory stimuli, acting on the pilot via any of his sensory channels-

closely correlated with a characteristic of the airplane and its behaviour, which is relevant to the pilot 

when flying the airplane. 
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for flight simulation is given in Section 3 and further detail can be found in [114, 117]. The 

fundamental premise, however, is that when it comes to the platform motion of a simulator, 

reproducing an aircraft’s actual motion cues accurately would be expensive and, in 

reality, practically impossible.

 

Although a function of many complex interactions, the visual cues are provided primarily 

through vehicle rate and vehicle position displays obtained either from the movement of the 

outside world visualisation and/or from the pilot displays provided to the pilot. The pilot 

interacts with the vehicle mathematical model and hence the virtual outside world by moving 

the stick control inceptors. The simulator control feel system therefore influences the pilot’s 

control strategy [116, 113, 112]. According to [118], command sensitivity and feel system 

characteristics are the main factors that affect the precipitation of A/RPC phenomenon. 

Not included in Figure 6 is the effect of vibration cueing which can be quite important, 

especially for helicopter applications. 

 

The multitude of pilot perception/feedback actions that affect his/her performance can be 

also seen in Figure 6: 

- The outside visual scene and the cockpit instruments are perceived using his/her 

eyes. 

- Vection perception relates to motion perceived visually. Vection is a sense of self 

motion induced solely visually and includes self-rotation (“circular vection”) and 

self-translation (“linear vection”). 

- Proprioception perception is the information perceived from within the body. 

Proprioception is generally considered to rise from the vestibular stimulation 
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(vestibular proprioception) and kinesthetic
6
 stimulation (kinesthetic 

proprioception). The vestibular system located in the inner ear can sense both 

rotations and accelerations of the head.  

- Tactual perception may include sensing information tactilely (through the skin), 

kinaesthetically (through the joints, muscles and tendons), or both. The pressure 

sensors on the human skin are capable of sensing the vehicle accelerations. 

- Haptic perception is a narrower term that refers to sensing information both 

tactilely and kinaesthetically. Instances of tactual perception in which there is no 

tactile component whatever are usually contrived. For this reason, the terms 

“Tactual” and “Haptic” can usually be used interchangeably. 

- Auditory cues, in addition to being perceived by the ears, may be picked up by 

proprioception. In the aircraft the pilot perceives forces associated with the 

aircraft such as engine vibration, and actuation of control systems, through both 

perception and proprioception. 

 

 

                                                      

6 Kinaesthesia is the awareness of the orientation and the rates of movement of different parts of the body arising 

from stimulation of receptors in the joints, muscles, and tendons  
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Note that, in Figure 6, the human pilot is fundamental to the control loop, and understanding the 

pilot-vehicle system is important for demonstrating the feasibility and effectiveness of the 

ground-based simulators in detecting A/RPC proneness. For example, [38] describes how 

helicopter pilots perform a hover: On the one side there are important visual cues such as 

horizon and optical flow7; on the other side there is also a pilot ‘seat of the pants’ feeling 

involving a combination of vestibular, tactile and neuromuscular cues in order to make his own 

perception and judgement. 

 

In essence, A/RPCs  are coupled Pilot-Vehicle phenomena that are instigated by a trigger 

[13]. As pilot performance in the simulator is highly dependent upon making the appropriate 

responses to the cues provided, it follows that, when it comes to unmasking A/RPC 

phenomena in the simulator, any deficiencies in the simulation device’s cueing environment 

may act as either a false or an absent trigger for an A/RPC. This deficiency may then account 

for any differences observed between the A/RPC propensity of the real aircraft and the 

simulation devices. Sections 3 to 7 of the paper next relate to the most important components of 

the simulator, underlining the characteristics that the user should pay attention to when testing 

for A/RPC. 

3. Simulator motion system characteristics 

The role of the motion system is to provide the acceleration cues that give the pilot early and 

accurate indications of the aircraft’s responses to his/her own control manipulations and also to 

any unanticipated disturbances. To assess the motion’s system accuracy, the user can use the 

Motion Fidelity Rating Scale [104], see Appendix A1. This scale is a scale from 1 to 10 (similar 

to Cooper Harper HQs pilot subjective rating scale[81]), with a fidelity rating of 1 indicating 

                                                      

7 The horizon visual cue relates to the helicopter’s orientation in pitch and roll as provided by the horizon. Optical 

flow relates to the visual flow-field created by features in the external environment that are perceived by the pilot as 

the vehicle moves.  
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that no noticeable deficiencies are seen in the simulator motion cues and 10 indicating that the 

motion system has serious deficiencies. An extended literature review on the flight simulator 

(motion) requirements was published in 2010 [39]. This Section is specifically aimed toward 

assessment of the need for motion cueing when unmasking A/RPCs in the simulator.  

 

Generally, in the simulator community, there has been some controversy between advocates and 

detractors of motion-base simulators. It appears, in retrospect that much of the conflict stems 

from the tendency of the two groups to argue their position in a binary fashion i.e. motion either 

is or is not necessary for high simulation fidelity. It is becoming more evident, as experience is 

gained, that such dogmatic generalizations are inappropriate. There are some applications for 

which a motion system is essential and other applications for which motion is not needed in the 

simulation. Caro [53] considers the distinctions between the various factors that contribute to 

the need, or otherwise, for motion cueing in simulator-based training operations. Dusterberry 

and White [54] further discuss the need for large-motion simulator systems in aeronautical 

research and development. For example, one of the most demanding simulator applications for 

aircraft research and development is the study of flying qualities. In this discipline, where the 

aircraft responses over some frequency ranges are poorly damped, the pilot’s ability to operate 

precisely is greatly dependent on the lead provided by the simulator’s acceleration cueing; 

indeed, in extreme cases (example of prolonged post-stall operation [53]), the pilot’s ability 

merely to maintain control can depend on whether these acceleration cues are accurately 

reproduced.  

 

For A/RPC prediction, the poor motion cueing algorithms of early simulators have led to a lack 

of confidence in their usefulness with respect to this problem. Experience has shown that a 

pilot’s control strategy in a particular task is significantly influenced by the presence of motion 

cues [49-51]. This applies particularly to aggressive or high gain manoeuvres and agile aircraft. 

Figure 7 and Figure 8, taken from reference [55], illustrate a PIO in which the pilot’s attempts 
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For helicopters, to execute a hover task in a simulator, there is a strong justification for the need 

for large fore-and-aft displacements. Schroeder [51] reports that when using motion in addition 

to visual cues in a simulator in a vertical task, the pilots more accurately doubled/halved the 

required steady-state altitude estimation: "Pilots were surprised at the performance results and 

at how their technique had to change when all motion was removed. Two of the three pilots 

made collective inputs in the wrong direction when flying fixed base. Until the value of vertical 

motion was demonstrated, pilot subjective impressions were that the vertical task was primarily 

visual. Thus, caution should be used when interpreting piloted subjective impressions of the 

value of motion".  

 

Mitchell et. al. [56] described a number of Mission Task Elements (MTEs), taken from ADS-33 

[57], that were flown using two motion configurations. Included in these tests were the Bob-up 

and the Vertical translation manoeuvres.  For helicopters, the presence of motion cueing was 

found to have a clear effect on both tasks, improving Handling Qualities Ratings (HQRs) [81] in 

most cases from Level 2 to Level 1.  

 

In conclusion, it seems clear that motion cues aid the pilot in stabilizing and manoeuvring the 

‘aircraft’ by providing feedback and allowing him/her to fine tune his/her control inputs. When 

considering the reasons why motion cues might be important for the pilot, Heffley et. al. [73] 

provided an extended description on why and how motion and visual perceptual 

mechanisms are important and can be modelled for use in determining simulator fidelity. 

Reference [4] commented that although the non-visual sensing mechanisms through which the 

human body can detect motion (vestibular system containing the semi-circular canals and the 

otoliths, the tactile receptors in the outer layers of the skin and the proprioceptive and 

kinesthetic sensors in the muscles’ signals to the central nervous system) are less precise than 

the visual sensory system, they may respond more rapidly to the environment, providing lead 
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information, and do not require the direct attention of the subject. This makes simulator motion 

important, especially when investigating A/RPC cases.  

3.1 Quantitative Motion Cueing Criteria 

The first quantitative criteria for rotorcraft motion cueing fidelity were developed by Sinacori in 

1977 [64]. He proposed boundaries on the fidelity of the motion system (defined as “replication 

of motion cues felt in actual environment” [49]) for different flight motion frequencies (dividing 

the problem space into three regions of high, medium and low fidelity) as a representation of 

gain of the specific force/rotational velocity and phase distortion between the aircraft model and 

the commanded motion system accelerations. The boundaries were generated using pilot 

subjective opinion. However, with this criterion, low phase distortion and high gain are required 

simultaneously. This is very difficult to achieve even with large motion travel simulators and 

therefore the Sinacori criterion indicates that even sophisticated motion systems such as those of 

NASA’s VMS as having low predicted motion fidelity. The Sinacori criteria were modified by 

Schroeder [50, 51] in order to enhance the pilot’s subjective rating of ’realism’.  

 

JAR-FSTD H [66] provides the standards required for helicopter simulator qualification. It 

contains a number of quantitative criteria to assess simulator motion platforms (and have been 

carried through to EASA CS-FSTD (H) [68]). These criteria require that, from frequency tests 

in all 6 DOF axes between 0.1 Hz and 1 Hz (0.63 rad/s to 6.3 rad/s), the phase delay and 

amplitude distortion must be between 0 o and -20o and have a modulus of ±2dB. For the same 

tests between 1.1 Hz and 3 Hz (6.9 rad/s and 18.8 rad/s) the phase delay and amplitude 

distortion must be between 0o and - 40 o and have a modulus of ±4dB. The JAR-FSTD H [66] 

criteria at 1 rad/s (0.63 Hz) (common pilot operating frequency) are overlaid on the Sinacori 

chart in Figure 9. It can be seen that the JAR-FSTD H/EASA CS-FSTD (H)) requirements are 

even more stringent than the Sinacori Criteria.  
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physical fidelity is supplemented with the notions of perception and cognitive fidelity, a careful 

analysis of pilot adaptation strategy with respect to the simulator motion will be required [77, 

78]. 

