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Abstract—This paper describes some evidence of fractal order
features in wind speed time series recorded at different observa-
tion stations both in USA and in Italy. Analysis were performed by
using mono-fractal, multi-fractal and power spectra approaches.
Results show that the average value of the box dimension for
daily and hourly mean wind speed is D = 1.19 and D = 1.41
respectively, thus indicating that this kind of time series are
fractal. The estimated average value of the Hurst exponent is
H = 0.81 and H = 0.75 for daily and hourly time series
respectively. From these Hurst exponents it is possible to infer
the persistent behavior of wind speed. Furthermore, multi-fractal
analysis shows that wind speed exhibits a bell-like shape spectrum
with average width ∆α = 0.47. Power spectra analysis has
pointed out that wind speed time series behave as 1/fβ noise with
average value of the β exponent of 0.46 and 1.37 for daily mean
and hourly mean time series respectively. These latter results can
be interpreted by saying that wind speed time series are Brown
noise like.

I. INTRODUCTION

As widely pointed out by several authors, wind speed is an
important resource of renewable energy and a lot of effort has
been devoted to study short term prediction models based on
time series recorded at different meteo stations. A review on
30 years of history of the wind power short-term prediction
was reported in [1], while a more recent and comprehensive
review can be found in [2]. Wind models are classified into
two broad classes, depending on the fact that a Numerical
Weather Prediction model (NWP) is involved or not. Usually
models that include NWP are referred to as physical models,
while models of the other class are referred to as statistical
or time series approaches. Models that make use of NWP
are quite complex and considered for long time horizons,
while time series approach are more appropriate for short
time horizons (less then 24 hours), at specific points. This
latter kind of models can be very useful for forecasting the
production of wind farms, since the conventional power plants
in the electric network require a prediction horizon of 3 to
10 hours, depending on the size and type of production units,
to be optimally managed. Despite this great interest, to our
knowledge, little effort has been devoted to understanding
the deep nature of wind speed time series. Recent papers
(see for instance [3]) pointed out that wind speed time series
exhibits fractal behaviors. Furthermore [4] presented some
results concerning multifractal analysis of wind speed time
series. In this paper we investigate the nature of wind speed
time series by using several approaches ranging from fractal
and multifractal analysis to power spectrum analysis.

II. SOME BACKGROUND ABOUT FRACTAL AND SPECTRAL
ANALYSIS

Fractals are typically self-similar patterns, where self-
similar means they are ”the same from near as from far” [5].
Strogatz in his book about nonlinear dynamics and chaos [6]
describes fractals as complex geometric shapes with fine struc-
ture at arbitrarily small scales. In simple words, if we magnify
a tiny part of a fractal, we will see features reminiscent of
the whole. Sometimes the similarity is exact but more often
it is only approximate or statistical. When similarity is exact,
they are said to be ”scale-free”. Formally, a time series x(t)
is scale invariant when x(st) = s−Dx(t), where the power
index D is the fractal dimension, which usually exceeds its
topological dimension. In other terms, while a time series is a
line from the topological point of view (i.e. 1-dimensional), it
tends to be be more similar to a surface from the fractal point
of view, being its dimension a number between 1 and 2. A
practical interpretation of the fractal dimension of a time series
is that it reflects the irregularity degree of observed data. The
scale-free feature may be interpreted in the sense that when
the variable s zooms in or out λ times, then the function is
enlarged or reduced λ−D times, while the shape and features of
the original function are leaved unchanged. Particular kinds of
time series, originated by complex nonlinear dynamic systems,
such as the geophysical ones, can be sometimes conveniently
characterized as fractal objects[7]. If the fractal dimension does
not change with scale, such kind of fractal is claimed as a
mono-fractal or also as single-scale, otherwise it is referred
to as multi-fractal. The fractal dimension D obtained by the
box counting approach and the Hurst index H can measure
the single scale fractal characteristic effectively.

