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Abstract

An approach is proposed to estimate the collapse load of linear elastic isotropic no–tension

2D solids. The material is replaced by a suitable equivalent orthotropic material with spatially

varying local properties. A non–incremental energy–based algorithm is implemented to define the

distribution and the orientation of the equivalent material, minimizing the potential energy so

as to achieve a compression–only state of stress. The algorithm is embedded within a numerical

procedure that evaluates the collapse mechanism of structural elements under monotonic loading.

The accuracy of the method is assessed through comparisons with the “exact” results predicted

by limit analysis.

Keywords: energy–based methods; no–tension materials; masonry–like bodies; collapse

mechanisms; structural optimization.

1. Introduction

The safety assessment of the architectural heritage is nowadays an issue of paramount impor-

tance, both because of the need of avoiding to put human lives at risk, and because of the economic

impact of this priceless heritage, for instance, on tourism industry.
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In most countries, the architectural heritage consists of masonry buildings. Masonry, whether

of stone or brick, is well known to be a material with low tensile strength. The inability of

transferring significant tensile stresses is the reason for the extensive crack patterns that can be

observed in many ancient buildings. The presence of cracks is not necessarily symptomatic of a

possible collapse, as stresses can spontaneously attain a purely compressive state, which makes

cracked regions unnecessary to the stability of the building.

Many formulations have been proposed in the last decades to analyze masonry structures, at

different degrees of accuracy. Inelastic constitutive models, taking plastic strains and/or damage

effects into account, were presented e.g. in [18, 20, 23], only to quote a few.

Several authors have proposed to analyze masonry structures using no-tension material models:

this is why no-tension materials are sometimes referred to as “masonry-like” materials in the

literature [2, 11, 15]. Neglecting the low tensile strength of masonry completely is a simplification

that is far from being original: in the sixties of last century, Heyman [17] proposed to specialize

limit analysis to masonry structures assuming the compressive strength to be unlimited and the

tensile strength to vanish. This schematization is spontaneous for stone masonry, consisting of

blocks separated by weak joints, but was adopted by other authors also for brick masonry [2, 4, 5].

Recently, Angelillo et al. [2] proposed an approach to analyze two–dimensional no–tension bod-

ies subjected to given loads based on the unconstrained minimization of the potential energy with

respect to the unknown displacement field. The numerical difficulties related to the enforcement

of the no–tension constraint [11] are avoided by giving the strain energy density of the material

different expressions, according to the sign of the principal stresses.

This idea was later exploited by Bruggi [9] to re–formulate the analysis of no–tension solids as

a topology optimization problem. The equilibrium of a two-dimensional no-tension body is found

searching for the distribution of an “equivalent” orthotropic material that minimizes the potential

energy of the solid. The orthotropic material exhibits negligible stiffness in any direction along
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which a tensile principal stress must be prevented in the isotropic medium. Similarly to [2], this

approach obtains the solution under given loads through a one–shot energy–based optimization,

provided that the applied loads are compatible with the no–tension constraint.

In this work, an approach is presented to predict the carrying capacity of no–tension 2D

structural elements, starting from that proposed in [9]. A numerical scheme is formulated to

estimate the collapse load (and the relevant failure mechanism) of no–tension structures with a

number of load steps much lower than that required by conventional incremental analyses.

The layout of the paper is as follows. In Sec. 2 the mathematical problem that allows the

no–tension isotropic solid to be analyzed as an equivalent orthotropic medium is briefly recalled.

The distribution and the orientation of the orthotropic material are determined by minimizing

the elastic strain energy of the solid. In Sec. 3, the model is implemented in an algorithm that

allows the stress analysis of any 2D no-tension body to be directly carried out without the need

of any incremental procedure (Sec. 3.1). Upon discretization of the problem, the constrained

minimization of the objective function is carried out through mathematical programming [24].

If required, the entire load–displacement curve under monotonic loading can be derived at any

degree of accuracy by running a sequence of independent analyses. A few comments on the

proposed algorithm and comparisons with alternative optimization tools available in the literature

are made in Sec. 3.2. The possibility of estimating the collapse load of the structure using an

expressly developed algorithm is shown in Sec. 3.3. The effectiveness of the model in predicting

the collapse load of various no–tension structures is assessed in Sec. 4. A preliminary discussion

is made on the accuracy of the results obtained checking the no–tension condition only at the

centroid of any finite element, or at each of the Gauss points of the element. Comparisons between

the numerically estimated collapse loads and the values obtained using limit analysis specialized

to no–tension materials are also presented. Finally, in Sec. 5 the main findings of the work are

summarized and future extensions of the research are outlined.
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2. Problem formulation

According to Bruggi [9], the equilibrium of any 2D isotropic linear elastic no–tension solid can

be stated in weak form as follows:





min
ρ1,ρ2

1

2

∫

Ω

D(ρ1, ρ2, θ)ε(u) ε(u) dΩ

s.t.

∫

Ω

D(ρ1, ρ2, θ)ε(u) ε(v) dΩ =

∫

Γt

t0 · v dΓ and u |Γu
= u0 ∀v,

θ | z̃1 = zI and z̃2 = zII ,

ρ1, ρ2 | σI ≤ 0 and σII ≤ 0,

0 < ρmin ≤ ρ1, ρ2 ≤ 1.

(1)

In Eq. (1), Ω is the domain occupied by the solid, Γt is its free boundary and Γu its fixed

boundary. t0 are prescribed tractions on Γt and u0 are prescribed displacements on Γu; body

forces are neglected. u is the displacement field and ε = [ε11 ε22 2ε12] is the array of the strain

components in a global Cartesian reference system Oz1z2. The real isotropic no–tension material

is replaced by an equivalent orthotropic material, with symmetry axes z̃1 and z̃2, coinciding with

the principal stress directions, zI and zII , at any point of the real solid. Indeed, from the optimal

design of anisotropic elastic solids (see e.g. [19, 21, 22]), it is well known that the symmetry

axes characterizing a maximum (or a minimum) stiffness layout are aligned to the principal stress

directions. Unlike the approach followed in [9], where this alignment was iteratively enforced within

the solution procedure, here the orientation field θ(z1, z2) is added to the unknown variables, and

the expected alignment of symmetry axes and principal stress directions spontaneously arises from

the minimization procedure.