 

Bray [61] analysed the motion and visual cue interdependence in the simulator. For the low-

amplitude manoeuvring tasks normally associated with the hover flight condition, the unique 

motion capabilities of the VMS were particularly appreciated by the pilots flying the 

vertical-acceleration responses to collective control tasks. For larger-amplitude 

manoeuvring, motion fidelity must reduce through direct attenuation or through high-pass 

filtering "washout" of the computed cockpit accelerations, or both. Experiments conducted in 

height-control tasks revealed that, when holding position in the presence of vertical 

disturbances, pilot control-gain and the resultant open-loop crossover frequency were 

significantly reduced as the fidelity of the vertical motion (ratio of acceleration demand to 

acceleration delivered) was reduced. In a height-tracking of a moving reference task, gain and 

crossover were not greatly affected, but phase margin and tracking performance improved with 

increasing motion fidelity. Pilot-opinion ratings of the varied vertical-response characteristics 

were significantly modified by changes in the motion-cue fidelity. Comparing the visual cues 

presented in the VMS with those of flight, Bray found that, for helicopter simulations, a non-

optimum distribution of field-of-view elements, coupled with a severe lack of near-field detail, 

compromises the pilot’s ability to sense translational rates relative to the nearby terrain or 

landing surface. This shows that visual and motion cue interdependence is important for the 

overall perception of simulator fidelity. 

 

 

 



28 

 

3.1 Rigid body RPC motion tuning 

The generation of satisfactory motion cues in the limited operating envelope of a simulator 

motion base is achieved by using the so-called ‘washout’ algorithms (also called ‘motion drive 

algorithms’ or ‘motion filters’). These algorithms scale down the desired aircraft-cockpit motion 

to the available simulator-cockpit motion in the frequency ranges of interest. In particular, the 

low-frequency characteristic of the human semi-circular canals and the otoliths, below about 0.1 

Hz [58], make it possible to 'wash out' motion platform tilt and linear acceleration respectively, 

by slowly returning the platform to its neutral position without allowing the pilot to detect this 

motion disparity. The efficiency of the washout algorithms depends on the effective thresholds 

[59] of the semi-circular canals and otoliths and their respective responses to different 

combinations of accelerations and velocities. The use of vestibular pilot models [60] to match 

simulator-cockpit motion to aircraft-cockpit motion is a well-known approach. Figure 10 

presents an overview of the basic operations performed by the washout algorithms used in 

ARISTOTEL’s RPC experiments. It can be seen that the motion filter architecture for both 

simulators is similar. High pass and low pass filters are used (see Figure 10 and Figure 11) 

supplemented by non-linear elements, depending on the system excursion limits and the 

simulator task.  

 

In ARISTOTEL, two test campaigns were performed to unmask rotorcraft RPCs using the 

research simulators SIMONA research simulator (SRS) at TU Delft, The Netherlands and 

HELIFLIGHT-R (HFR) at The University of Liverpool, see Figure 3. SRS is a motion-based 

generic 6 degree-of-freedom (DOF) research simulator. Hydraulic power is used to drive the 

motion system. Tuneable in-house motion cueing algorithms are used to provide suitable motion 

characteristics for the aircraft dynamics being simulated. The visual field of SRS is currently 

limited to that of a typical fixed wing aircraft. HFR is one of the generic motion-base 6 DOF 

simulators available at The University of Liverpool flight simulation facility. The motion 
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platform utilises six electric actuators arranged in a hexapod architecture. The facility features a 

blended 210° x 70° field-of-view.  

 

In the SRS simulator, tilt coordination is included to allow for a smoother/ well-coordinated 

simulator motion during multi-axis aggressive tasks.  This is because, unlike individual channel 

responses, the tilt coordination provides cross-coupled motion cues. Thus, the effects of 

translation commands are considered in the rotational axes through tilt coordination. However, 

the tilt coordination algorithms in SRS only use a low pass filter LP FILT, which increases the 

phase distortion of the resultant response around the mid-range frequencies. Looking at Figure 

10, it can be seen that aircraft specific forces fAA and the angular accelerations AA , computed 

by the real-time simulation model software in the body-axes reference frame, are the basic 

inputs to the motion drive algorithms. These forces and accelerations are, after applying Euler 

transformation, attenuated, limited and high-pass filtered (HP FILT) /low-pass filtered (LP 

FILT) to generate the simulator translational and angular cues. Lead compensation is also 

required to compensate for motion hardware dynamic lag. It is achieved by adding first- and 

second-order lead terms to the position signal of each hydraulic jack.  
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Motion Envelope of helicopter simulators: SRS and HFR 

Axis Displacement Velocity Acceleration 

SRS HFR SRS HFR SRS HFR 

Pitch -30.0/20.9° +31.6/-27.4° 28.8 °/s 35 °/s 
1000 °/s2 

(theoretical) 
300 °/s2 

Roll 22.3° 23.8° 29.6 °/s 34 °/s 
1000 °/s2 

(theoretical) 
300 °/s2 

Yaw 45.5° 27.6° 66.4 °/s 35 °/s 800 °/s2 500 °/s2 

Heave 1.1 m 0.39 m 0.9 m/s 0.49 m/s 1.50 g 1.02 g 

Surge -1.05/1.338 m 0.569 m 1.71m/s 0.7 m/s 1.00 g 0.71 g 

Sway -0.68/0.739 m 0.5 m 1.87m/s 0.7 m/s 1.00 g 0.71 g 

Motion Envelopes of fixed wing aircraft simulators: GRACE and PSPK 

Axis Displacement Velocity Acceleration 

GRACE PSPK GRACE PSPK GRACE PSPK 

Pitch -17.25/16.6° 37.8° 30 °/s 30 °/s 130 °/s2 230 °/s2 

Roll 17.75° 35.1° 30 °/s 30 °/s 130 °/s2 230 °/s2 

Yaw 22.05° 60° 40 °/s 50 °/s 200 °/s2 260 °/s2 

Heave -0.41/0.44 m 1.23 m 0.611m/s 1.1 m/s 0.81 g 0.81 g 

Surge -0.55/0.66 m 1.75 m 0.855m/s 1.5 m/s 0.61 g 0.71 g 

Sway  0.553m 1.475 m 0.855m/s 1.3 m/s 0.61 g 0.71 g 

Motion Envelope of VMS 

Axis Displacement Velocity Acceleration 

VMS  VMS  VMS  

Pitch 36°  40 °/s  115 °/s2   

Roll 36°  40 °/s  115 °/s2  

Yaw 48°  46 °/s  115 °/s2  

Heave 
15.24 m 

(50ft) 
 4.87 m/s  0.75 g  

Surge  2.43m (8 ft)  1.22m/s  0.31 g  

Sway 
10.668 m 

(35 ft) 
 2.43 m/s  0.5 g  

 

With reference to Table 1, it can be seen that SRS can provide high angular accelerations in its 

various axes. VMS features significantly large heave and sway motion capability that makes the 

facility perfect for conducting low speed rotorcraft tests. 

 

The choice of the order and filter values in the washout algorithms was thoroughly investigated 

in ARISTOTEL. For example, in the first test campaign for SRS, the HP FILT was a first-order 

filter in the attitude channel, whereas translations were second-order for longitudinal and lateral 

axes, and a third order filter was used for the heave axis. A first-order filter for attitude 
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Figure 12 Motion fidelity predication in HFR and SRS simulators using the modified Sinacori 

Criteria [64] 

 

The Sinacori criteria theoretically indicate that a washout filter with a high-gain and a low-phase 

distortion will result in a lower error between the simulator motion cues and those from the real 

aircraft motion, and vice versa. Two observations can be made from Figure 12: 

 

- First, all of the axes of SRS and HFR simulators are generally predicted to be ‘low’ 

fidelity. The exceptions are HFR’s roll and pitch axes which are predicted to be of 

Median fidelity. Both simulators are actually configured to provide small motion ranges 

to deal with the overshoot of the strokes, with SRS being configured to be slightly more 

conservative (having a lower gain). 

- Second, the distribution of the results for the two simulators in Figure 12 is typical 

of small-motion configurations that have been widely used on hexapods [50].  
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It should be noted that the predictions of Figure 12 fail to capture the characteristics of 

the SRS’ larger motion base envelope as presented in Table 1. This is probably due to that 

fact that this criterion only considers the influence of the washout filter dynamics. Apart from 

the washout filter dynamics, the transport delays, the motion drive algorithms, and motion 

platform hardware/software can also have a significant influence on the performance of the 

motion cueing system. 

The result of the subjective measurement of motion cues through the MCR is plotted in Figure 

13. Four mission task elements (MTEs) that account for the simulators limitation issues stated 

above, either taken directly or adapted from ADS-33 [57] were chosen to explore the effects of 

different simulation facilities on the reported RPC susceptibility of notionally similar vehicle 

configurations. These MTEs are Acceleration-Deceleration (AD), Vertical Manoeuvre (VM), 

Roll Step (RS), and Hover Manoeuvre (HM). To assess the influence of the system as a whole, 

the subjective Motion Cue Rating Scale (MCR) [104] as shown in Appendix A1 was used. This 

new scale developed at the University of Liverpool is based on the same structure as the 

established Cooper-Harper HQR scale, with a decision tree that leads the pilot, first to 

descriptors, and then to numerical ratings. The scale measures the combined end-to-end 

performance of the motion cueing system by examining fidelity requirements in the 

translational and rotational axes. Further details regarding the development and use of the 

motion fidelity rating scale can be found in Ref. [104]. 
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Figure 13 Subjective motion-cue comparison between HFR and SRS simulators 

 

The ratings given in Figure 13 show that the two simulators provide the pilots with a similar 

perception of motion cues for the four selected manoeuvres (see also Section 4 on the 

visualisation of these tasks and Section 7 on further description of the tasks) and that both 

simulators reside in the Level 2 region. The criteria in Figure 12 show that, theoretically, the 

two simulators have small-motion configurations. The MCR values here further show that 

the two simulators are close in their pilot-perceived motion cueing capabilities across the four 

MTEs being assessed and hence the requirement to make the motion cueing to be similar was 

achieved. 