A. Mono-fractal time series analysis

Roughly speaking mono-fractal analysis of a given time
series consists in computing its fractal dimension D by using
one of several methods proposed in literature. To this purpose,
it is to be observed that while the Hausdorff dimension,
based on covering the time series by using small circles of
radius ε, has a rigorous mathematical definition, it is not
practical from the computation point of view. Thus usually
the Hausdorff dimension is substituted by the so-called box
dimension defined as

D = − lim
ε→0

logNε
logε

(1)

where ε is a small square lattice with side ε and Nε is the
number of grids needed to cover the time series. In order



to compute the box dimension several approaches have been
proposed in the literature such as [8] [9]. A useful approach
to evaluate the box dimension D of a given time series is to
observe that if the relation between Nε and ε is a power law
of the type

Nε ∝ ε−D (2)

then by taking the log of both members in expression (2) we
have

logNε = logC −Dlogε (3)

which represents a straight line in a log-log diagram, drawn in
the plane Nε versus ε. The angular coefficient of this line is
D while C is a constant. Thus in order to estimate D it will
be enough to approximate the curve logNε versus logε with a
regression line by using the traditional least square approach.

Another useful strategy to analyze the mono-fractal nature
of time series consists in evaluating the Hurst exponent,
originally developed by the hydrologist H.E. Hurst. Later on
Mandelbrot, the pioneer of fractal geometry, recognized that
the Hurst exponent can be related to the fractal dimension of
a time series by the simple expression D = 2−H [5]. One of
best known method to estimate the Hurst exponent of a time
series is probably the R/S analysis proposed by [10] which is
summarized below. For a given time series xi, i = 1, 2, ..., N ,
consider its first n ≤ N values and compute the average value

〈x〉 =
1

n

n∑
i=1

xi (4)

and the standard deviation

S =

√√√√ 1

n

n∑
i=1

(xi − 〈x〉)2 (5)

The so-called (R/S)n statistic is defined as

(R/S)n =
1

S
[Maxn

n∑
i=1

(xi−〈x〉)−Minn

n∑
i=1

(xi−〈x〉)] (6)

One of the achievements of the R/S analysis is that the ratio
(R/S)n tends to CnH as n→∞, being C a constant and H
the Hurst exponent. Thus, since ln(R/S)n = lnC +Hln(n),
by approximating the ln(R/S)n versus ln(n) graph by a sim-
ple regression line, it is possible to estimate H by evaluating its
slope. However, others authors recognized that the original R/S
analysis may show some problem when the considered time
series is not large enough and proposed some improvements.
In this paper we consider the procedure developed by [11],
who also performs the so-called corrected Empirical and
Theoretical R/S analysis. Practical examples will be shown in
section III. To conclude this short introduction about the Hurst
exponent, we remind here that it is used as a measure of long
term memory of time series. It relates to the autocorrelations
of the time series, and the rate at which this decreases as the
lag between pairs of values increases. A value H in the range
0.5 < H < 1 indicates a time series with long- term positive
autocorrelation, meaning both that a high value in the series
will probably be followed by another high value and that the
values a long time into the future will also tend to be high.
A value in the range 0 < H < 0.5 indicates a time series
with long term switching between high and low values in

adjacent pairs, meaning that a single high value will probably
be followed by a low value and that the value after will tend
to be high, with this tendency to switch between high and low
values lasting a long time into the future. Finally, a value of
H = 0.5 can indicate a completely uncorrelated series.

B. Multi-fractal time series analysis

If the fractal dimension does not change with scale, the
time series is said be a single scale fractal, while if the fractal
dimension varies with scale, i.e. as a function of s, this type
of fractal is referred to as multi-fractal. For instance, a given
time series could exhibits long term correlation at small scales
s� sx and another type or even the absence of correlation at
larger scale s� sx. In other cases, the scaling behavior could
be more complex. One of the techniques proposed in literature
to perform the multi-fractal analysis of time series is the Multi-
Fractal Detrended Fluctuation Analysis (MF-DFA) developed
by [12], which is the extension of the detrended fluctuation
analysis (DFA) originally proposed by [13]. Such a kind of
analysis has been successful applied in the field of biomedical
signals by several authors, see [14] for a review of the subject.
Furthermore [14] implemented also a useful Matlab version of
the code to perform MF-DFA, considered in this paper.
Given a time series xi of lenght N with compact support, i.e.
xi = 0 for an insignificant fraction of values only, the MF-DFA
consists of the following steps as described in [12].

• Step 1: Determine the profile

Y (i) ≡
i∑

k=1

[xk − 〈x〉], i = 1, ..., N. (7)

where again 〈x〉 represents the mean of given time
series.

• Step 2: Divide the profile Y (i) into Ns ≡ int(N/s)
non overlapping segments of equal length s, starting
from the leftmost sample (i.e i = 1). In order not to
disregards any sample of the time series, due to the
fact that int(N/s) ≤ (N/s), the original time series
is divided once again, starting from the rightmost
sample. Thereby, in total 2Ns segments are obtained.