The stress–strain law for the equivalent material is written as σ = Dε, where σ = [σ11 σ22 σ12]

and D can be expressed as

D = T(θ)D̃T(θ)T . (2)
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being D̃ the elasticity matrix in the reference system Oz̃1z̃2 and T a transformation matrix,

depending on the orientation θ(z1, z2). Assuming plane stress conditions, D̃ reads

D̃ =
1

1− ν̃12ν̃21




Ẽ1 ν̃12Ẽ2 0

ν̃21Ẽ1 Ẽ2 0

0 0 G̃12(1− ν̃12ν̃21)


 , (3)

where Ẽ1, Ẽ2 are the Young’s moduli of the equivalent material along z̃1 and z̃2, respectively, G̃12

is the in-plane shear modulus and ν̃12, ν̃21 are Poisson’s ratios. The equality ν̃12Ẽ2 = ν̃21Ẽ1 holds.

T can be written as

T =




cos2 θ sin2 θ −2 cos θ sin θ

sin2 θ cos2 θ 2 cos θ sin θ

cos θ sin θ − cos θ sin θ cos2 θ − sin2 θ


 . (4)

The nondimensional “material densities” ρ1 and ρ2 (∈ (0, 1]) define the decrease of the elastic

properties of the equivalent material with respect to those of the real material along z̃1 and z̃2

if one or both principal stresses are tensile, according to a generalization of the so–called SIMP

material model (see e.g.[6, 7]):

Ẽ1 = ρp1E, Ẽ2 = ρp2E, G̃12 = ρp1ρ
p
2

E

2(1 + ν)
, ν̃12 = ρp2ν, ν̃21 = ρp1ν. (5)

In Eq. (5), E and ν are the Young’s modulus and the Poisson’s ratio of the real isotropic material,

respectively, and p is a penalization parameter (usually taken equal to 3). The normalized densities

are given a strictly positive lower bound, ρmin, to avoid any singularity in the stiffness matrix of

the body, K, when a finite element discretization is adopted.
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3. Finite element analysis of no–tension structures

3.1. Direct analysis for any prescribed compatible load

The discretized form of the minimization problem (1) is implemented into a finite element

program through a procedure called Solve, which allows the analysis of a linear elastic no–tension

structure to be directly carried out for any prescribed load compatible with the mechanical behavior

of the material.

Algorithm 1

1: procedure Solve

2: j = 0, ψ(0) = 0, ∆ψ = ∞
3: Initialize variables: x1e = x2e = 0.5, te = π/2, ∀e
4: while ∆ψ > ∆ψtol do

5: j = j + 1
6: Solve K(x1,x2, t) U = F

7: Compute ψ(j) = 1
2
UT K(x1,x2, t) U

8: Evaluate ∆ψ = |ψ(j)− ψ(j − 1)|
9: Assign x̂ie, for i = 1, 2, such that:

10:

{
x̂ie = xie, if σe,i ≤ 0,
x̂ie = kxie, otherwise.

11: Compute ψ̂ = 1
2
UT K(x̂1, x̂2, t) U

12: Compute reduced sensitivities ∂ψ̂

13:





∂ψ̂

∂xie
=

1

2
UT

e

∂

∂xie
Ke(x̂1e, x̂2e, te) Ue, for i = 1, 2

∂ψ̂

∂te
=

1

2
UT

e

∂

∂te
Ke(x̂1e, x̂2e, te) Ue

14: Run MMA(ψ̂, ∂ψ̂) to update x1e, x2e, te
15: end while

16: Solve K(x1,x2, t) U = F

17: end procedure

The numerical method is detailed in Algorithm 1. The minimization unknowns x1e and x2e are

the material densities along the symmetry axes of the equivalent orthotropic material in any finite

element e, whereas te is the unknown orientation of these axes with respect to the global reference
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system. In the numerical applications shown in Sec. 4, which make use of 4–node quadrilateral

Serendipity finite elements, two different discretizations are used for the three sets of variables x1e,

x2e and te: an element–wise constant discretization, in which the variables are basically computed

at the centroid of each element, and a bi–linear scheme, in which the values of the variables are

computed at the four Gauss points of each element. For sake of illustration, the notation of

Algorithm 1 refers to the former case, since x1e, x2e and te are scalar variables. The extension

of the notation to the latter case is straightforwardly obtained introducing three arrays of four

unknowns each for the e−th finite element.

Ke denotes the stiffness matrix of any element, K is the assembled stiffness matrix of the

structure, symbolically expressed as K =
∑N

e=1Ke(x1e, x2e, te), x1, x2 and t are three arrays

collecting the unknown values of the minimization variables in all the elements, U is the array

of the unknown degrees of freedom, F is the array of the equivalent nodal forces, and k is a

nondimensional parameter defined hereafter.

At iteration j = 0, the minimization variables x1,x2 and t are given arbitrary starting values,

assigned by the user. The array storing the values of the strain energy ψ throughout the steps

of the minimization procedure is initialized, as well as the scalar quantity ∆ψ that records the

change in energy between two subsequent iterations (lines 2-3).

A main set of instructions is repeated within the loop of lines 4 to 15 to iteratively provide the

gradient–based minimizer, herein the Method of Moving Asymptotes MMA [24], with suitable

information on the objective function ψ and its sensitivities, until ∆ψ is less than a prescribed

tolerance ∆ψtol. At each iteration j, the stiffness matrix K(x1,x2, t), depending on the current

set of variables, is assembled and inverted to compute the current array of the unknown degrees

of freedom U and the relevant value of the elastic compliance ψ(j), see lines 6-7. The penalized

densities x̂1e and x̂2e are introduced (lines 9-10) for a straightforward computation of a modified

strain energy ψ̂, in which the terms related to any possible positive principal stress σe,i, i = I, II,
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are reduced by a parameter k < 1, herein k = 0.5. Providing the MMA with the reduced

objective function ψ̂ and the relevant sensitivities, ∂ψ̂/∂x1e, ∂ψ̂/∂x2e and ∂ψ̂/∂te, the gradient–

based minimizer updates the variables x1,x2 and t and prevents any distribution of stiff material

along the weak direction(s) of the no–tension material without enforcing the more demanding

constraints of Eq. (1.4), see [1]. It must be remarked that the computation of the derivatives of ψ̂

with respect to the minimization variables is straightforward. Indeed, as usually done in topology

optimization for minimum compliance problems, the sensitivity information can be computed

through the adjoint method [7] without the need for any additional inversion of the current stiffness

matrix, see line 13.

