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The principle of local distinguishability states that an arbitrary physical state of a bipartite system can be
determined by the combined statistics of local measurements performed on the subsystems. A necessary and
sufficient requirement for the local measurements is that each one must be able to distinguish between all pairs
of states of the respective subsystems. We show that, if the task is changed into the determination of an arbitrary
bipartite pure state, then at least in certain cases it is possible to restrict to local measurements which can
distinguish all pure states but not all states. Moreover, we show that, if the local measurements are such that the
purity of the bipartite state can be verified from the statistics without any prior assumption, then in these special
cases also this property is carried over to the composite measurement. These surprising facts give evidence that
the principle of local distinguishability may be expanded beyond its usual applicability.
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I. INTRODUCTION

Quantum theory is an example of a physical theory which
satisfies the principle of local distinguishability. This means
that, if two states of a composite system are different, then
they can be distinguished by using the combined statistics
of some appropriate local measurements on the component
systems. This feature of quantum theory has both practical
and foundational relevance. From the practical point of
view, local measurements are obviously easier to implement
than global measurements. On the foundational side, local
distinguishability has been considered such an important
feature that it has been taken as an axiom in several derivations
of quantum theory [1–3].

The principle of local distinguishability is a statement
concerning arbitrary states of composite physical systems.
However, it is completely reasonable to ask if the same
principle holds when only pure states are considered, and this
is precisely the focus of this paper. To be more explicit, suppose
that Alice and Bob both perform local measurements that are
capable of identifying an unknown pure state among all pure
states on their respective components; see Fig. 1. Are they then
able, by using the combined statistics of those measurements,
to identify an unknown pure state among all pure states of the
composite system?

Since pure states represent the states of maximal in-
formation for a system, this variation of the principle of
local distinguishability is of foundational interest. The main
practical motivation comes from the fact that prior information,
in this case the purity of the unknown state, can be exploited
to drastically reduce the amount of resources needed for state
tomography [4–6]. Specifically, for pure-state determination
the minimum number of measurement outcomes needed
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to succeed in the task reduces from a quadratic (in the
dimension of the system) to a linear expression. The validity
of this expanded principle of local distinguishability would
therefore imply that the experimenter could take advantage
not only of the simpler setup coming from the locality of
the measurements, but also of the sufficiency of the restricted
resources.

In this paper we show that Alice and Bob can succeed in
their task of pure-state determination at least in two cases: (i)
if at least one party, Alice or Bob, can distinguish between
all states of their respective subsystem, or (ii) if at least
one of the subsystems is either a qubit or a qutrit. We then
show that, if Alice and Bob possess measurements which are
in addition capable of verifying the purity of their systems
from the statistics, then in the above cases the composite
measurement also has this property. Finally, we generalize
case (ii) to multipartite systems consisting of qubits and qutrits
and use this to obtain a special class of measurements on
higher-dimensional systems, for which the expanded principle
of local distinguishability is valid.

II. PURE-STATE INFORMATIONAL COMPLETENESS

Recall that a measurement is called informationally com-
plete if any two different states can be distinguished from the
outcome statistics [7]. Mathematically, such a measurement
is described by a positive operator valued measure (POVM)
A such that the elements A(x) span the real vector space
Ls(H) of self-adjoint operators on the Hilbert space H of
the system [8,9] (we always assume dimH < ∞). This is
equivalent to the requirement that the expectation value of any
observable O can be written as a linear combination of the
probabilities �A(x) = tr[�A(x)],

〈O〉 =
∑

x

αx�
A(x). (1)

As a variation of informational completeness, we say that
a measurement is pure-state informationally complete if any
two different pure states give different measurement outcome
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FIG. 1. (Color online) For a bipartite quantum system, any local
measurements A and B performed on the subsystems can be combined
to yield a measurement A ⊗ B on the composite system. The question
then is if A ⊗ B can distinguish between all bipartite pure states
whenever A and B can distinguish between all pure states of the
respective subsystems.

statistics [10]. In order to formulate a mathematical criterion
for this property, we first define R(A) to be the real linear
span of the operators A(x) of a POVM A, i.e., R(A) =
{∑x rxA(x) : rx ∈ R}. In physical terms, R(A) is the set of
those observables for which we can calculate the expectation
value in the form (1). As said before, R(A) = Ls(H) if and
only if A is informationally complete.