• Step 3: Calculate the local trend for each of the 2Ns
segments by a least square fit of the series and deter-
mine the variance for each segment ν, ν = 1, ..., Ns
by using the formula:

F 2(s, ν) ≡ 1

s

s∑
i=1

{Y [(ν − 1)s+ i]− yν(i)}2 (8)

and for ν, ν = Ns + 1, ..., 2Ns by using the formula:

F 2(s, ν) ≡ 1

s

s∑
i=1

{Y [N−(ν−Ns)s+i]−yν(i)}2 (9)

In expressions (8) and (9), yν represents the fitting
polynomial for segment ν. Such a fitting can be
performed by using polynomials of various order m.

• Step 4: Average over all segments in order to obtain
the q-order fluctuation function expressed by

Fq(s) ≡ {
1

2Ns

2Ns∑
ν=1

[F 2(s, ν)]
q
2 }

1
q (10)



where the variable q can assume any real value, except
zero. For q = 2 the MF-DFA reduces to the standard
DFA. By simple calculations it can be realized that
Fq(s) is defined only for s ≥ m+ 2.

• Determine the scaling behavior of the fluctuation
function by analyzing the log-log plots of Fq(s) versus
s for each value of q. If a given series xk is long-range
power law correlated, Fq increases for large values of
s, as a power law, i.e. as represented by the following
expression

Fq(s) ∼ sh(q) (11)

In general, the exponent h(q) depends on q. Since for sta-
tionary time series h(2) is identical to the Hurst exponent,
it has been referred to as the generalized Hurst exponent.
For monofractal time series with compact support, h(q) is
independent of q, since the scaling behavior of the variances
F 2(s, ν) is identical for all segments ν, and the averaging
procedure in Equation (10) will give identical scaling behavior
for all values of q. Only if small and large fluctuations scale
differently, there will be a significant dependence of h(q)
on q. If we consider positive values of q, the segments ν
with large variance F 2(s, ν) (i. e. large deviations from the
corresponding fit) will dominate the average Fq(s). Thus, for
positive values of q, h(q) describes the scaling behavior of the
segments with large fluctuations. Usually the large fluctuations
are characterized by a smaller scaling exponent h(q) for
multifractal series. On the contrary, for negative values of q,
the segments with small variance F 2(s, ν) will dominate the
average Fq(s). Hence, for negative values of q, h(q) describes
the scaling behavior of the segments with small fluctuations,
which are usually characterized by a larger scaling exponent.
In [12] it has also been discussed the relation between the MF-
DFA and the standard DFA in the case of stationary time series.
In particular, it has been established the relation between the
classical multifractal standard scaling exponent τ(q) and the
generalized Hurst exponent as expressed by the formula:

τ(q) = qh(q)− 1 (12)

It is also to be observed that the generalized Hurst exponent
h(q) is different from the generalized multifractal dimension
D(q) that is sometimes considered instead of τ(q). Indeed
D(q) is expressed as

D(q) =
τ(q)

q − 1
=
qh(q)− 1

q − 1
(13)

thus it is possible to observe that while h(q) is independent
of q for monofractal time series with compact support, D(q)
depends on q.
Another way to characterize a multifractal series is to consider
the singularity spectrum f(α), that is related to τ(q) via the
Legendre transform

α = τ ′(q)
f(α) = qα− τ(q)

(14)

where f(α) is the so-called multi-fractal spectrum.

If the observed time series is a single scale fractal series,
the function f(α) is a constant. Otherwise, if the time series
is multi-fractal, it usually exhibits a bell-like shape. The larger
α values reflect the features of small range, while the small α

reflect the feature of large range.
In order to characterize the multifractal spectrum, the width
of the spectrum is defined as ∆α = αmax − αmin and the
corresponding deviation of fractal dimension ∆f = f(αmin)−
f(αmax). The width of the spectrum ∆α indicates the non
uniform degree of measure distribution. Generally speaking,
the larger ∆α indicate the more heterogeneous distribution
while the smaller ∆α indicates the more uniformly distributed
fractal region.
fmax and fmin can describe the fractal dimension of the
subsets, when the measurement values attain their minimum
and maximum values respectively. Furthermore since f ′(α) =
q, we have that the the maximum f value, say fmax, is
obtained for q = 0, and thus from equation (14) it results
that fmax = τ(0). Indicating as df = τ(0), for the subsets
f(α) < fmax all their fractal dimensions are smaller then df .
Since ∆f may be either positive or negative, we have the
following cases:

• ∆f > 0. In this case the largest subset is greater than
the minimal one in terms of probability measures and
the multifractal spectrum shows a left hook shape.