In case the stopping criterion ∆ψ ≤ ∆ψtol is met, the stiffness matrix K is assembled with

the optimal values of the minimization variables, and the displacement field solving the no-tension

elasticity problem is computed (line 16).

To work with the modified strain energy ψ̂, a switch from the original set x1e, x2e to the

penalized densities x̂1e and x̂2e is required, depending on the sign of the principal stresses σe,I and

σe,II at one or more points within the element. As the material symmetry axes of the orthotropic

material are aligned to the principal stress directions, denoting by σ̃ = [σI σII 0] the array of the

stress components evaluated in the material reference system, one has:

σ̃e = D̃(x1e, x2e)T(te)
T εe, (6)

where T(te) and D̃(x1e, x2e) can be derived from Eq.s (3–4), substituting the variable fields ρ1,

ρ2, θ with discrete unknowns defined either at the centroid or at the integration points of each

element.

It must be finally pointed out that most of the available numerical methods dealing with the

non–linear analysis of no–tension solids (e.g., masonry) make use of incremental and iterative

approaches. For any prescribed value of the applied load, Algorithm 1 solves the equilibrium
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through a one–shot minimization, i.e. an iterative non–incremental procedure. This procedure

is especially suited for the analysis of no–tension structures in earthquake-prone areas at the

Serviceability Limit State (SLS) or at the Damage Control Limit State (DCLS). For this class

of structures, the assessment of both equilibrium and admissibility of the displacement field with

respect to serviceability or damage constraints are requested for a prescribed value of the seismic

excitation.

3.2. Remarks

The numerical method implemented in Algorithm 1 solves a minimization problem according

to a formulation of topology optimization for minimum compliance. As many numerical proce-

dures that have been successfully adopted in the literature to cope with this class of problems,

the proposed approach is a gradient–based one, resorting to sequential convex programming and

the analytical computation of the sensitivities. At each iteration, through a dual method the

MMA solves a sequence of simpler approximate sub–problems, which are separable, convex and

constructed according to the sensitivity information at the current step, as well as to the iteration

history. This approach has been found to be effective in solving large scale problems, giving results

in agreement with those achieved through optimality criteria, see e.g. [8]. Readers are referred to

[9] for numerical investigations assessing the convergence of a similar optimization algorithm to

the analytical solution of benchmark no–tension problems.

As the objective function is non–convex, local minima might be found rather than the expected

global minimum. To overcome this numerical issue, a multi–start strategy can be adopted by

simply running procedure Solve with different starting guesses. This was done in the numerical

applications shown in Sec. 4, for which the same results were obtained starting the procedure with

different values of the minimization variables (x1e = x2e = ρmin, te = π or x1e = x2e = 1, te = 0,

in addition to the original assignment at line 3). Alternatively, local minima can be avoided by

adopting the global convergent version of the gradient–based minimizer (GCMMA) [25]: this
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version is based on conservative convex separable approximations of the objective function, for

which it is proved that the sequence of iteration points converges toward the set of Karush–Kuhn–

Tucker points. As shown in Sec. 4.1, convergence of procedure Solve needs for a limited number

of iterations, meaning that either strategy can be implemented to handle numerical simulations at

a reasonable computational cost.

The proposed approach is especially conceived to deal with bodies made of linear elastic no–

tension material undergoing small displacements and strains. In principle, a similar numerical

strategy could be applied to analyze structural elements made of no–compression materials, tenseg-

rity structures consisting of separate members in pure compression and pure tension, or no–tension

structures undergoing large displacements. In these applications, the “topology optimization prob-

lem” should be reformulated to accommodate geometrical nonlinearities, adding remarkable com-

plexity to the algorithm: the linear system that has to be solved when evaluating the objective

function (see line 6) should be replaced by a nonlinear system of equations, whereas the stiffness

matrix and the sensitivities of the problem (see line 13) would become harder to compute. Ref-

erence is also made to the gradient–based algorithm recently presented in [16] to deal with the

topology optimization of geometrically nonlinear structures.

Gradient–based approaches can be adopted in topology optimization if analytical sensitivities

of the design variables are straightforwardly available, as in the case considered herein (see line

13). Alternative gradient estimations are usually considered to be computationally too expensive,

because of to the typically high dimensionality of the problems addressed (see e.g. [8]). Many

efforts are being directed towards the development of heuristic methods specifically conceived to

deal with objective functions whose analytical sensitivities are not available or difficult to obtain

(see in particular [3]). Readers are also referred to [12] for an updated survey including the adoption

of heuristic methods to solve problems of structural and multidisciplinary topology optimization.
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3.3. Approximation of the collapse load

History plots for increasing values of the load multiplier(s) can be straightforwardly achieved

running independent analyses performed through the procedure Solve at different load steps.

Representing the behavior of a no–tension structure through a diagram relating the displacement

of a control point to the value of the multiplier of the live loads, one gets a monotonic curve ending

with a horizontal plateau. This corresponds to the activation of a mechanism, meaning that the

Collapse Limit State (CLS) has been reached.

Algorithm 2

1: procedure Collapse

2: j = 0, λ(j) = 0, kT (j) = ∞
3: while kT (j) > ktol do
4: Run Solve for λ(j) and compute u(j) and kT (j)
5: if j = 0 then

6: λ(j + 1) = λ0
7: j = j + 1
8: else

9: if Solve converged then

10: λ(j + 1) = λ(j) + ∆u0 · p0kT (j)
11: j = j + 1
12: else

13: λ(j) = (λ(j) + λ(j − 1))/2, kT (j) = ∞
14: ∆u0 = ∆u0/p0
15: end if

16: end if

17: end while

18: end procedure

In some instances, the entire incremental response of a no–tension structure under increasing

loads might not be required, as only the collapse load and the relevant failure mechanism are

of interest. European building codes do not provide any specific method to capture the failure

mechanisms of masonry buildings (see e.g. [13]). The Italian code adopts the approach originally
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presented in [14], which assumes deformation to be small at incipient collapse and implements

limit load analysis for no–tension materials.