 

As guidelines for the motion base settings of simulators to be used in a rigid body RPC 

exposure test campaign, the following general steps should therefore be taken:  

1) The simulator motion base should be adjusted according to the task to be flown. During 

the first step, the task could be introduced with its nominal configuration (e.g. no RPC 

trigger, least aggression demand). Motion space and filter settings should be considered 

as task-dependent, and the user should adjust the proper channel parameters to benefit 

from the simulator capabilities for the selected task.  

2) Further compromise should be carried out for the RPC candidate task. Adjustment of 

filter parameters should be made depending on the task, with the ‘most’ RPC-prone task 
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to be flown by a pilot with high gain and aggressive control strategy. Nominal task 

progression may not stress the motion base enough when compared to a severe RPC 

case. The motion base should be tuned to give the maximum expected motion cueing 

within the limits of the available flight envelope. This will mean flying representative 

manoeuvres at high aggression and adjusting the motion parameters to be ‘comfortably’ 

inside the systems tolerable parameters. 

 

3.2 Aeroelastic APC motion tuning 

The previous Section related primarily to motion base considerations for rigid-body A/RPCs. 

This Section now deals with the considerations relating to the effects of aircraft structural 

elasticity when designing the motion system drive algorithms for a simulator. Regarding the 

aeroelastic A/RPC, one can state that the simulation of such problems should be somewhat 

easier, because high-frequency accelerations require much smaller actuator strokes than rigid-

body accelerations. As such, they do not need much washout; in fact, washout filters usually are 

low frequency (for example the HELIFLIGHT simulator in ARISTOTEL low-pass filters were 

at about 0.2 Hz to 0.3 Hz, depending on the axis), so there is no intrinsic attenuation of 

amplitude. As a further consequence, phase lead is negligible at high-frequency (well, before 

low-pass filters, at least). Certainly, the overall magnitude of accelerations is often limited by 

other requirements; for example, integrity of the flight simulator (i.e. loads) and operating space 

(i.e. keep away from its boundaries). As a consequence, the overall magnitude is usually 

constrained by saturation filters, which cut motion demand above some threshold acceleration. 

This limitation may surface in ways that can be both positive and negative: 

 

When high-frequency motion is superimposed to low-frequency motion, and their 

combination reaches saturation, both motions are somewhat affected, in manners often 

not easy to quantify in terms of frequency content (i.e. in terms of spectral 
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decomposition). For example, an aeroelastic phenomenon occurring during a 

manoeuvre in the flight simulator could appear less critical just because saturation 

prevented it from developing up to an amplitude at which it would have been 

recognized as RPC. The same oscillation, occurring outside the manoeuvre, would be 

correctly recognized as RPC. One may erroneously conclude that the manoeuvre makes 

that aeroelastic phenomenon less critical, and this would occur because of a very 

limitation of the flight simulator. 

When high-frequency motion evolves into diverging oscillations, soon the saturation 

limit would be reached, and the diverging oscillations would likely appear as a limit 

cycle oscillation, where the occurrence of the limit cycle is originated by the 

nonlinearity represented by the saturation itself. Of course, saturation (either artificial, 

or caused by the physics of the flight simulator actuation) makes the simulator response 

as a system different from that of the vehicle. However, this is not a very critical 

limitation, because what matters is the onset of the A/RPC, which is correctly revealed 

by the system until saturation steps in. Evidently, when noticeable saturation occurs, 

ground-based flight simulator behaviour differs from in-flight behaviour. Nonetheless, 

A/RPC proneness unveiling can probably be considered successful and meaningful up 

to saturation. 

 

During the ARISTOTEL project, the reproduction of lateral accelerations for an “elastic” 

aircraft exposed to APC–triggering tasks was thoroughly investigated [27, 28, 29, 31]. It 

appears that roll and lateral accelerations felt by a pilot play an important role in high 

frequency aircraft oscillations and can negatively affect piloting performance and the 

associated HQ pilot rating [29, 120]. Thus, the main rule to follow while simulating structural 

elasticity effects is to ensure that the unsteady element of the simulation cueing environment be 

as close to the in-flight environment as possible. This means that the lateral accelerations should 
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be reproduced at full-scale. As in the case of a classic motion drive algorithms described above, 

the reproduction of lateral accelerations uses high-pass filters to reproduce the high-frequency 

acceleration contributions through linear sway displacements and low-pass filters to reproduce 

the low-frequency acceleration contributions using cockpit roll. Experiments conducted in the 

European project SUPRA (Simulation of Upset Recovery in Aviation) [74] showed that the 

pilot perception of high-frequency accelerations (namely those related to structural elasticity) 

depended on the level of background low-frequency acceleration, and this perception depends 

on the band of frequencies in which the simulator can adequately reproduce accelerations. 

Experiments conducted in TsAGI’s PSPK-102 simulator as part of the ARISTOTEL project 

[29] showed that, as the frequency of the imposed accelerations increases, the pilot’s sensitivity 

to their perception also increases. This relationship is shown in Figure 14. The figure was 

obtained as a result of the experiments conducted to study the effect of low-frequency 

accelerations on the perception of high-frequency accelerations. In the experiments, high-

frequency accelerations ( =4, 12 and 18 rad/s) were imposed on the background low-

frequency accelerations. Varying the frequency of the imposed accelerations it was 

observed that the perception of the high-frequency accelerations depends on the level of 

background low-frequency acceleration and on the frequency of the high-frequency 

imposed accelerations. This can be seen in Figure 14: as the frequency of the imposed 

accelerations increases, the thresholds values of the imposed accelerations decrease. This 

means that pilot’s sensitivity to their perception increases as well. This trend depends also 

on the frequency of the background accelerations. In the experiments, the background 

acceleration frequency was 1 rad/s. The data obtained in the experiments were used to 

support recommendations for reproducing the high-frequency acceleration component 

while simulating structural elasticity mode. In this case, the background accelerations are 

accelerations in the center of gravity, and their frequency is even lower than 1 rad/sec. The 

imposed accelerations, i.e. accelerations due to structural elasticity, are of frequencies 



40 

 

above 1.5 Hz, and their values are much above their threshold value. In other words, the 

pilot perception of the elastic oscillations does not practically depend on the rigid-body 

lateral accelerations. This means that the pilot perceives high-frequency component of 

lateral acceleration only. For the simulator testing, it can be recommended to reproduce 

only the high-frequency acceleration components (this can be achieved with the help of 

cockpit displacement in sway). 

 

 

Figure 14 Thresholds of high-frequency lateral acceleration perception as a function of the low-

frequency lateral acceleration [29] 

 

4.  Simulator visual system characteristics 

In piloted flight, vision remains to be the primary sense for the perception of the real world. In 

flight simulation, visual systems are important as, especially at low motion frequencies, visual 

motion cues play a dominant role for successful piloting. With respect to A/RPC, McRuer [13] 

considered that an excellent visual display system in the simulator is more important than a 

moving base because instrument-rated pilots are trained to rely upon visual rather than 
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acceleration cues. This is true for large transport aircraft simulations which need detailed 

presentation of the outside world mainly only during landing and taking off. However, the 

visual systems necessary for military flight simulation are more demanding as military 

operations quite often require extended FOVs (both laterally and vertically), way beyond 

the maximum used in civil aviation and complex scenes are needed for realistic simulation 

of low altitude flight [75]: 

1) the visual information needed to enable precise control during the final stages of an 

approach must be contained in the near field (20o to 30o below horizon); 

2) once in the hover, however, a different reference system is required which comprises 

lateral and longitudinal references quite close to the aircraft; 

3) low speed manoeuvring requires a particularly good downward FOV, especially on the 

pilot’s side where -40o to -60o may be necessary for certain tasks such as deck landings; 

4) there is also a requirement for at least a 90 o lateral FOV, not only to maintain sight of 

close-in hover references, but also to judge obstacle clearance in nap of the Earth (NOE) 

flight; 

5) it is also important to be able to maintain sight of the horizon in steep turns and 

accelerations and decelerations. 

One of the major problems for helicopter simulator visual systems is the lack of provision of 

adequate cues for height and depth perception [75]. The helicopter pilot needs to exploit all of 

the available FOV as a function of the flight task. Simulator deficiencies in this respect will 

bring about a change in control strategy at best and an inability to perform a particular 

manoeuvre at worst. 

 

In ARISTOTEL, the key features related to the visual characteristics of the SRS and HFR 

simulators are presented in Table 2.  
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The smaller FOV in SRS had the following consequences during RPC rigid body testing: 

It led to lower Usable Cue Environment (UCE) ratings, especially for tasks that require 

close ground reference cues (see Figure 18); 

It generally resulted in worse Handling Qualities Ratings (HQRs) because pilots had 

difficulties in detecting the adequate and desired boundaries defined for the ADS-33 

tasks; 

However, it generally led to more “relaxed” pilot controls which resulted in more 

masked RPC tendencies (see also the ARISTOTEL results presented in Section 7). 

 

To better understand the effects of visual cueing on helicopter RPCs, the two simulators in 

ARISTOTEL used the same visual database environments to achieve the same scene content. 