We denote by R(A)⊥ ⊂ Ls(H) the orthogonal complement
of R(A) with respect to the Hilbert–Schmidt inner product
〈S | T 〉 = tr[ST ]. It is easy to verify that two states �1 and
�2 are indistinguishable by a measurement of A if and only
if �1 − �2 ∈ R(A)⊥. Therefore, the pure-state informational
completeness of A is equivalent to the condition that R(A)⊥
does not contain any matrix of rank two [4]. Indeed, sinceR(A)
contains the identity 1, the elements of R(A)⊥ are traceless
and therefore the existence of such a matrix would yield two
indistinguishable pure states via its spectral decomposition.

The two properties of informational completeness and
pure-state informational completeness are inequivalent for all
systems whose Hilbert space is at least three dimensional [4].
For instance, an informationally complete measurement for a
qutrit system requires at least nine outcomes, but a pure-state
informationally complete measurement can have minimally
eight outcomes (for a concrete example, see Ref. [11]). The fact
that the two concepts are equivalent for qubit systems follows
easily from the previously mentioned rank condition: any
element of R(A)⊥ is a self-adjoint and traceless 2 × 2 matrix,
hence it is either zero or has rank two; therefore, A is pure-state
informationally complete if and only if R(A)⊥ = {0}, that is,
A is informationally complete.

III. EXPANDING LOCAL DISTINGUISHABILITY

Let us turn to a setting where the unknown state is a joint
state of a composite system, and two local measurements are
performed on its subsystems; see Fig. 1. Alice and Bob thus
measure some POVMs A and B acting on the Hilbert spaces
HA and HB of the subsystems, respectively. The composite
measurement is then described by the tensor product POVM
(A ⊗ B)(x,y) = A(x) ⊗ B(y) acting on HA ⊗ HB . Our main
question can be formulated as follows:

If A and B are pure-state informationally complete, does it
follow that also A ⊗ B is pure-state informationally complete?

We first note that the converse is true: if the composite
measurement A ⊗ B is pure-state informationally complete,
then so are both of the components. Indeed, if it were the case
that, say, A could not distinguish some pair of distinct pure
states �1 and �2, then any pure state σ of Bob’s component
would yield distinct pure states �1 ⊗ σ and �2 ⊗ σ which
would be indistinguishable by A ⊗ B.

In order to get a grasp of the problem at hand, we need to
understand the structure of the complement space R(A ⊗ B)⊥.
First note that, since R(A ⊗ B) = R(A) ⊗ R(B), each of the
three orthogonal subspaces R(A)⊥ ⊗ R(B), R(A) ⊗ R(B)⊥,
and R(A)⊥ ⊗ R(B)⊥ is contained in R(A ⊗ B)⊥, and hence
so is their direct sum. By dimension counting it can be verified
that this direct sum is actually equal to the complement space.
Furthermore, since Ls(HA) = R(A) ⊕ R(A)⊥ and similarly
for Ls(HB), we have the following expressions:

R(A ⊗ B)⊥ = (Ls(HA) ⊗ R(B)⊥) ⊕ (R(A)⊥ ⊗ R(B))

= (R(A)⊥ ⊗ Ls(HB)) ⊕ (R(A) ⊗ R(B)⊥).

These equations will be used repeatedly in the rest of the paper.

A. Informational completeness on one side

We begin our investigation by considering the special case
where one party, say, Alice, can perform an informationally
complete measurement. We then have R(A)⊥ = {0}, which
implies that

R(A ⊗ B)⊥ = Ls(HA) ⊗ R(B)⊥ (2)

by our previous observation. In particular, if Bob also
performs an informationally complete measurement, then
R(A ⊗ B)⊥ = {0}, which confirms the usual form of local
distinguishability: A ⊗ B is informationally complete if both
A and B are such. Interestingly, the next result shows that
pure-state informational completeness on Bob’s side also
carries over to the composite measurement.

Proposition 1. Let A be an informationally complete
measurement and let B be a pure-state informationally com-
plete measurement. Then A ⊗ B is pure-state informationally
complete.