The expected monotonic decrease in tangent stiffness and the non–incremental feature of the

algorithm Solve are both exploited in a procedure called Collapse, which estimates the collapse

load through the set of instructions detailed in Algorithm 2.

The iterative procedure is driven by the current slope of the monotonic load–displacement

curve, kT (j). The set of instructions at lines 4 to 16 is repeated until the current tangent stiffness

kT (j) falls below a prescribed threshold ktol ≈ 0, thus detecting the incipient collapse. At each

load step, this parameter can be straightforwardly computed through one inversion of the current

stiffness matrix and the subsequent evaluation of the displacement of the control point for any λ

through procedure Solve.

To start the analysis, the behavior of the structure under the dead loads only (j = 0) is

investigated. The loop at lines 4 to 16 is entered after initializing kT (j) at line 2 and computing

the solution for λ = 0, including the relevant displacement of the control point u(j) and the current

tangent stiffness kT (j), at line 4.

The subsequent iteration (j = 1) is accomplished for a user–defined initial load multiplier equal

to λ0, see lines 6-7. Once again, procedure Solve is used to solve equilibrium and compute the

current values of u(j) and kT (j) according to line 4.

At each step j ≥ 1, convergence of the procedure Solve is checked to assess the equilibrium

of the structure under the loads corresponding to the current multiplier λ(j), see line 9. If Solve

converges, the structure can bear an increased load, meaning that a further step can be defined

along with the relevant load multiplier λ (lines 10-11). The increment of the load multiplier is

computed as ∆u0 · p0kT (j), where ∆u0 is a user–defined displacement increment, p0 < 1 accounts

for the expected decrease in overall stiffness, and kT (j) works similarly to the generalized stiffness

parameter introduced in [26]. Conversely, if Solve does not converge, the bearing capacity of the
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no–tension structure has been exceeded and the j–th step must be repeated. A bi–section method

between the last converged load multiplier λ(j−1) and the current one is adopted to update λ(j),

whereas the assignment kT (j) = ∞ prevents the algorithm to stop if convergence is not achieved

(line 13). Also, the user–defined displacement increment ∆u0 is increased with the only aim of

speeding up convergence to the collapse load (line 14).

Depending on the outcome of the check at line 9, the subsequent call of procedure Solve

computes the structural response for an increased value of the load multiplier (step j +1) or for a

decreased one (repetition of step j due to loss of convergence in the previous run). The instructions

at lines 4 to 16 are iteratively repeated accounting for the expected monotonic decrease of the

load–displacement curve through the evolving tangent stiffness kT (j) and the possible update of

the user–defined parameter ∆u0.

It must be emphasized once more that, unlike conventional methods, in principle the above

procedure does not require the definition of the entire load–displacement curve to predict the

collapse load. Indeed, only few points of the curve can be computed by the algorithm Collapse

to capture incipient failure.

Finally, note that the proposed procedure predicts the collapse mechanisms of no–tension

structures assuming strains and displacements to be small. In Sec. 4.2 and 4.3 the results achieved

through the linear elastic no–tension model will be shown to be in full agreement with those derived

through conventional limit analysis applied to no–tension materials [17]. In its present form, the

proposed method cannot be used to predict the collapse load and mechanism(s) of structures

undergoing large displacements. A discussion was made in Sec. 3.2 about the possible extension

of the proposed numerical framework to the case of geometrically nonlinear structures.

13



(a) (b) (c)

Figure 1: Geometry and boundary conditions: Example 1(a), Example 2(b) and Example 3(c).

4. Numerical applications

4.1. Example 1. Rectangular panel

Consider a rectangular panel, of width L = 0.5 m, height H = 1 m and thickness th = 0.1 m,

see Figure 1(a). The mechanical parameters used in the simulations are E = 1, 000 MPa and

ν = 0.2. An evenly distributed vertical dead load q = 20 kN/m is applied along the upper side of

the panel, whereas an evenly distributed horizontal live load acts on the left side of the wall: its

intensity p increases with a multiplier λ and is expressed as p = λ qL/H .

A set of numerical simulations is preliminary performed with λ = 0.25 and λ = 0.35 to

investigate the convergence features of the adopted energy–based approach considering different

discretizations of the unknown fields. A control point is chosen at the midspan of the upper

side of the wall: its horizontal displacement is estimated for increasing values of the mesh size

parameter h, which is the length of the side of each of the square finite elements the adopted

discretization consists of. The coarsest mesh is made of 32 four–node finite elements, whereas 512

elements are used in the finest one. Two kinds of discretizations are adopted for the “normalized

material density” fields, ρ1 and ρ2, and for the orientation θ, as discussed in Sec. 3. Figure 2 shows

convergence curves for a centroid–based and for a Gauss point–based discretization at λ = 0.25
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Figure 2: Example 1. Convergence of the horizontal displacement of the control point for different assumptions on
the discretization of the material behavior: λ = 0.25(a) and λ = 0.35(b).

(Figure 2a) and λ = 0.35 (Figure 2b).

The diagrams in Figure 2 show that, irrespective of the value of the load multiplier λ, the

two discretizations predict the same asymptote as the element size decreases. For a given mesh

density, the Gauss point–based approximation is more accurate than the centroid–based one, but

the difference in terms of predicted displacements decreases as the mesh size parameter h increases.

Additionally, Figure 2(a) reports the convergence curve computed at λ = 0.25 assuming the

material to be linear elastic and isotropic, with the aim of providing a comparison with conventional

linear analyses adopting the same bi–linear discretization of the displacement field: the increase

in flexibility due to the no–tension assumption is apparent.