Therefore, the remaining visual cueing differences must lie in the FOV and display resolution.  

Two measures were taken to address the difference in FOV between SRS and HFR:  

1) the lateral visual angle plays a vital role in providing visual cues for manoeuvres with 

significant lateral trajectory changes. As such, the planned tests used manoeuvres that contained 

reduced lateral trajectory changes 

 2) to deal with the absence of chin windows in SRS, additional visual references were 

constructed in the visual database to provide the missing ‘close-in’ positional and translation 

rate cues. 

 

Four mission task elements (MTEs), either taken directly or adapted from ADS-33 [57] were 

chosen to explore the effects of different simulation facilities on the reported RPC 

susceptibility. These MTEs were: Acceleration-Deceleration (AD), Vertical Manoeuvre (VM), 

Roll Step (RS), and Precision Hover Manoeuvre (PH). Their visual description is given in 

Figure 13. The individual layout of these manoeuvres is shown in Figure 16 and Figure 17. 



 

The s

small

for w

More

suffic

Figur

addre

cross

rate i

have 

 

 

selection of t

ler SRS horiz

wide-angle l

eover, the te

cient to succ

re 17, detail

ess the absen

es and lines 

information t

been introdu

these MTEs 

zontal visual

lateral visua

est pilots us

cessfully acc

led position 

nce of the chi

in Figure 1

to perform th

uced into the

had the adv

l angle on pi

al cues to s

ed for the s

omplish the 

reference in

in windows 

7c were adde

he stabilizati

AD and VM

44 

vantage of re

ilot performa

successfully 

study comm

RS manoeu

nformation w

in SRS. For 

ed to provid

ion phase of 

M manoeuvre

educing the p

ance. There w

execute the

mented that t

uvre and the 

was introduc

example, vis

de the pilot w

f the Hover M

es for the sam

potential neg

was no signif

e AD and 

the lateral F

PH. In addi

ed into the v

sual objects 

with the nece

Manoeuvre. A

me reason. 

gative effect 

ficant requir

VM manoe

FOV in SRS

ition, as sho

visual datab

such as the c

ssary positio

Additional o

of the 

ement 

uvres. 

S was 

own in 

ase to 

cones, 

on and 

objects 

 

 



 

Figur

Mano

Figur

Verti

 

The v

Cue R

Cue 

condu

A, B,

four m

 

re 16 Layout

oeuvre c.) Ro

re 17 Visual

cal Manoeuv

visual equiva

Rating (VCR

Environmen

ucted to allow

, C, and D, p

manoeuvres,

t of four sele

oll Step d.) P

l realization 

vre c.) Roll S

alence betwe

R) [57], see A

nt (UCE) ch

w the pilots 

participated

, determined 

ected MTE m

Precision Hov

of the four

Step d.) Preci

een the two 

Appendix A

art. A series

to award VC

d in the expe

using the pr

45 

manoeuvres: 

ver Manoeuv

MTE mano

ision Hover 

simulators w

A2. The avera

s of trials u

CRs. Four ex

eriment. The

rocess describ

a.) Accelera

vre 

oeuvres: a.) 

Manoeuvre

was subjectiv

aged VCRs a

using the sel

xperienced h

e subjective V

bed in [57], a

ation-Decele

Acceleration

vely assessed

are then plot

lected four 

helicopter te

VCRs and he

are shown in

eration b.) Ve

n-Deceleratio

d using the V

tted on the U

manoeuvres

est pilots, lab

ence UCEs f

n Figure 18. 

ertical 

 

 

on b.) 

Visual 

Usable 

 were 

belled

for the 



46 

 

1 2 3 4 5
1

2

3

4

5

UCE=1 UCE=2 UCE=3

T
ra

n
sl

a
ti
o
n

a
l R

a
te

 V
C

R

1 2 3 4 5
1

2

3

4

5

UCE=1 UCE=2 UCE=3

1 2 3 4 5
1

2

3

4

5

UCE=1 UCE=2 UCE=3

Attitude VCR
1 2 3 4 5

1

2

3

4

5

UCE=1 UCE=2 UCE=3

Attitude VCR

T
ra

n
sl

a
ti
o
n

a
l R

a
te

 V
C

SRS

HFR

Accel-Decel Vertical 

Maneuver

Hover 

Maneuver

Roll Step

a.) b.)

c.) d.)
 

Figure 18 UCE rating comparison between SRS and HFR simulators [57]

As shown in Figure 18, the VM, HM and RS manoeuvres have been awarded UCE = 1 for the 

two simulators, though the translational rate VCRs in HFR are slightly lower (i.e. improved). 

The slightly poorer translational rate VCRs awarded in SRS are mainly due to the texture 

resolution of the test course being slightly lower than in HFR. This presumably results in the 

detection of the development of translational rates in SRS being more difficult. However, 

compared with the attitude VCRs, the difference in translational rate VCRs for the VM and PH 

are not so significant in that the VM mainly involves the motion in the vertical axis and the PH 

focuses on the stabilization process at very low-speed (< 7 kts). For the AD manoeuvre, the 

pilots gave similar translational rate VCRs for the two simulators. However, there is the 

decrease in attitude VCR for SRS (UCE = 2) in comparison to HFR (UCE = 1). The pilots 

reported that this was due to the more restricted vertical FOV in SRS. The AD manoeuvre 

requires an aggressive pitch-down acceleration followed by an aggressive pitch-up deceleration. 

The reduced vertical visual cues available occur at the end of the AD manoeuvre in both 

simulators. The pitch angle required to decelerate is so large that the pilots lost the majority of 
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their pitch attitude cueing in SRS. For HFR, the pilot felt that, whilst also limited, slightly more 

attitude cueing was available during the final aggressive phase of the manoeuvre. Very little 

could be done to mitigate this in either simulator. Overall then, except for the latter part of the 

AD manoeuvre, the two simulators were subjectively shown to provide a generally similar 

visual cueing environment for the pilots, with the minor degradation in SRS compared to HFR 

being due to the wider FOV and higher outside world resolution.  

5.  Simulator control loading characteristics 

One of the most sensitive elements in terms being able to produce A/RPC occurrences in the 

simulator is the primary flight control system and the associated control loading [13, 14]. This 

has been observed in the ARISTOTEL project especially in the PAO-like cases in which 

biodynamic effects were crucial in triggering A/RPC. In terms of fidelity requirements, the 

static force levels and dynamic feel perceived by the pilot in control of an aircraft must be 

reproduced as faithfully as possible in the simulator, to provide high equipment and 

environmental cue fidelity. The control forces and displacements felt by the pilot are due to a 

combination of break-out force and dead-band, spring force, control column inertia, forces due 

to aerodynamic hinge moments, static friction plus Coulomb and viscous friction [4].  

5.1 Control loading analysis in fixed wing aircraft 

The PSPK-102 simulator at TsAGI included two pilots’ stations (left and right) equipped with 

traditional column/wheels, pedals and side sticks. The latter are located on the left-hand side of 

the cockpit for the left-seat pilot and on the right-hand side of the cockpit for the right-seat pilot. 

The standard control loading model reproduces static and dynamic feel system characteristics 

(in each control axis) in accordance with the following equation: 

 

pilotfrbr FsignFsignFFFm       (1) 



48 

 

 

where: m is inertia, F  is damping, F  is force gradient, Fbr is breakout force, Ffr is friction, 

Fpilot is the force applied by a pilot. Three different types of manipulator were used: wheel, side-

stick and central-stick. The experiments conducted during the ARISTOTEL project were, 

in essence, a disturbance task. The manipulator was held in a specified deflected position. 

The pilot’s task was to then visually control the position of the manipulator (the position of 

the manipulator was not specially displayed, e.g. on the cockpit displays or using the 

outside view). The task in question is inherent in fixed-wing piloting; for example, in a banked 

turn, the pilot has to keep the manipulator at a particular deflection to maintain the desired bank 

angle. An electrical loading system was used for the wheel, the central stick had a mechanical 

spring and the side stick had a mechanical spring with a damper ratio > 1. In the side-stick 

and central-stick experiments, the deflected position of the stick (a half of the total displacement 

right or left) and feel system characteristics were constant. In the wheel experiments, the 

baseline feel characteristics were as follows: 

- for the wheel F =203 N/m, Fbr=12.2 N, Ffr=7.7 N; F =27.23 N/m/s; 

- for the side stick F =100 N/m, Fbr=5 N, Ffr=2 N;,  

- for the central stick F =400 N/m, Fbr=10 N, Ffr=3 N. 

 

During the biodynamic tests (these tests were conducted by applying vibratory excitation to the 

cockpit occupants without requiring them to undertake any piloting task) and simulator tests 

(where the occupants were asked to actively pilot the aircraft model), it was shown that the type 

of control inceptor can play a major role in the pilot-vehicle biodynamic interaction and lead to 

a dramatic degradation in HQs. The time history for one of the observed APC cases is shown in 

Figure 19. In that case, the pilot was required to perform the task presented in the lower 

plot; the manipulator input is shown in the top plot. The center curves show the lateral 

accelerations for the rigid and elastic cases of the vehicle model. When elasticity is 
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the manipulator characteristics, i.e. using either a traditional control yoke (wheel), a 

centre stick (as in many military aircraft) or a side-stick as in the new fly-by-wire 

airliners, has a significant impact on the handling qualities and may affect the BDFT. It 

was found that the greatest pilot rating degradation resulted from use of the centre-stick 

system: PR=1.5; with corresponding values of PR= 0.3 for the side stick system and 

PR=0 for the wheel system. This demonstrates that in many modern civil aircraft (such as 

Airbus A320 and Airbus A380 that use a side-stick manipulator) and military aircraft (such as 

Dassault Rafale, F-22 Raptor, F-35 Joint Strike Fighter with a side-stick and Eurofighter 

Typhoon and Mirage III with a centre-stick) BDFT effects are likely to be important. Also, 

helicopters and tilt rotors (e.g. V-22 Osprey) use mainly centre-stick manipulators and thus can 

be more sensitive to adverse BDFT effects [89, 90].  