Proof. As noted earlier, in order to prove the pure-state
informational completeness of A ⊗ B, we need to show that
the rank of any nonzero matrix T in R(A ⊗ B)⊥ is at least
three. From Eq. (2) we see that a nonzero T ∈ R(A ⊗ B)⊥ can
be written in block form as

T =

⎛⎜⎜⎝
T11 T12 · · · T1,dA

T21 T22 · · · T2,dA

...
...

. . .
...

TdA,1 TdA,2 · · · TdA,dA

⎞⎟⎟⎠ ,

where dA = dimHA and each Tjk is an element of the complex
linear span of R(B)⊥ satisfying T ∗

jk = Tkj .
First, suppose that Tjj �= 0 for some j = 1, . . . ,dA. We

have rank(Tjj ) � 3 since Tjj ∈ R(B)⊥ and B is pure-state
informationally complete. This implies that rank(T ) � 3
because rank(T ) � rank(Tjj ).

Second, suppose that Tjj = 0 for all j = 1, . . . ,dA; thus,
Tjk �= 0 for some j �= k. Since Tjk need not be self-adjoint, it
may be not in R(B)⊥. However, the real part ReTjk = (Tjk +
T ∗

jk)/2 and the imaginary part ImTjk = (Tjk − T ∗
jk)/2i are
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self-adjoint and therefore elements of R(B)⊥. Since Tjk �= 0,
we have ReTjk �= 0 or ImTjk �= 0. It thus suffices to show
that rank(T ) � max{rank(ReTjk),rank(ImTjk)}. To see this,
we denote

T̃ =
(

0 Tjk

T ∗
jk 0

)
.

Because T̃ is a submatrix of T , we have rank(T ) � rank(T̃ ).
We further observe that

T̃ = V T̃0V
∗,

where

T̃0 =
(

Im Tjk Re Tjk

Re Tjk −Im Tjk

)
,

and V is the unitary block matrix

V = 1√
2

(
1 −i1

−i1 1

)
.

Since we have rank(T̃ ) = rank(T̃0) and moreover rank(T̃0) �
max{rank(ReTjk),rank(ImTjk)}, this implies

rank(T ) � max{rank(ReTjk),rank(ImTjk)} � 3.

B. Qutrit on one side

We now wish to drop the assumption of informational
completeness for Alice’s measurement and assume only that
she can distinguish all pure states. However, as the dimensions
of the systems increase, so does the complexity of the space
R(A ⊗ B)⊥. As a result, an exhaustive answer to our question
still remains to be found.

In the special case that Alice’s system is a qutrit, the
structure of R(A ⊗ B)⊥ is manageable. Suppose that A
is pure-state informationally complete. We have then two
possibilities: (i) R(A)⊥ = {0}, in which case A is actually
informationally complete with respect to all states, or (ii)
R(A)⊥ = RS = {rS : r ∈ R} for some invertible matrix S. It
can be shown that these are the only possibilities for pure-state
informational completeness for a qutrit system [4]. The case
(i) was already treated earlier, so we concentrate on (ii). In that
case we have

R(A ⊗ B)⊥ = (S ⊗ Ls(HB)) ⊕ (R(A) ⊗ R(B)⊥). (3)

This simplified structure allows us to prove the next result.
Proposition 2. Let dimHA = 3. Then A ⊗ B is pure-state

informationally complete if and only if A and B are pure-state
informationally complete.

Proof. One implication has already been established at the
beginning of this section. Let us then prove the other one.
Assume that A and B are both pure-state informationally com-
plete. We may assume that neither of them is informationally
complete since this case was already in Proposition 1. Let
R(A)⊥ = RS with a full-rank matrix S. It is not restrictive to
assume that

S =
⎛⎝s1 0 0

0 s2 0
0 0 s3

⎞⎠ ,

where si ∈ Rwith s1s2s3 �= 0 and s1 + s2 + s3 = 0. By Eq. (3),
any T ∈ R(A ⊗ B)⊥ can be written as a block matrix,

T =
⎛⎝T11 T12 T13

T21 T22 T23

T31 T32 T33

⎞⎠ ,

where Tjj = sjL + Rj with Rj ∈ R(B)⊥ and L ∈ Ls (HB),
and each Tjk with j �= k is from the complex linear span of
R(B)⊥ and satisfies T ∗

jk = Tkj .
Choose the unitary block matrix

U = 1√
6

⎛⎝√
21

√
2eiα1

√
2eiβ1√

31 0 −√
3eiβ1

1 −2eiα1 eiβ1

⎞⎠ .