Referring to the case λ = 0.35, Figures 3(a) and 3(b) show the distribution of the principal

stresses assuming the material to be linear elastic or no–tension, respectively. Red (respectively,

blue) lines stand for tensile (resp., compressive) principal stresses. Only a reduced part of the

clamped edge bears the external loads because of the no–tension constraint. The reduction in

resistant section is accompanied by an increased deformability at the base of the wall (see the

deformation modes in Figure 4).
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(a) (b)

Figure 3: Example 1. Principal stress directions at the Gauss points in case of linear (a) and nonlinear (b) modeling
of the material (λ = 0.35).

Finally, Figure 5 shows history plots of the strain energy, that is, the objective function for

procedure Solve. The same number of iteration is approximately needed to achieve equilibrium

both with the Gauss point–based and with the centroid–based discretizations. It must be re-

marked, however, that the required CPU time is not the same, because of the different number of

minimization unknowns involved in the two schemes, and is definitely higher in the former case.

4.2. Example 2. In–plane loaded walls

The carrying capacity of the windowed panel shown in Figure 1(b) is sought. The values of

the geometrical parameters L1, L2 . . .H3 defining the structural element are listed in Table 1. The

thickness of brickwork is 0.35 m. The panel is supposed to consist of an isotropic no–tension

material, with a Young’s modulus E = 2, 500 MPa and a Poisson’s ratio ν = 0.2: these values are

appropriate, for instance, for solid brick masonry if anisotropy is neglected. As shown in Figure
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(a) (b)

Figure 4: Example 1. (Magnified) deformed shape in case of linear (a) and nonlinear (b) material modeling
(λ = 0.35).

L/H
L1 1.80 m
L2 1.20 m
L3 1.20 m
H1 3.00 m
H2 0.60 m
H3 3.00 m

Table 1: Example 2. Geometry of the windowed panel.

1(b), the upper side of the panel is acted upon by a vertical uniform pressure q = 15 kN/m,

representing the dead load due to the overtopping storeys. A horizontal live load p is applied

along the height of the lintel, and is expressed as:

p = λ q(L1 + L2 + L3)/H2.

The top–right corner of the windowed panel is taken as control point, and its horizontal displace-

ment is monitored to characterize the global behavior of the structure as λ increases.

A fixed–step algorithm is first adopted to assess the accuracy of procedure Solve in predicting
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Figure 5: Example 1. History plot of the strain energy for different interpolations of the properties of the equivalent
orthotropic material; λ = 0.35.

the collapse load of the structure. The minimization variables are computed at the centroid of each

element. Performing subsequent independent analyses with procedure Solve, assuming ∆λ = 0.01

35 steps are positively accomplished. The value of the load multiplier and the displacement of

the control point are both recorded at the end of each converged simulation. If Solve does not

convergence (herein for λ > 0.36), the relevant results are ignored and no additional load increment

is applied.

Figure 6 shows the load–displacement curve computed through the fixed–step algorithm, along

with the set of points found implementing the algorithm Collapse with the following setup:

λ0 = 0.1, ∆u0 = 3 mm, p0 = 0.5 and ktol = 0.005 mm−1. After computing the solution under

the dead load (j = 0) and at the initial fixed increment λ0 (j = 1), according to line 10 of

Algorithm 2 the load multiplier would attain the value λ(j=2) = 0.506 in the subsequent step, at

which no convergence is found. Hence, the step is repeated and the load multiplier is updated to

λ(j=2) = 0.303, following the bi–section criterion of line 13. Computing the progressive decrease

in the current tangent stiffness at each iteration, only five additional steps based on the updated

value of ∆u0 (see line 14) are needed to meet the stopping criterion: the approximate collapse load
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Figure 6: Example 2. Horizontal displacement of the top–right corner of the panel versus load multiplier λ: fixed–
step algorithm vs. proposed algorithm.

multiplier is λc = λ(j=7) = 0.353.

The effect of a different choice for the user–defined parameters is investigated in Figure 7,

comparing the load–displacement curve shown in Figure 6 with the results obtained by halving λ0

or ∆u0. In the former case, the same number of iterations is needed to predict the collapse load

with respect to the reference setup (λ0 = 0.1, ∆u0 = 3 mm). In the latter, less than the 20 steps

allow the plateau of the curve to be captured, versus the 35 increments required by the fixed–step

algorithm.

Figure 8(a) shows the distribution of the principal (compressive) stresses arising under the

vertical dead load only, that is at λj=0 = 0. Note the typical arch–like stress distribution in the

architrave, which originates non–trivial stress fluxes within the adjacent walls. At λj=1 = 0.10

the base of the lateral walls is still fully compressed (Figure 8(b)), whereas, at λj=3 = 0.303 their

resistant section is significantly reduced (see Figure 8(c)), with a dramatic decrease in the overall

stiffness.

The areas where both principal stresses are tensile basically behave as “void regions” [9], where

any positive semi–definite “cracking strain” can develop. Figure 8(c) shows that only small regions
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Figure 7: Example 2. Horizontal displacement of the top–right corner of the panel versus load multiplier λ: effect
of the values of the user–defined parameters λ0 and ∆u0 on the numerical load–displacement curve.

between the lintel and the lateral walls are stressed: this basically means that the lintel can rotate

with respect to the walls, around the two corners where inclined reactions are transmitted between

these elements. As the load multiplier increases, the extension of the stress–released regions within

the walls increases, with an additional drop in the overall stiffness.

Eventually, the solution shown in Figure 8(d) is attained at λj=7 = 0.354. Two more hinges

are formed at the lower right corners of the walls, thus allowing for the activation of a collapse

mechanism. The relevant (magnified) deformed geometry is shown in Figure 9(a). Keeping in

mind the stress plot of Figure 8(d), it is straightforward to approximate this deformation mode

with the rigid block mechanism sketched in Figure 9(b). Neglecting the elastic strains found in

the regions experiencing compressive stresses, the two walls (blocks 1 and 3) and the lintel (block

2) can be seen as three rigid bodies connected by four hinges: the windowed panel degenerates

into a partially constrained structure, i.e. a collapse mechanism. According to the literature, this

is a classical collapse mechanism for bearing walls connected by lintels [14].