 

6. Simulator mathematical model characteristics 

One of the crucial ingredients of a flight simulator is its mathematical model representing the 

vehicle dynamics. Also for A/RPC phenomena, the vehicle dynamics are a crucial ingredient in 

the pilot-vehicle system. This means that the vehicle system as a whole, including the FCS, 

displays, actuators, etc., should be reproduced as faithfully as possible in the simulator if its 

proneness to A/RPC is to be ascertained correctly. The mathematical modelling of the aircraft 

behaviour in response to control inputs, atmospheric disturbances and system inputs, including 

failures and malfunctions, is at the heart of a flight simulator. Although this mathematical model 

can never be wholly accurate, its fidelity, in comparison with the real vehicle behaviour, 

determines the usefulness of the flight simulator in any but especially A/RPC research. Many 

papers have been written concerning the required model fidelity to guarantee that a simulation is 

sufficiently representative to be fit for its intended purpose, for example [80] for helicopters. 

Also, regulatory authorities have produced functional performance standards - for fixed wing 

aircraft JAR-STD 1A [65] and for helicopters JAR FSTD H [66] standards in Europe and FAA 
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AC 120-40B [69] and FAA AC120 63 [70] standards in the United States of America. Since 

2009, a standards document was released by the International Civil Aviation Organization 

(ICAO), the United Nations (UN) agency responsible for international air transport - ICAO 

9625. Volume I of ICAO 9625 pertains only to fixed-wing simulators [71]; volume II [72], 

presently under review, will address helicopter simulators, formalising the qualifying criteria 

and procedures needed for approval for each of the major components of a helicopter simulator. 

This also relates to the required fidelity of simulator mathematical models formulated through 

the so-called “tolerances”, i.e. acceptable differences between the simulation and flight test data, 

typically within ±10% for flight model tolerances. Of course, these standards are primarily 

aimed at flight training devices and therefore assume that flight test data is present, which it 

may not be in the early phases of an aircraft design project. The present Section is not intended 

to be a review of the broad area of simulation model fidelity but as a discussion with respect to 

the effect of mathematical model fidelity on A/RPCs exposure in the simulator. It should be 

mentioned that there is an ongoing discussion in the flight simulation world related to answering 

the question “How close should the model be to flight test?” Presently, discrepancies identified 

by the pilot are most often corrected through a subjective “tuning” process where modifications 

are applied often to only one component of the system (most often the vehicle model) to 

compensate for effects being caused elsewhere (for example motion gains and washout 

frequencies). As a result, the modelling modifications may be physically unrealistic and difficult 

to justify from the standpoint of a flight dynamics engineer. The strong interconnections 

between the vehicle model and the simulator systems need further investigation; especially the 

trade-off between the model’s physical accuracy and the overall simulator’s subjective fidelity 

needs to be better understood.  

 

The ‘Simulation Fidelity Rating scale’ (SFR) [77] was recently developed by the University of 

Liverpool in collaboration with the National Research Council in Canada and to provide a 
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formalised simulator subjective assessment methodology.  The scale is shown in Appendix A3. 

It is a scale from 1 to 10 (similar to Cooper Harper HQs pilot subjective rating scale [81]), with 

a fidelity rating of 1 indicating that a task is entirely representative of the simulated vehicle and 

10 indicating that the task requires a control strategy entirely inappropriate to the simulated 

vehicle. The pilot subjective SFR ratings can be therefore used to complement quantitative 

analyses or provide an assessment alternative where little or no flight test data is available. For 

more details on SFR scale the reader is referred to [77]. 

 

One of the fixed-wing aircraft APC triggers that has been thoroughly investigated in 

ARISTOTEL is biodynamic feedthrough (BDFT). The level of aircraft high-frequency 

accelerations is a function of the amplitude, frequency and damping of the structural modes 

involved in the mathematical model of an elastic aircraft, and directly affects the BDFT. Even 

though structural elasticity itself was not consciously noticeable to the pilot, its presence in 

the mathematical model can affect pilot performance and the selection of aircraft characteristics. 

This can be seen in Figure 21 representing the pilot lateral stick and vehicle lateral 

accelerations during the jumping runaway manoeuvre (see Section 7.1 for definition and 

Figure 23) using the wheel configuration. It can be seen that the addition of the structural 

elasticity alters the quality of the pilot control activity (the wheel deflections become noticeably 

smaller). 

 

The ‘Control Sensitivity’ HQ parameter can be used to capture the way that the high-frequency 

accelerations, caused by structural elasticity, affect the pilot response. Control sensitivity is 

defined as the initial angular acceleration of the aircraft following a step input command 

(rad/sec2 inch) and is recognized as a primary parameter affecting pilot opinion of aircraft HQs. 

[76]. In the experiments performed in ARISTOTEL it was seen that, as roll control sensitivity 

increases, the intensity of the accelerations due to structural elasticity increases and pilot ratings 
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At present, there is a strong industry consensus on the importance of selecting appropriate 

simulation tasks for detecting A/RPC tendencies in the simulator. McRuer [13] underlines that 

the tasks selected for simulator pilots should generate high-gain pilot inputs. To generate high-

gain tasks, realistic aircraft tasks that naturally maximize pilot gain need to be simulated. A 

detailed appraisal of task suitability to expose A/RPCs was conducted in the ARISTOTEL 

project. Findings from this study are outlined in this Section.  

 

7.1 Selection of flight tasks for exposing APC in the simulator 

For fixed-wing aircraft APC detection, three mission task elements (MTE) in the roll axis 

proved to be suitable to trigger aeroelastic APC. All these piloting tasks assume abrupt inceptor 

activity, which results in intense lateral accelerations. These MTEs are: 

Gust landing (see Figure 23): from an initial condition of altitude 262 ft, heading 0, 

distance from the runway 0.81 miles, at 115 ft altitude introduce a side step-wise left or right 

(random) wind gust is introduced:Wy = 8 t knots at 0<t<3 sec, Wy = 24 knots when t >3 sec.  

Tracking the “jumping” runway (see Figure 23): The task is to track the runway centre 

line. The task is performed at an altitude of 50 ft, heading and bank angle are zero. In the 

course of the experiment an abrupt movement of the runway to the right or the left is 

simulated in turns every 20 seconds. The size of the runway movement is equal to half of the 

runway width (98 feet). 

Roll tracking task (see Figure 23): the pilot’s task is to compensate the tracking error ev 

indicated on the display as a moving bar. The visual input vis(t) given is a sum of sines: 

i

iiivi tAt )sin()(s
, where 16...1i  with the input signal as shown in Table 3. 
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47 3.6049 0.14 4.7884 

59 4.5252 0.095 2.8681 

83 6.3660 0.065 0.1163 

109 8.3602 0.041 5.1611 

137 10.5078 0.032 2.7942 

157 12.0417 0.025 3.8669 

191 14.6495 0.019 4.9759 

211 16.1835 0.017 5.7919 

239 18.3311 0.014 4.6383 

281 21.5524 0.011 1.1075 

331 25.3874 0.0085 2.5491 

 

Figure 24 presents recordings made during the course of the three tasks for the aircraft landing 

configuration. The configuration of the aircraft was as follows: 

 

side-stick inceptor type; 

feel system characteristics as follows: force gradient 6 N/cm, damping 0.27 N/cm/s, 

breakout force 4 N, no friction; 

structural elasticity: 1st elastic wing mode included; 

roll control sensitivity:  optimum value. 

 

It is seen that the selected flight tasks provoke high-frequency accelerations due to structural 

elasticity and, thus, can be recommended for purposes of demonstration and selection of aircraft 

characteristics and control inceptor feel system characteristics. The more intense accelerations 

arise while performing the roll tracking task. Though the task is far from typical practice, its use 

can lead to quicker results in terms of APC detection, since one of the triggers for APC to occur 

is the level of the high-frequency accelerations. 
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configuration for a manoeuvre during the test was performed three times. Finally, after three 

runs, the pilot was requested to award two ratings – a HQR using the traditional Cooper-Harper 

handling qualities rating scale [81] combined with the pilot-induced oscillations rating scale 

PIOR [87] as presented in Appendix A4.  

 

During the test campaign, some problems were experienced with the use of the PIOR scale, 

some of which have been previously highlighted in references [40, 85-87]. From the 

investigations that were undertaken as part of ARISTOTEL, the main problems identified were 

as follows [33]: 

 

A lack of the available subjectivity in the scale i.e. pilots did not feel that the ratings that 

they were providing matched the corresponding situation that had unfolded. Unlike the HQR 

scale, the PIOR scale decision tree offers the pilot very little subjectivity. Pilots are trained to 

apply subjectivity, but are almost forced not to. If the pilot follows the decision tree based on 

a simple appraisal of what happened during the test, they are forced towards a numerical and 

descriptive rating. On many occasions, the description was found to be inconsistent with the 

experience during the evaluation run. With each strand of the decision tree leading to a 

different rating, changing to a different rating invalidates the decision tree, rendering the 

results obtained inconsistent. 

The apparent mismatch between the decision tree and the descriptive terms. In its original 

incarnation, only the decision tree was presented as part of the PIOR. However, in order to 

improve the interpretation of the results, descriptions were later ‘fitted’ to numerical ratings. 