Then T̃ = UT U ∗ is such that

T̃11 = 1

3

3∑
i=1

Ri + 2

3
[Re T21 cos α − Im T21 sin α

+ Re T31 cos β − Im T31 sin β

+ Re T32 cos(β − α) − Im T32 sin(β − α)].

If now T̃11 �= 0 for some α, β, then rank(T ) = rank(T̃ ) �
rank(T̃11) � 3 since T̃11 ∈ R(B)⊥ and B is pure-state infor-
mationally complete. Suppose instead that T̃11 = 0 for all
α, β. Then by the linear independence of the functions 1,
cos α, sin α, cos β, sin β, cos(β − α), and sin(β − α) in the
two variables α and β, we have

∑3
j=1 Rj = 0 and Tjk = 0 for

j �= k. Thus, if Tjj �= 0 for all j , then rank(T ) � 3 trivially.
If otherwise Tjj = 0 for some j , then L = −Rj/sj , and
Tkk = Rk − (sk/sj )Rj ∈ R(B)⊥ is 0 or has rank at least three
by the pure-state informational completeness of B. Thus,
T = 0 or rank(T ) � rank(Tkk) � 3 for some k. In conclusion,
A ⊗ B is pure-state informationally complete.

IV. VERIFYING PURITY

In order for a pure-state informationally complete measure-
ment to be useful, the experimenter must know a priori that
the system is in a pure state. Since the purity of the state is
a very delicate property, it would be desirable to be able to
verify this premise directly from the statistics. Furthermore,
because the ultimate goal is the determination of the state after
verifying the premise, one actually needs a measurement that
can distinguish an arbitrary pure state from any other state,
pure or mixed.

We say that a measurement is verifiably pure-state infor-
mationally complete if the measurement outcome statistics of
a pure state is different from the outcome statistics of any
other state [5]. Note that the minimal number of measure-
ment outcomes needed for verifiable pure-state informational
completeness also scales linearly with the dimension of the
system [5]. A mathematical criterion for this property can be
formulated as follows [6]: an observable A is verifiably pure-
state informationally complete if and only if every nonzero
T ∈ R(A)⊥ has rank↓(T ) � 2, where

rank↓(T ) = min {rank(T + |T |),rank(T − |T |)}
is the minimum between the number of strictly positive and
strictly negative eigenvalues of T .
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As an immediate consequence, in the qubit and qutrit cases
verifiable pure-state informational completeness is equivalent
to informational completeness. Indeed, in these cases the above
criterion implies that A is verifiably pure-state informationally
complete if and only if R(A)⊥ = {0}.

For composite systems, verifiable pure-state informational
completeness behaves in a similar way as pure-state informa-
tional completeness. Indeed, as done in the previous section,
one can easily prove that a necessary condition for A ⊗ B to be
verifiably pure-state informationally complete is that both A
and B are such. Moreover, the next two results are the complete
analogs of Propositions 1 and 2.

Proposition 3. Let A be an informationally complete
measurement. If B is verifiably pure-state informationally
complete, then A ⊗ B is verifiably pure-state informationally
complete.

Proof. It is not restrictive to assume that dB = dimHB � 4,
as otherwise the verifiable pure-state informational complete-
ness of B implies that B is informationally complete, and the
claim is the usual local distinguishability.

As in the proof of Proposition 1, each element T ∈ R(A ⊗
B)⊥ can be written as a dA × dA block matrix with entries Tij in
the complex linear span of the set R(B)⊥, and such that T ∗

ij =
Tji . We now assume that T �= 0 and show that rank↓(T ) � 2.
By the criterion stated above, this will imply the verifiable
pure-state informational completeness of A ⊗ B.