The analytical collapse load multiplier λa of the rigid block mechanism in Figure 9(b) is com-

puted in Appendix A.1 by limit analysis, and is equal to 0.3545. This is in good agreement with
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(c) (d)

Figure 8: Example 2. Principal (compressive) stress directions at different values of the load multiplier: λ = 0 (a),
λ = 0.10 (b), λ = 0.303 (c), λc = 0.365 (d).

the approximated value given by the proposed numerical procedure, λc = λ(j=7) = 0.353.

The resistance of a masonry structure against horizontal actions can be increased by inserting

steel tie rods within the lintel and connecting the two piers at the same height. The tie has the

aim of preventing the failure mechanism presented in Figure 9(b). The strengthening effect of a

tie rod can be qualitatively modeled by applying a uniform pre–stress over the regions where the

end–plates would be located. To this purpose, an additional investigation is carried out on the

panel of Figure 1(b) including a compressive stress of 0.2 MPa applied at the top of both vertical

edges of the panel, over areas equal to H2 · th.
Figure 10(a) shows the distribution of the principal stresses in the reinforced panel under the
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(a) (b)

Figure 9: Example 2. (Magnified) computed deformed geometry at λc = 0.353 (a) vs. analytically computed
collapse mechanism (collapse load multiplier λa = 0.3545 (b)).

effect of the vertical dead load only. Whereas the lintel in the unreinforced architrave behaves like

an arch (Figure 8(a)), the applied pre–stress provides the lintel with a beam–like behavior, and no

significant horizontal reaction is transmitted to the ground. Figure 10(b) shows the compressive

stress fluxes at the last step of a numerical investigation implementing the updated boundary

conditions through the algorithm Collapse, at λc = 0.554. The applied pre–stress makes the

stress in the lintel and in the upper parts of the walls nearly uniform. Two main struts cross

the lateral walls diagonally, whereas the remaining parts are virtually unstressed. A hinge can

activate at the foot of each strut, as can be inferred by the shape of the (magnified) deformed

structure shown in Figure 11(a). Neglecting once again the elastic strain in the compressed regions,

a partially restrained structure consisting of mutually hinged rigid blocks can be identified (see

Figure 11(b)). Appendix A.2 provides the collapse load multiplier computed for this mechanism

by limit analysis (λa = 0.561), in good agreement with that predicted by algorithm Collapse

(λc = 0.554). The increase in terms of collapse load (around 50%) with respect to the unreinforced

solution is remarkable.

4.3. Example 3. Out–of–plane loaded wall

A rectangular panel of width L = 0.5 m, height H = 3 m and thickness th = 1 m is considered,

see Figure 1(c). It consists of a no–tension material with the same mechanical parameters used in
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(a) (b)

Figure 10: Example 2 with enforced pre–stress. Principal (compressive) stress directions at different values of the
load multiplier: λ = 0 (a), λc = 0.10(b).

(a) (b)

Figure 11: Example 2 with enforced pre–stress. (Magnified) computed deformed geometry for λc = 0.554 (a) vs.
theoretical collapse mechanism at the analytically computed collapse load multiplier λa = 0.561 (b).

the previous example. A uniform vertical dead load q = 60 kN/m is applied along the upper side

of the panel; the left side of the panel is loaded by a uniform pressure p = λ q/6, where λ is a load

multiplier. This configuration aims at simulating the out–of–plane behavior of a unit section of

any masonry wall experiencing seismic actions, as prescribed by technical codes. The base of the

panel is clamped to the ground, whereas storeys are expected to provide an effective horizontal

restraint along the whole upper side.

Figure 12 shows the approximated load–displacement curve computed through the algorithm

Collapse with λ0 = 0.1, ∆u0 = 3 mm, p0 = 0.5 and ktol = 0.005 mm−1, assuming the minimiza-
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Figure 12: Example 3. Horizontal displacement at half of the the height of the panel versus load multiplier λ.

tion variables to be constant within each element. Similarly to the previous examples, the solutions

under the dead load (j = 0) and at the first load increment λ0 (j = 1) are initially evaluated.

The tangent stiffness computed for j = 1 leads to the subsequent load step at λ(j=2) = 2.714,

at which no convergence is found. Hence, the step is repeated with a load multiplier reduced

to λ(j=2) = 1.407, according the bi–section criterion of line 13 in Algorithm 2. Computing at

each step the progressive decrease in tangent stiffness with the updated increment ∆u0 = 6 mm,

three additional steps are processed before convergence is lost again at λ(j=5) = 1.955. Updating

the load multiplier and doubling ∆u0 once more, the algorithm meets the stopping criterion and

approximates the collapse load at λc = λ(j=7) = 1.935.

Figure 13(a) shows the distribution of the principal (compressive) stresses at λj=0 = 0.10. The

panel is fully stressed, and a non–uniform reaction is found over the base. Figure 13(b) shows

the stress state at step j = 2, at which most of the lower part of the panel is “cracked”, whereas

approximately half of the midspan section is compressed. Figure 13(c) shows the principal stresses

computed at the estimated collapse multiplier. The flux of compressive stresses found in the lower

and in the central region of the panel is confined within a very limited part of the relevant sections,

meaning that two hinges are expected to activate for any additional infinitesimal increase in the
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(a) (b) (c)

Figure 13: Example 3. Principal (compressive) stress directions at different values of the load multiplier: λ = 0.10
(a), λ = 1.407 (b), λ = 1.935 (c).

live load (see the comments in Sec. 4.2).

The (magnified) deformed geometry of the panel at the estimated collapse load is shown in

Figure 14(a). Again, neglecting elastic strains, the panel can be replaced by a mechanism consisting

of two rigid blocks connected by an internal hinge (Figure 14(b)). The lower block is hinged to

the ground at A, whereas the upper block is supported at the top. The collapse load of this

mechanism is computed in Appendix A.3 by the upper bound theorem of limit analysis: the

location of the internal hinge B is varied along the height of the wall to minimize the kinematic

multiplier. This gives an analytical collapse multiplier λa = 1.943, which is well matched by that
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Figure 14: Example 3. (Magnified) computed deformed geometry at λc = 0.935 (a) vs. theoretical collapse
mechanism at the analytically computed collapse load multiplier λa = 1.943 (b).

computed numerically (λc = λ(j=7) = 1.935). Figure 14(b) shows the position of hinge B according

to the analytical computations, in good agreement with the findings of the numerical simulation

shown in Figure 14(a).