In some studies, only the descriptive terms are used. This creates an inconsistency between 

investigations conducted using the PIOR scale. One of the main issues that was found during 

the ARISTOTEL rigid body test campaign was the mismatch between the tree and the 

descriptions. Pilots often felt that the tree took them to the ‘wrong’ description; a common 
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occurrence was arriving at PIOR 4, whilst wishing to use the description of PIOR 3. A major 

issue is that the end result from the application on the scale is often the assessment of a 

single number. The meaning of that number is very dependent on whether the descriptive 

terms have been used. Often PIOR >=4 is used to denote observed PIOs. However, there is 

nothing in the scale to say that ‘undesirable motions’ cannot be classed as PIOs. What if the 

pilot does not need to reduce gain or abandon task to recover? What if he/she must only 

change strategy to counteract PIO?  

The scale gives little justification for the meaning of the numbers. Furthermore, the 

significance placed upon convergent/divergent oscillations, one of the most challenging 

elements to assess, makes the analysis of results very difficult. If the pilot feels that 

convergent oscillations have occurred after entering tight control, no matter what the 

severity, they must award PIOR 4. It is possible that these oscillations have caused a loss of 

control. This makes it very important to complement PIORs with HQRs.  

 

Therefore, to try to overcome these issues, a different A/RPC assessment scale was developed 

proposed in ARISTOTEL, the so-called “Adverse pilot couplings rating” APC scale. This scale 

was designed to provide greater insight into the danger experienced from unwanted oscillations. 

The APC scale is shown in Appendix A5. It is the result of several iterations which were 

modified based on pilot comments and feedback and the need to provide a more robust means 

of conveying APC test information both to the test team and as a record for posterity. The scale 

is divided into three key regions (that may be considered as levels). The ‘desired’ level contains 

only one rating, APC = 1. This level refers to an aircraft which, during a specifically defined 

task, did not exhibit any undesirable or unintentional responses. The second region characterises 

A/RPC tendencies experienced during (attempted) completion of a defined MTE. It contains 6 

numerical ratings (APC = 2-7). It should be noted that the MTE may have been pre-defined, or 

it may have been an unexpected event. Nonetheless, the pilot should be able to define a ‘task’ 
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for which A/RPCs occurred after the fact. Ratings in this region do not necessarily all require 

corrective action on the vehicle or its systems. The wide spectrum of A/RPCs that could 

occur during the task are contained within this region. The third and final region of the 

scale characterises A/RPC tendencies experienced after the (attempted) defined MTE. This 

includes both open-loop control of the vehicle and flight of the vehicle outside of a task. 

A/RPCs in this region should always be considered to require further corrective action. 

 

Pilots enter the scale from the bottom left hand corner, and in order to reach the desired APC= 

1, they must answer ‘NO’ to all of the ‘top-level’ questions. Upon entry to the scale, the pilot is 

first asked to assess whether any uncontrollable or unpredictable motion (a term which includes 

oscillations) occurs on entry to the control loop. If the pilot believes he/she has experienced 

these motions, he/she is referred directly to two descriptions, for which the most appropriate is 

selected to describe their experience. If the pilot is able to start the task, but this causes 

unintentional oscillations or motions, they may award APC = 2 - 7 inclusive. The pilot is now in 

the second region or level. At this stage, the terms ‘non-oscillatory motions’ and ‘oscillations’ 

are placed in parallel, rather than in series as shown in the traditional PIO scale. The pilot must 

decide whether he/she experienced actual oscillations or oscillation tendencies. If the pilot feels 

that only ‘non-oscillatory motions’ were experienced (defined as “vehicle translational or 

rotational response due to pilot control”), he/she may award APC= 2 or APC= 3. These ratings 

suggest that a PIO tendency exists. Unintentional motion implies that the vehicle has PIO-

incipient qualities. However, whatever task the pilot was doing has not forced him/her into an 

actual PIO situation. This may mean, for example, that the pilot has not reached the important 

‘PIO’ trigger situation. If the pilot experiences oscillations, defined as “periodic control and 

vehicle motions exhibited during closed-loop flying tasks”, he/she may award APC=4-7 

inclusive. The pilot can decide the specific rating to award based on his/her experience during 

completion of the task. Furthermore, the associated descriptions should motivate the pilot’s 

choice. In the APC scale, ratings range from ‘mild oscillations’ to ‘severe oscillations’. 
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Additional terms are used in order to ensure pilots show consistency, by relating the severity of 

oscillations to pilot workload and experience. The pilot is asked to assess the severity of the 

oscillations experienced based upon the levels of control ‘adaptation’ necessary following the 

triggering of the oscillatory behaviour. This refers to ‘adaptation’ required from their control 

strategy prior to the oscillations being triggered. If the pilot needs not apply any changes to 

his/her control or task strategy, this represents negligible pilot adaptation (i.e. he/she did not 

need to respond to the oscillations). Considerable pilot adaptation refers to the situation where 

the pilot must consciously act to suppress the oscillations, but may have spare capacity to 

complete some other tasks (multi-axis control/task requirements). Pilots must decide what 

constitutes ‘Moderate’ or ‘Severe’ oscillations. This could be based upon the amplitude, 

frequency or operational situation in which the oscillations occurred. The severity is indicated 

by assigning a letter to the rating. These ratings describe what has happened during the 

completion of the task. However, when an A/RPC event is encountered, task performance may 

or may not degrade. This information is not conveyed when using ‘traditional’ PIO scales. An 

innovation in the APC scale presented here is the ability for pilots to convey failure to maintain 

task performance. This is through the ‘Note 1’ path shown in the APC scale. Note 1 states: “If 

oscillations experienced during MTE cannot be suppressed without opening the control loop, 

pilot may follow path. Once path is followed, pilot must award alpha-numeric rating for their 

experience whilst attempting task”. If the pilot cannot complete the task, or is no longer engaged 

in the task, he/she may also include APC = 8 and APC = 9 in his/her assessment. This includes 

the situation where the pilot dis-engages from the task but does not fail to maintain task 

performance. For example, it has been observed that it is possible for the pilot to open the 

control loop whilst not abandoning the task and completing it to some degree of success. 

Furthermore, ‘Note 1’ uses the statement, “may follow path”. If the pilot does not consider the 

oscillations worth it, he/she may remain in the ‘second level’.  
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When the scale was used in the ARISTOTEL test campaigns, additional descriptive terms were 

placed on the scale itself to assist the pilots in the decision making process. This was done as a 

measure to ensure pilot consistency; not for the current investigation, but for the future use of 

the scale. The terms are as follows: Unintentional - Vehicle response which the pilot did not 

intend to induce through their control strategy; Undesirable - The vehicle motions are unwanted, 

and adversely affect task performance; Motions - Vehicle translational or rotational response 

due to pilot control; Oscillations - Periodic control and vehicle motions exhibited during closed-

loop flying tasks. However, based upon pilot feedback, it became apparent that these 

descriptions made the scale ‘test-card’ look overly cluttered and too imposing on first 

inspection. Therefore, in the version presented here, the descriptive terms are removed.  

7.3 Selection of flight tasks for exposing RPC in the simulator 

Based on the results of the ARISTOTEL rigid body RPC test campaign, Table 5 provides an 

appraisal of the rotorcraft task suitabilities during the testing. It can be seen from this Table that 

the most suitable tasks for RPC detection correspond to the Precision Hover and Roll Step 

Manoeuvre. The Precision Hover (PH) in particular proved to be the task the most successfully 

triggered RPC events. This task will be discussed in the next paragraph. The results from the 

simulator test campaigns have been reported in [21, 26]. 

 

Table 4. Task suitability for RPC testing for the tasks conduced in ARISTOTEL 

Manoeuvre Proposed RPC 

Uses

Use in Handling 
Qualities 
Research

Positives Negatives Considerations

Precision Hover 
(PH)

Incipience in all 
axes, 
predominantly roll 
and pitch, hover

Check ability to 
maintain precise 
position, heading 
and altitude 
following 
transition from 
translating flight

Clear Increase in 
PIO susceptibility 
with increasing 
time delay (roll 
and pitch) 

Multi-axis task 
appears suitable 
for exposure of 
PIOs in all axes 
(Pitch, Roll, Yaw, 
Heave)  

Suitable 
for assessment of 
cross-couplings

Lack of high gain 
pilot control 
demand after 
hover board 
capture

Requires large 
visual FoV to 
adequately 
capture ground 
references

Alteration of hover 
board size  

Additional 
disturbances to 
force pilots to 
achieve tighter 
control during the 
stabilization 
element

Vertical Manoeuvre Incipience in Assess heave Reduction in Highly scattered Manoeuvre 
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(VM) heave and yaw 
axes, hover

axis controllability, 
adequate 
damping and 
undesirable 
couplings

handling qualities 
and increase in 
PIO susceptibility 
with increasing 
time delay

PIO ratings, due to 
significant cross-
coupled vehicle 
model

Task 
aggressiveness 
showed limited 
differences in 
subjective ratings

suitability in 
question when off-
axis stabilization is 
required  

Autocompensation 
for cross couplings 
to achieve a higher 
HQ rotorcraft 
model

Slalom (S) Incipience in the 
roll axis, forward 
flight

Check for the 
ability to 
manoeuvre in 
forward flight and 
objectionable 
cross-couplings

Highly predictable, 
pilots were able to 
complete with 
open-loop control 
even with high 
triggering 
configurations 

Additional side 
walls did not 
improve the pilot 
compensation 
effort

Additional 
disturbance to 
force pilots to 
achieve tighter 
control

Variable distance 
between slalom 
poles could reduce 
predictable nature 
of task

Sidestep (SS) Incipience in the 
roll axis, hover 
and low speed

Lateral direction 
handling qualities 
for aggressive 
manoeuvring and 
undesirable cross 
couplings

High control 
activity in lateral 
axis  

Clear tendencies 
for PIO

Requires large 
horizontal field of 
view to complete 
manoeuvre 
successfully

Manoeuvre 
suitability in 
question when 
limited horizontal 
FoV

Roll Step (RS) Incipience in the 
roll axis, forward 
flight

N/A High control 
activity on lateral 
axis  

Increase of HQR 
with increasing 
time delay

Difference in 
course 
specifications at 
different 
Facilities 

High aggression 
requires large 
simulator motion 
travel (or low 
motion gains) 