If Tii �= 0 for some i, then Tii ∈ R(B)⊥ \ {0}, hence
rank↓(Tii) � 2. We claim that in this case rank↓(T ) � 2.
Indeed, Tii is a compression of T to a dB-dimensional
subspace of HA ⊗ HB = CdAdB . The Cauchy interlacing the-
orem (see Ref. [12], Corollary III.1.5) states that, for each
j = 1,2, . . . ,dB ,

λj (T ) � λj (Tii) � λj+dB (dA−1) (T ) ,

where λj (T ), λj (Tii) are the eigenvalues of T and Tii ,
respectively, possibly repeated according to their multiplicities
and listed in decreasing order. The condition rank↓(Tii) � 2
means that Tii has at least two strictly positive and two strictly
negative eigenvalues. Hence, the first of the Cauchy interlacing
inequalities yields

λj (T ) � λj (Tii) > 0 for j = 1,2

and the second gives

0 > λj (Tii) � λj+dB (dA−1)(T ) for j = dB − 1,dB.

In other words, T also has at least two strictly positive and two
strictly negative eigenvalues; that is, rank↓(T ) � 2.

Finally, it remains to consider the case in which Tii = 0 for
all i = 1, . . . ,dA. As T �= 0, we have Tij �= 0 for some i �= j .
By relabeling the entries of T if necessary, we can assume that
i = 1 and j = 2. Consider then the upper-left square minor

T̃ =
(

0 T12

T ∗
12 0

)
= UT̃+U ∗ = V T̃−V ∗,

where

T̃+ =
(

Re T12 iIm T12

−iIm T12 −Re T12

)
,

T̃− =
(

Im T12 ReT12

Re T12 −Im T12

)
,

and U and V are the unitary block matrices

U = 1√
2

(
1 −1
1 1

)
, V = 1√

2

(
1 −i1

−i1 1

)
.

By another application of the Cauchy interlacing inequalities,

rank↓(T ) � rank↓(T̃ ) = rank↓(T̃+) � rank↓(ReT12),

and

rank↓(T ) � rank↓(T̃ ) = rank↓(T̃−) � rank↓(ImT12).

Both ReT12 and ImT12 belong toR(B)⊥ and at least one of them
is nonzero because T12 is nonzero. Therefore, rank↓(T ) � 2.

Proposition 4. Let dimHA = 3. Then A ⊗ B is verifiably
pure-state informationally complete if and only if A and B are
verifiably pure-state informationally complete.

Proof. As already noticed, necessity is easy. On the other
hand, in dimension three verifiable pure-state informational
completeness is equivalent to informational completeness,
hence sufficiency follows by Proposition 3.

V. EXTENSION TO MULTIPARTITE SYSTEMS

Since in Proposition 2 no assumption regarding the di-
mension of Bob’s system was made, we can use it to obtain
an extension to the multipartite case. Suppose that we have
N quantum systems, each of which is either a qubit or
a qutrit, and suppose that we have the corresponding N

pure-state informationally complete measurements described
by the POVMs Ai . We denote

A (x) =
N⊗

i=1

Ai (xi) , x = (x1, . . . ,xN ) .

We consider the splitting of the POVM into two parts

A = A1 ⊗
(

N⊗
i=2

Ai

)
.

Propositions 1 and 2 tell us that A is pure-state informationally
complete if and only if each of the two factors is such (recall
that a pure-state informationally complete qubit measurement
is necessarily informationally complete). By induction, we
may conclude that actually A is pure-state informationally
complete if and only if each component Ai is such. .

This multipartite extension also gives a class of POVMs
on higher-dimensional systems for which the pure-state in-
formational completeness of a pair of POVMs carries over
to their tensor product. Namely, suppose that the only prime
components of the dimensions dA and dB are 2 and 3; that is
dA = 2nA3mA and dB = 2nB 3mA . This means that we can write

HA =
⎛⎝ nA⊗

j=1

C2

⎞⎠ ⊗
(

mA⊗
k=1

C3

)
,

and similarly for HB . Suppose now that A and B are pure-state
informationally complete POVMs which also factorize into
tensor products

A =
nA+mA⊗

j=1

Aj , B =
nB+mB⊗

k=1

Bk,
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where each component acts on C2 or C3. Each component
must be pure-state informationally complete, and therefore by
our multipartite result, so is A ⊗ B.