• ∆f < 0. In this case the largest subset is smaller than
the minimal one and the multifractal spectrum shows
a right hook shape.

C. Power spectra analysis

Power spectrum analysis has been considered to analyze
fractal time series since long time ago [15]. The power
spectral density function P (f) shows the strength of the energy
variations as a function of frequency. It is possible to obtain
energy within a specific frequency range by integrating P (f)
within that frequency range. Computation of P (f) can be done
directly by the well-known FFT algorithm or by computing
the Fourier transform of the autocorrelation function. When a
power spectrum density P (f) shows a noise behavior without
an eminent peak, it is naturally approximated to follow a power
law spectrum. One of the peculiarity of several geophysical
signals is that they exhibits the known 1/fβ noise features.
Roughly speaking a 1/fβ noise has three main features:

• It has an autocorrelation that decays so slowly that its
sum does not converge to a finite number. Specifically,
the correlation C(k) is given by a power law function,
C(k) = |k|−γ , with γ between 0 and 1, k being
the lag. This means that the process is long-range
dependent.

• The loglog power spectrum of a 1/fβ process is linear
with slope β, where β is usually taken to range from
β = 0.5 to β = 1.5. Note that a white noise time series
has a slope of β = 0, due to the fact that its energy
is equally distributed for all frequencies and thus the
power spectrum is flat, while a random walk (i.e.
differences between consecutive samples represents a
white noise) shows a slope of β = 2.

• A third feature of a 1/fβ process is that it is self-
similar, i.e. the statistical properties of the time series
are the same regardless of the scale of measurement,
and hence the process lacks a characteristic time scale.



Fig. 1. Estimation of the box dimension for daily (upper) and hourly (lower)
wind speed recorded at Aberdeen.

Wind speed time series exhibits similar kind of features, as it
will be discussed in section III.

III. WIND SPEED ANALYSIS

The data sets considered in this paper consist of wind
speed time series recorded in different geographic areas of
both Italy and USA. Data recorded in Italy consists of time
series provided the Politecnico di Milano and recorded in
the city of Como and by the ARPA Piemonte, recorded at
Caselle (Torino). Data recorded at Como are sampled with 5
minutes sampling time while data recorded at Caselle have
been provided as daily mean values only. Wind speed time
series recorded in USA have been provided by the Solar Radi-
ation Monitoring Laboratory of the University of Oregon and
specifically recorded at the stations referred to as Aberdeen,
Parma, Picabo and Twinfalls, located in Idaho (USA). While
the Aberdeen data sets have been provided with 10 minutes
sampling time, the remaining data set has been provided as
daily mean values only.

A. Fractal analysis of wind speed time series

As described in section II, fractal analysis of time series
essentially consists in computing the fractal dimension D. This
can be done directly by using the box counting algorithm or
by using the relation D = 2−H , after estimation of the Hurst
exponent H . In this paper, both strategies have been considered
in order to have independent estimations. As an example, the
box dimension D computed for both daily and hourly wind
speed time series recorded at Aberdeen from 2000 to 2012 is
shown in Figure 1.

In more detail, Figure 1 shows the log-log graph
of Nε versus the size ε for the considered time se-
ries and the computed regression line; the slope repre-
sents the estimated fractal dimension. In this paper to

TABLE I. FRACTAL DIMENSION D AND HURST EXPONENT H FOR
DAILY MEAN WIND SPEED.

Station D H
Aberdeen 1.26 0.73
Caselle 1.22 0.82
Como 1.06 0.90
Parma 1.22 0.76
Picabo 1.24 0.72

TwinFalls 1.14 0.93

perform D estimation the box counting algorithm coded
by B. Flemisch, IANS, University of Stuttgart, available
from http://www.mathworks.it/matlabcentral/
has been considered. In the particular example, the estimated
box counting dimension, using a number of steps equal to 10,
was (D = 1.26) and (D = 1.36) for daily and hourly mean
wind speed respectively.