Scattered PIO 
ratings

Standardise roll 
step course 

Adjusted motion 
filters to ensure 
preservation of 
motion travel 
margins

Roll Tracking 
(RT)

Incipience in the 
roll axis, hover 
and forward flight

N/A Unnatural single 
axis no motion 
task with high 
bank angle 
commands

Hard for pilots to 
distinguish 
commanded roll 
and the vehicle 
response 

Limited time for 
pilots to achieve 
commanded bank 
with the vehicle 
model

Redesign of the 
task commands 
with vehicle 
capabilities 

Visual design 
desired and 
adequate 
boundaries

Acceleration/Deceleration 
(AD)

Incipience in the 
pitch axis, hover 
and low speed

Longitudinal 
handling qualities 
for aggressive 
manoeuvres and 
undesirable 
couplings

‘Explosive’ PIOs 
obtained during 
the stabilization 
element of the 
task with time 
delays and rate 
limits

Requires large 
vertical FoV  

Difficult task to 
achieve, 
particularly for 
rotorcraft with 
large cross 
couplings

Provide additional 
cueing to pilots  

Manoeuvre 
suitability in 
question when off-
axis stabilisation is 
required

Pitch Tracking 
(PT)

Incipience in the 
pitch axis, hover 
and forward flight

N/A Largely 
successful at 
exposing RPCs 
due to rate 
limiting elements 

Easy to 
implement and 
easy for the pilot 
to understand 
performance 
requirements

Boundary width 
allowed pilot to 
operate open-loop 
with certain control 
strategies 

Has the potential 
to lose ‘realism’ 
from rotorcraft 
tasks 

Requires Head up 
display

Either apply 
external forcing 
function on 
aircraft/boundaries 
or decrease the 
boundary width to 
force pilot control 
gain
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The Precision Hover (PH) manoeuvre contained within ADS-33 is a multi-axis re-position 

stabilization task to assess low-speed performance. The task assesses both the ability of the pilot 

to transition the aircraft from translating flight to hover, and the ability to maintain position 

precisely. Pilots are required to maintain a stabilized hover whilst keeping a pole reference 

position within the hover board from their point of view. The primary height and lateral cueing 

is given by a “hover board” (see Figure 25). ADS-33 recommends a distance of 150ft between 

aircraft and hover board. It is usual for the pole to be placed at 75ft from the aircraft, midway 

between the hover board and the reference hover location. The reference pole was moved closer 

to the aircraft whilst keeping the task performance tolerances the same for the ARISTOTEL test 

campaign to try to obtain higher-gain pilot inputs. Three pole locations were used in the 

experiments: 75ft (as in ADS-33), 40ft, and 20ft. The distance between the aircraft and the 

hover board was kept constant at 150ft. Figure 25 shows the pole as in ADS-33 at the central 

location (75ft) and Figure 26 at the modified 20ft position.  



 

Figu

 

The c

differ

ure 25: Exte

Figu

combination 

rent vehicle c

ernal view of

cou

re 26: Exter

of time dela

configuration

f standard A

urse set-up

rnal view of

ays and rate l

ns for the inv

68 

ADS-33 Prec

f modified P

limits were u

vestigation: 

cision Hover

recision Hov

used together

CONF1 deno

 

r

 

ver course s

r with pole lo

oted the case

set-up

ocation to pr

e when no tr

roduce 

iggers 



69 

 

were added to the task (baseline case); CONF2 denoted the case where a time delay of 250ms 

was applied in the lateral cyclic stick; CONF 3 denoted the case where only rate limits were 

applied to both the longitudinal and lateral axis controls (longitudinal =5 deg/s, lateral=2.5 

deg/s); finally, CONF4 denotes the case where both time delays and rate limits were applied 

(longitudinal time delay =180 ms and rate limit=5 deg/s, lateral time delay=250ms and 2.5 

deg/s).  

 

Table 5 shows the handling qualities ratings (HQRs) using CONF1 (PIO robust). Results are 

shown for both sets of tests completed in HFR and SRS. Subscripts next to each numerical 

rating denote the number of times the rating was awarded. For the HFR results, predominantly 

Level 1 HQRs were awarded for the 75ft pole location. However, in SRS, due to the poorer 

cueing environment and lack of ground references, the task resulted in predominantly Level 2 

HQRs. The HQRs were not sensitive to pole location within SRS. However, in HFR, the 

position of the pole location changed the ratings from predominantly Level 1 to Level 2 HQRs. 

This was due to the pilot difficulty in maintaining task performance in the initial phase of the 

manoeuvre. 

Table 5. HQR ratings for precision hover task in the SRS and HFR simulators

 

Figure 27 presents the APC ratings awarded during the completion of the PH manoeuvre for the 

four configurations and different pole location. For the pole position at 75ft in CONF 1, HFR 
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showed no RPC tendencies while RPC tendencies were found in SRS. On the contrary, in 

CONF 4, SRS showed no RPCs while HFR showed severe RPC oscillations. This contrary 

simulator behaviour is believed to be due to the limited visual cues in SRS (narrower horizontal 

visual angles and the absence of chin windows). This limitation resulted in poorer translational 

rate cueing in SRS with the pilots being less inclined or less able to correct for aircraft lateral 

and longitudinal drift. As a result, the pilots did not exert the expected level of tight closed-loop 

control and did not trigger an RPC in SRS. Furthermore, in both simulators, for the majority of 

the cases completed with CONF 2 and CONF 3 with the pole location at 75ft, no RPC 

tendencies were reported. In both simulators, one pilot was found to expose the most severe 

RPCs, as his approach to the manoeuvre was the most aggressive of the pilots used in the study.  

 

Figure 27 shows that, as the pole was moved from 75ft through 40ft to 20ft using vehicle 

configurations CONF1 to CONF4, as the task performance tolerances were tightened, the pilot 

gain and workload increased in the lateral and heave axes in both simulators. Now RPCs were 

triggered in both simulators (although a difference in the susceptibility of each pilot, based on 

their strategy, was observed). For the pole at 20ft, the severity of RPC events experienced was 

the highest. Bringing the pole closer to the pilot increased the emphasis on the forward visual 

cue, and reduced the emphasis offered by the ground references. In this way, the mean ratings 

between simulators became more consistent.  
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workload during completion of a mission task element [105-107]. Also, the control attack 

parameter, defined as the peak rate of change of the control deflection to the magnitude of the 

control deflection, has been successfully used to measure pilot activity in the time domain [20]. 

However, it is often recognised that it is almost impossible to design an A/RPC free vehicle 

[13]. Therefore, since the 1990s, a new philosophy has been introduced in A/RPC research 

analysis motivating to detect and correct potential tendencies for pilot-aircraft couplings not off-

line but on-line in real flight time. New methods for on-line PIO detection have been developed 

for fixed-wing aircraft which have been designed to be implemented especially as a safety 

precaution during flight testing. This section will present the Real-time Phase Aggression 

Criterion (PAC) developed within the ARISTOTEL project for an objective evaluation of 

A/RPCs in the simulator. 

 

PAC criterion is based on the “Real-Time Oscillation VERifier” (ROVER) on-line 

criterion which was developed by Mitchell [88] in the late 1990s. ROVER was developed as 

a real-time PIO identification method to warn the pilot that a PIO is in progress, so that 

preventive action can be taken. In simulator RPC testing, ROVER was used to provide an 

alternative means for engineers to verify pilots’ subjective ratings. More detail on ROVER can 

be found in Ref. [88], but the key points are summarized here for completeness. ROVER 

operates on two time-domain signals measured during flight, namely the vehicle angular rate 

and pilot control stick input. A score of 4 flags need to be given to the signals in order for an 

A/RPC to be considered detected. The flags are given as follows: a first flag is set every time a 

peak in vehicle body angular rate is detected and its oscillation frequency (computed as the time 

between the current and previous peaks) is in the range associated with A/RPC; a second flag is 

set if the peak-to-peak body angular rate amplitude is above the threshold for A/RPC; a third 

flag is set if the phase angle between the peaks in body angular rate and the peaks in control 

stick is in the range for A/RPC; a fourth and final flag is set if the peak-to-peak control input 

amplitude is above a predefined threshold value. A score of 4 flags corresponds to a detected 
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A/RPC. Two consecutive scores of 3 result in a 3.5 score and an A/RPC warning. In 

ARISTOTEL, an extension of the original ROVER algorithm was made in [14] in the sense that 

it was proposed to couple the ROVER algorithm with a quasi-real time detection of degradation 

in handling qualities. The subjective element when applying ROVER lies in the fact that it uses 

pre-defined threshold values for the angular rate and also for the control input which must be set 

by the user. Therefore, the thresholds must be carefully chosen; incorrect thresholds will yield 

over/under prediction. The thresholds depend also on the order of the filter as well as the cut-off 

frequency [14]. 