VI. CONCLUSIONS

An entangled pure state of a composite system has mixed
reduced states. For this reason, a local measurement not dis-
tinguishing mixed states may seem quite useless for quantum
tomography on a bipartite system. However, as we have
shown, if Alice can implement an informationally complete
measurement and Bob can distinguish all pure states with his
measurement, then they can together distinguish all pure states
of the composite system. Furthermore, in the case that Alice’s
system is a qutrit she can also choose to perform merely a
pure-state informationally complete measurement while still
maintaining the ability to distinguish all pure bipartite states.
In a similar manner, if Alice and Bob are able to verify the

purity of the state of their respective systems, then in the above
cases the composite measurement also has this property.

Quantum theory has two quite opposite features: informa-
tion is stored globally (entanglement), but can be retrieved with
local measurements (the principle of local distinguishability).
It is an interesting question if this balance can be properly
quantified and if it is unique to quantum theory. We believe that
our investigation on the principle of local distinguishability can
stimulate a new direction in the axiomatization of quantum
theory, but also may help to design quantum tomography
schemes with reduced resources.
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[7] E. Prugovečki, Int. J. Theor. Phys. 16, 321 (1977).
[8] P. Busch, Int. J. Theor. Phys. 30, 1217 (1991).
[9] M. Singer and W. Stulpe, J. Math. Phys. 33, 131

(1992).
[10] P. Busch and P. Lahti, Found. Phys. 19, 633 (1989).
[11] C. Carmeli, T. Heinosaari, and A. Toigo, Phys. Lett. A 377, 1407

(2013).
[12] Rajendra Bhatia, Matrix Analysis, Graduate Texts in

Mathematics Vol. 169 (Springer-Verlag, New York,
1997).

042121-5

http://dx.doi.org/10.1103/PhysRevA.75.032304
http://dx.doi.org/10.1103/PhysRevA.75.032304
http://dx.doi.org/10.1103/PhysRevA.75.032304
http://dx.doi.org/10.1103/PhysRevA.75.032304
http://dx.doi.org/10.1103/PhysRevA.84.012311
http://dx.doi.org/10.1103/PhysRevA.84.012311
http://dx.doi.org/10.1103/PhysRevA.84.012311
http://dx.doi.org/10.1103/PhysRevA.84.012311
http://dx.doi.org/10.1088/1367-2630/13/6/063001
http://dx.doi.org/10.1088/1367-2630/13/6/063001
http://dx.doi.org/10.1088/1367-2630/13/6/063001
http://dx.doi.org/10.1088/1367-2630/13/6/063001
http://dx.doi.org/10.1007/s00220-013-1671-8
http://dx.doi.org/10.1007/s00220-013-1671-8
http://dx.doi.org/10.1007/s00220-013-1671-8
http://dx.doi.org/10.1007/s00220-013-1671-8
http://dx.doi.org/10.1103/PhysRevA.88.012109
http://dx.doi.org/10.1103/PhysRevA.88.012109
http://dx.doi.org/10.1103/PhysRevA.88.012109
http://dx.doi.org/10.1103/PhysRevA.88.012109
http://dx.doi.org/10.1088/1751-8113/47/7/075302
http://dx.doi.org/10.1088/1751-8113/47/7/075302
http://dx.doi.org/10.1088/1751-8113/47/7/075302
http://dx.doi.org/10.1088/1751-8113/47/7/075302
http://dx.doi.org/10.1007/BF01807146
http://dx.doi.org/10.1007/BF01807146
http://dx.doi.org/10.1007/BF01807146
http://dx.doi.org/10.1007/BF01807146
http://dx.doi.org/10.1007/BF00671008
http://dx.doi.org/10.1007/BF00671008
http://dx.doi.org/10.1007/BF00671008
http://dx.doi.org/10.1007/BF00671008
http://dx.doi.org/10.1063/1.529975
http://dx.doi.org/10.1063/1.529975
http://dx.doi.org/10.1063/1.529975
http://dx.doi.org/10.1063/1.529975
http://dx.doi.org/10.1007/BF00731904
http://dx.doi.org/10.1007/BF00731904
http://dx.doi.org/10.1007/BF00731904
http://dx.doi.org/10.1007/BF00731904
http://dx.doi.org/10.1016/j.physleta.2013.04.002
http://dx.doi.org/10.1016/j.physleta.2013.04.002
http://dx.doi.org/10.1016/j.physleta.2013.04.002
http://dx.doi.org/10.1016/j.physleta.2013.04.002