5. Conclusions

Following recent proposals from the literature addressing energy–based methods for the direct

analysis of linear elastic no–tension solids, a numerical method is presented to perform the analysis

of isotropic 2D masonry–like structures acted upon by monotonic loads and undergoing small

displacements and strains.

A key–point of energy–based methods is that they are able to solve the elastic equilibrium

of no–tension solids for any given load disregarding the previous load history. This has been

exploited in the formulation of a numerical scheme to predict the collapse behavior of no–tension

masonry–like structures without recovering the full load–displacement curve. In agreement with
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the assumptions of classical limit analysis [17] and the provisions of building codes, the deformation

of the considered masonry structures is assumed to be small even at incipient collapse.

The proposed algorithm correctly captures the in– and out–of–plane collapse mechanisms pre-

dicted by limit analysis applied to no–tension bodies, without any a–priori hypothesis regarding

the type of collapse mechanism or the position of the “plastic hinges” (Sec. 4.3). It can also take

the presence of reinforcing ties into account (Sec. 4.2).

Owing to the non–incremental nature of the one–shot energy–based procedure implemented

in Solve (Sec. 3), different choices for the parameters can be made in running the algorithm

Collapse (sec. 3.3) without any loss of robustness. For instance, the value of λ0 could be defined

so as to embed within the numerical procedure the assessment of the structure at the Serviceability

Limit State (SLS) or at the Damage Control Limit State (DCLS), whereas ∆u0 could be roughly

related to the accuracy requested in the definition of the plateau of the load–displacement curve.

Also, if the whole curve has to be numerically determined, parameter p0 can be further reduced

to add points in the initial part of the diagram.

As shown in Sec. 4.1, if a coarse mesh is adopted, the most accurate solution is obtained

computing the minimization variables at the four Gauss points of each finite element. As the size

of the elements decreases, a simpler approach in which the minimization unknowns are computed

only at the centroid of each element gives equally accurate results. The former version, which is

computationally more expensive, is preferable for analyses in which the evaluation of the displace-

ments and of the stresses in the structure under prescribed loads is required, in particular at the

SLS or at the DCLS. The latter version, which is computationally cheaper but equally reliable in

capturing the reduction in resistant section of the structural members, can be efficiently used to

detect the collapse mechanism and the collapse load multiplier of the structure.

In the continuation of the work, the extension of the proposed approach to the 3D case will be

dealt with, with the aim of analyzing massive and vaulted masonry structures. The simplification
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adopted so far, according to which masonry is macroscopically isotropic, will also be removed to

take elastic anisotropy into account.

Appendix A. Limit analysis computations

The specialization of Limit Analysis to no–tension structures has been extensively discussed

e.g. by Heyman [17]. According to this author, (i) deformations are assumed to be small at

incipient collapse, (ii) the material is assumed to be rigid–perfectly plastic, (iii) its compressive

strength is supposed to be unlimited, (iv) its tensile strength is neglected and (v) “tensile strains”

are supposed to be unbounded.

Limit Analysis is adopted herein to evaluate the bearing capacity of some of the no–tension

structures considered in Sec. 4. The collapse load is evaluated by a kinematic approach consid-

ering 1-degree-of-freedom mechanisms consisting of rotating rigid blocks. According to Heyman’s

assumptions, the internal virtual power vanishes and equilibrium of the partially constrained struc-

ture reads Ẇext = 0.

Appendix A.1. Example 2

The collapse load multiplier λa for the unreinforced windowed panel of Example 2 is herein

computed enforcing the equilibrium of the partially constrained structure made by three rigid

blocks, represented in Figure A.15, through the Principle of Virtual Power. The potentially critical

sections are assumed to be at the base of the panel and at the interfaces between lintel and lateral

walls.

Denote by Oi the instantaneous center of rotation (i.c.r.) of the i−th block (i = 1, 2, 3 – see

Figure A.15) and by ωi its instantaneous velocity. Blocks 1 and 3 undergo clockwise instantaneous

rotations, whereas block 2 rotates anticlockwise. Setting O1Bω1 = O2Bω2, one gets

ω2 =
H1L3

(L2 + L3)(H3 −H2)−H1L3
ω1. (A.1)
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Figure A.15: Example 2. Unreinforced windowed panel: kinematics for the analytical computation of the collapse
load multiplier.

Similarly, setting O2Cω2 = O3Cω3 and exploiting Eq. (A.1), one gets:

ω3 =
L2

L3

ω2 =
H1L2

(L2 + L3)(H3 −H2)−H1L3

ω1. (A.2)

The power of the external forces reads:

Ẇext = λqL ω1

(
H1 −

H2

2

)
− qL1 ω1

L1

2
− qL2 ω2

L2

2
− qL3 ω3

L3

2
, (A.3)

where L = L1 + L2 + L3. Setting Ẇext = 0 ∀ω1, replacing Eq.s (A.1–A.2) in Eq. (A.3) and

simplifying for ω1, the analytical expression of the collapse load multiplier is obtained:

λa =
1

L(2H1 −H2)

(
L2
1 −

H1L2L
2
3 +H1L

2
2L3

(L2 + L3)(H2 −H3) +H1L3

)
, (A.4)

which gives λa = 0.354 with the values of the geometrical parameters listed in Table 1.
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Appendix A.2. Example 2 (with pre–stress)

Figure A.16: Example 2. Pre–stressed windowed panel: kinematics for the computation of the collapse load
multiplier.

Similar calculations are now carried out to evaluate the collapse load multiplier λa for Example

2, when a pre–stress is applied to the architrave. The collapse mechanism of the structure is

supposed to consist of three rigid blocks, as shown in Figure A.16.