 

The new “Real-time Phase Aggression Criterion” (PAC) method [21, 30, 33] is based upon 

ROVER and the Pilot-Inceptor Workload (PIW) method proposed by Gray [91, 92]. PIW was 

developed to identify A/RPC susceptibility in Boundary Avoidance Tracking (BAT) tasks, i.e. 

tasks that approach a boundary described as a danger. Two time-domain based parameters are 

used for PIW to estimate pilot control activity, i.e. Duty Cycle (DC) and Aggression (AG). The 

combination of the two parameters can provide an insight into the pilot control strategy and 

workload [94]. . The key points of PAC are as follows:  

 

First, the pilot input and vehicle output signals during real-time or post-processing 

simulation (see Figure 28) are used to calculate the phase distortion parameter, :  

   (2) 

Second, the time-varying aggression (AG) parameter is calculated as: 

 

p( q ,r ) PK 2

p(q ,r ) PK1

T

G s 1c(1s,0c)
T

p(q,r)PK2 p(q,r)PK1

1
A H | (t) | dt

T T
    (3) 

 



74 

 

For a rate command system, the units of AG are given as deg/s2. AG is the integral of the 

control input rate 
1c(1s,0c) (t) (longitudinal cyclic, lateral cyclic or collective) over the 

sampling time period. The result is divided by the sampling time period (this is adaptive 

upon the control/response frequency as every time a phase difference is measured a new AG 

is also computed) and multiplied by the control gearing term Hs. The definition of control 

gearing Hs is:  

 

1c(1s,0c)

s

1c(1s,0c) 1c(1s,0c) 1c(1s,0c)

p(q,r) p(q,r)
H       (4) 

 

and describes the vehicle angular rate (roll, pitch or yaw) with respect to the pilot control 

input. For all of the research conducted in ARISTOTEL, Hs has been approximated as a 

constant. Further development of the method could lead to a time-varying Hs, potentially 

making the method more precise. 

Third, a 2-dimensional -AG chart can then be produced. The key regions of this chart are 

shown in Figure 29. Points where  is low and AG is high describe the situation where 

vehicle output is synchronous to pilot control. In this situation, the pilot is driving the 

aircraft response. When AG is low, and  is high, the situation shows excessive phase lag 

with little pilot control input. This situation could manifest itself as mild pitch bobbles or 

open-loop control activity. Neither of these would warrant significant concern. However, 

the combination of high AG and  is indicative of oscillations that are driven by the pilot. 

This is the situation where A/RPCs are most likely to occur, and mitigation techniques may 

be required. In this situation, it is likely that the pilot response is being driven by the 

resulting vehicle oscillations. 
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Given that the computations can be performed in or near real time, it is conceivable that PAC-

based PIO detection could be used for detecting RPC in the simulator or flight tests. This would 

be achieved by computing  and AG based upon measured real-time aircraft attitudes and 

inceptor positions/rates using extant onboard sensing.  The PAC chart boundaries would 

be stored on the aircraft PIO detection/suppression system and, as the boundaries were 

approached, alerts issued and/or suppression systems activated.  It is posited that an alert 

might be issued as the No/Moderate PIO boundary were crossed and preventative 

measures activated as the Moderate/Severe boundary were crossed. Of course, this would 

be subject to measures being taken to ensure that spurious or transient data points were 

dealt with appropriately. 

 

8. Simulator Latency characteristics  

In current simulation standards, transport delay (simulator latency or simulator cue integration) 

is defined as "The total Synthetic Training Device (STD) system processing time required for an 

input signal from a primary pilot flight control until motion system, visual system or instrument 

response. It does not include the characteristic delay of the helicopter [vehicle] to be 

simulated." [65, 66]. Ideally all cueing elements of a simulator (motion, visual and instruments) 

should respond to pilot inputs at the same rate as the real aircraft. However, there are many 

sources of delay8 in simulators which will normally preclude such a response. Such sources are 

associated with: 

 

Control loading computation frames (typical 1ms); 

Flight dynamics computation frames (typical 14 to 18 ms); 

                                                      

8
A distinction should be made between delay and lag in a system. Delay can be defined as the “dead 

time” between an event and a reaction to that event. Lag is the phase shift resulting from system’s 

dynamics or system’s delay. 
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Visual computation frames (typical of 20ms); 

Instrument response (typical delay of 40ms); 

Motion cueing algorithm delay (typical delay of 20ms) 

 

This results in time delays of the order of 100ms introduced by computer power. The maximum 

allowable latency which can be accommodated will usually depend upon the nature of the 

simulated aircraft and on the tasks demanded of it. The (potentially large) time delays 

introduced into the vehicle by the flight control system (FCS) computer(s) especially in the case 

of flight by wire (FBW) FCS aircraft needs to be added to the simulator latency. It was shown 

that almost every aircraft and rotorcraft equipped with a partial or total FBW FCS has, at one 

time or another in the development process, experienced one or more A/RPC events [13, 

14].This is especially true for helicopters which can have equivalent time delays of the order of 

200 milliseconds or more.  This delay is not only due to FCS computer(s) but is also due to the 

stick dynamics (input filtering). 

 

The available research regarding simulator latency and transport delay suggests that the 

simulator user needs to determine per system the best way to minimise transport delays and 

synchronise the motion and visual cues. A thorough system design is generally necessary in 

terms of: simulation objectives, task analysis, behavioural objectives, cue identification and cue 

implementation. A key resource available herein is the engineering data compendium of Boff 

and Lincoln [101]. Also, a good review on publications related to manual control with delays is 

given in Ref. [110].  

 

For example, for the highest Level of simulator qualification [65, 66], the total transport delay 

from control input to visual and motion response must be no more than 100ms. Previous 

research [95, 100, 101] that investigated the effect of varying simulator transport delay on flight 
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simulators showed that the total transport delay is dependent on both the visual system delay 

and the motion system delay. If the motion and visual system transport delays are not correctly 

synchronised, it is likely that the pilot will experience conflicting visual and vestibular cues. 

This leads to disorientation which can cause the pilot to feel sick and compromises learning 

benefits. Indeed, the results of Ref. [99] indicate that visual cues should be synchronous with 

the corresponding motion cues or, at worst, the visual cues should lead the motion cues. This is 

contradicted by EASA CS-FSTD (H) which contains the guideline "Visual scene changes from 

steady state disturbance shall occur within the system dynamic response limit but not before the 

resultant motion onset" [68]. 

 

Ref. [95] investigated the effect of varying simulator transport delay on HQs Ratings (HQRs). It 

showed that additional transport delays of only 80ms resulted in degradation of the average 

HQRs from Level 1 to Level 2 for several tasks. This suggests that a simulator with an 

additional 80ms transport delay would result in a compromised training utility. It should be 

noted that the baseline transport delay in the simulator used for that study was only 10 ms.  Lead 

compensation filters were used to eliminate the delays in the motion and visual systems [95]. 

Ref. [108] demonstrated that pilots are unable to ascertain the source of any perceived delay. 

The delays associated with the motion system were found to be more complex than those 

associated with the visual system due to the washout filters. It was suggested that the visual and 

motion delays should be matched rather than trying to reduce delays as much as possible in each 

system independently. It is generally known that delays have a negative effect on pilots’ 

performance. Figure 31 from Ref. [109] shows high pilot errors introduced by a 300ms time 

delay. However, adaptation and learning from pilot training reduces the errors by 50%. 
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contribute to the prediction of A/RPCs using ground-based simulators. The following key 

conclusions can be drawn from it: 

 

Piloting tasks: Tasks must be selected that create high-gain pilot inputs. The tasks must 

have well defined and well justified performance parameters, to force consistent pilot 

control strategy. However, the tasks are expected to expose performance (limitations) 

beyond that expected for normal operation of the vehicle and so tasks that reflect 

normal operating parameters should be avoided. The suitability of tasks to unmask 

A/RPC can be assessed using Handling Qualities Ratings and/or PAC. For fixed-wing 

aircraft, the flight tasks recommended to unmask APCs were gust landing, tracking the 

“jumping” runway, and roll tracking. These tasks forced the pilots to make stepwise 

control inputs, and triggered high-frequency structural modes that could lead to 

aeroelastic APCs. For helicopters, ADS-33 manoeuvres were considered to be a suitable 

baseline for RPC investigations. However, such manoeuvres need to be modified to 

expose deficiencies for different pilots and ensure consistent performance. For example, 

for the ADS-33 precision hover, moving the reference pole closer to the pilot decreased 

inter-pilot variability. For the ADS-33 roll step, increasing the task speed and narrowing 

the gates showed a larger increase in RPC susceptibility in the simulator.  

Motion cues: motion cueing is essential for tasks which require high response to control 

unexpected disturbances of low stability vehicles. Motion requirements are task 

dependent and care should be taken to ensure that the available motion cueing is 

suitable for the task being conducted.  Poor motion cueing can be worse than no motion 

cueing at all.  

Visual cues: these are the primary sense for the perception of real world. Visual cues are 

important in unmasking A/RPCs, however, a good integration of visual and motion cues 

is more important than treating them separately. Results presented in this paper 
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demonstrated that using a simulator with reduced vertical visual cueing but with 

increased task difficulty and correct motion cueing was sufficient to trigger RPC 

instabilities.  

Control inceptor type: this is one of the most sensitive elements that contributes to 

A/RPC occurrences in the simulator. The paper demonstrated that varying the 

manipulator characteristics, i.e. using either a control yoke (wheel) system, a central 

stick or a side-stick affects the BDFT. The greatest pilot rating degradation was due to 

the biodynamic interaction between the pilot and the elastic accelerations corresponding 

to the central stick system.  

Mathematical model: this resides at the heart of the simulator. Although the vehicle 

system as a whole, including FCS, displays and actuators should be well reproduced in 

the simulator in order to reveal its proneness to A/RPCs, one can use also specific 

models depending on the particular problem to be studied and the flight configuration. 

Using an extensive model to investigate a specific phenomenon is not convenient 

because no physical insight can be obtained. Often, instead, building a case-specific 

model can be of help in order to understand the instability and the physics. 

 

Regarding the question whether ground-based simulators can reveal the existence of adverse 

A/|RPCs, the paper demonstrated that selecting proper tasks could result in triggering A/RPCs 

in the simulator. A difference in the susceptibility of each pilot, based on their strategy, was 

observed in the ARISTOTEL project. Many challenges are waiting to be solved for future use 

of simulators for unveiling A/RPCs. It is hoped that this paper may light the way for some 

simulator practices needed for unmasking adverse A/RPCs. 
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Appendix A1 Motion Fidelity rating scale 

 

Figure A1 Motion Fidelity rating scale [104] 
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