The i.c.r.s O1, O2 and O3 of the three blocks are shown in Figure A.16. The coordinates of O2

in a Cartesian reference system with origin at B are:

xO2 =
L1(L1 + L2)(H2 −H3)

(H1 −H2)L3 + (H2 −H3)L1

and yO2 =
(L1 + L2)(H2 −H3)(H1 −H2)

(H1 −H2)L3 + (H2 −H3)L1

. (A.5)

Blocks 1, 2 and 3 undergo clockwise instantaneous rotations with angular velocity ω1, ω2 and

ω3, respectively. The power of the external forces can be easily computed in terms of ω2. No

30



contribution is due to the self–balanced pre–stress forces. Equilibrium can be enforced as:

Ẇext = λqL ω2

(
yO2 +

H2

2

)
− qL ω2

(
xO2 −

L

2

)
= 0 ∀ω2, (A.6)

where L = L1 + L2 + L3. Substituting Eq. (A.5) in Eq. (A.6) and simplifying for ω2, the collapse

load multiplier is found:

λa =
2L1(H2 −H3)(L1 + L2)− L1(H2 −H3)L− L3(H1 −H2)L

H2L1(H2 −H3) +H2L3(H1 −H2) + 2(H1 −H2)(H2 −H3)(L1 + L2)
. (A.7)

This gives λa = 0.561 with the values of the geometrical parameters listed in Table 1.

Appendix A.3. Example 3

Figure A.17: Example 3. Kinematics for limit load analysis.

The collapse load multiplier λa for the transversely loaded panel of Example 3 is herein com-

puted enforcing the equilibrium of the partially constrained structure made by two rigid blocks
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represented in Figure A.17. Unlike the previous examples, the position (y) of the critical section

separating the two blocks, in which the internal hinge B activates, is not known a–priori.

The i.c.r.s O1 and O2 of the two blocks are shown in Figure A.17. Block 2 undergoes clockwise

instantaneous rotation with velocity ω2, whereas block 1 rotates anticlockwise with instantaneous

velocity ω1. Setting O1Bω1 = O2Bω2, one gets:

ω2 =
y

H − y
ω1. (A.8)

The power of the external forces reads:

Ẇext = λp0y ω1
y

2
+ λp0(H − y) ω2

H − y

2
− qL ω1

(
Ly

H − y
+
L

2

)
. (A.9)

Equilibrium of the partially constrained structure requires Ẇext = 0 ∀ω1. Substituting Eq. (A.8)

in Eq. (A.9) and simplifying for ω1, one gets:

λ =
qL2

p0H

H + y

Hy − y2
. (A.10)

The ordinate y of B in the real collapse mechanism minimizes the kinematic multiplier and is given

by ya = (
√
2− 1)H . Accordingly, the collapse multiplier is:

λa =
qL2

p0H2
(2
√
2 + 3). (A.11)

With the values of the geometrical parameters detailed in Section 4.3, one gets ya = 1.243 m and

λa = 1.943.

32



References

[1] Ananiev, S., 2005. On equivalence between optimality criteria and projected gradient methods

with application to topology optimization problem. Multibody System Dynamics 13(1), 25–38.

[2] Angelillo, M., Cardamone, L., Fortunato, F., 2010. A numerical model for masonry–like struc-

tures. Journal of the Mechanics of Materials and Structures 5(4), 583–615.

[3] Aulig, N., Menzel, S., Nutwell, E., Detwiler, D., 2014. Towards multi–objective topology opti-

mization of structures subject to crash and static load cases. Proceedings of The 4th Interna-

tional Conference on Engineering Optimization EngOpt2014, Lisbon, Portugal, 8–11 September

2014, 847-852.

[4] Baratta, A., Corbi, O., 2010. An approach to masonry structural analysis by the no-tension

assumption - Part I: Material modeling, theoretical setup, and closed form solutions. Applied

Mechanics Reviews 63(4), 040802.

[5] Baratta, A., Corbi, O., 2010. An approach to masonry structural analysis by the no-tension

assumption - Part II: Load singularities, numerical implementation and applications. Applied

Mechanics Reviews 63(4), 040803.

[6] Bendsøe, M., Kikuchi, N., 1988. Generating optimal topologies in structural design using a

homogenization method. Computer Methods in Applied Mechanics and Engineering 71, 197–

224.

[7] Bendsøe, M., Sigmund. O., 1999. Material interpolation schemes in topology optimization.

Archives of Applied Mechanics 69, 635–654.

[8] Bendsøe, M.P., Sigmund, O., 2003. Topology Optimization - Theory, Methods and Applica-

tions. Springer, Berlin.

33



[9] Bruggi, M., 2014. Finite element analysis of no–tension structures as a topology optimization

problem. Structural and Multidisciplinary Optimization 50(6), 957–973.

[10] Bruggi, M., Milani, G., Taliercio, A. 2013. Design of the optimal fiber–reinforcement for

masonry structures via topology optimization. International Journal of Solids and Structures

50(13), 2087–2106.

[11] Cuomo, M., Ventura, G., 2000. Complementary energy formulation of no tension masonry–like

solids. Computer Methods in Applied Mechanics and Engineering 189(1), 313–339.

[12] Deaton, J., Grandhi, R., 2014. A survey of structural and multidisciplinary continuum topol-

ogy optimization: post 2000. Structural and Multidisciplinary Optimization 49(1), 1–38.

[13] Magenes, G., Penna, A., 2009. Existing masonry buildings: general code issues and methods

of analysis and assessment. Proceedings of the Workshop Eurocode 8: perspectives from the

Italian Standpoint, Naples, Italy, 3 April 2009, 185-198.

[14] D’Ayala, D., Speranza, E., 2003. Definition of Collapse Mechanisms and Seismic Vulnerability

of Historic Masonry Buildings. Earthquake Spectra, 19(3), 479–509.

[15] Del Piero, G., 1989. Constitutive equation and compatibility of the external loads for linear

elastic masonry-like materials. Meccanica, 24(3), 150–162.

[16] Gomes, F.A.M., Senne, T.A., 2014. An algorithm for the topology optimization of geometri-

cally nonlinear structures. International Journal for Numerical Methods in Engineering 99(6),

391–409.

[17] Heyman, J., 1966. The stone skeleton. International Journal of Solids and Structures 2, 249–

279.

34



[18] Lourenço, P.B., Rots, J., 1997. A multi–surface interface model for the analysis of masonry

structures. ASCE Journal of Engineering Mechanics 123(7), 660–668.

[19] Pedersen N., 1989. On optimal orientation of orthotropic materials. Structural Optimization

1, 101–106.
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