An example of estimation of the Hurst exponent by using
the corrected Empirical and Theoretical (R/S) analysis (see
[11] for details) to both daily and hourly wind speed time
series recorded at Aberdeen is shown in Figure 2.

Fig. 2. Estimation of the Hurst exponent by using the Empirical and corrected
Theoretical (R/S) analysis for daily and hourly mean wind speed recorded at
Aberdeen.

Estimated values for D and H for all considered recording
stations are summarized in Table I and II for daily and hourly
time series respectively.

From Table I it is possible to observe that the daily mean
wind speed time series exhibits an average fractal dimension
of about 1.19 while the average value of the Hurst exponent
is about 0.81. Thus the relation D = 2−H is experimentally
verified. Table II shows that, at hourly scale, the average
value for the box dimension is about D = 1.41 which means
simply that hourly mean time series are more irregular than
the corresponding daily time series. However, in this case the
relation D = 2−H is met with lower approximation, possibly
due to the fact that only two recording stations with hourly



TABLE II. FRACTAL DIMENSION D AND HURST EXPONENT H FOR
HOURLY MEAN WIND SPEED.

Station D H
Aberdeen (hourly) 1.36 0.73

Como (hourly) 1.46 0.78

Fig. 3. MF-DFA analysis performed on daily mean wind speed recorded at
Aberdeen from 2000 to 2012.

time step were considered for the estimation.

It is to be observed that time series have been recorded
in different areas of both Italy and USA and thus it is
reasonable to expect that similar results can be obtained for
others geographical situations. Furthermore, since the values
estimated for the H exponent are in the range 0.5 < H < 1
for all considered recording stations and time scales it is
possible to conclude that wind speed time series are long-term
positively correlated. In other words, a high value in the wind
speed series will probably be followed by another high value
and that the values a long time into the future will also tend
to be high. Similarly it will occur for low wind speed values.

B. Results of MF-DFA analysis

For brevity reasons, we will detail results of MF-DFA
analysis performed on daily average time series at Aberdeen
only. Analysis was carried out by using the MATLAB tool
developed by [14]. The output of the MF-DFA analysis for
Aberdeen is shown in Figure 3, while for all stations is
summarized in Table III.

The upper-leftmost Figure 3 shows the log-log plot of
the scaling function Fq(s) versus the scale s for various
values of the q parameter. First of all it is to be observed
that these trends are well approximated by straight lines, and
this is decisive to say that the considered data set is scale
invariant and therefore has fractal behavior. The slope of the
regression line for a given value q represents the generalized
Hurst exponent h(q). Another interesting aspect is that the
regression lines differ from each other for various values of
the q order, thus representing a further element in favor of
the hypothesis of multi-fractal nature of the considered data
set. Indeed, if the regression lines were superimposed to each
other for various q then the conclusion would be that the data
set has a mono-fractal behavior. The upper-rightmost Figure
3 shows the generalized Hurst exponent h(q) versus q. For
positive values of q, h(q) describes the scaling behavior of the

TABLE III. MULTIFRACTAL FEATURES OF DAILY WIND SPEED DATA
FOR EACH OBSERVATION STATION.

station ∆α ∆f df h(2)
Aberdeen 0.39 0.20 1 0.80
Caselle 0.48 -0.07 1 0.85
Como 0.44 0.13 1 0.85
Parma 0.52 0.28 1 0.86
Picabo 0.59 -0.10 1 0.83

Twinfalls 0.42 0.20 1 0.92

Fig. 4. Power spectra of daily and hourly mean wind speed recorded at
Aberdeen.

segments with large fluctuations while for negative values of
q, h(q) describes the scaling behavior of the segments with
small fluctuations. The lower-leftmost Figure 3 represents the
mass exponent τ(q) versus q and finally the lower-rightmost
Figure 3 represents the multifractal spectrum for the wind
speed recorded at Aberdeen.

Table III shows that daily mean time series have an average
width of the multifractal spectra of ∆α = 0.47. This kind
of analysis indicates a mean value of the Hurst exponent
H = h(2) = 0.85 which is a bit higher then the one obtained
through the mono-fractal analysis (H = 0.81), but in essence
it confirms the validity of results shown in the previous section
III-A,

C. Results of power spectral analysis

The power spectra of wind speed recorded at Aberdeen at
hourly and daily time scale and the corresponding regression
lines are reported in Figure 4. It is possible to see that the log-
log graphics are well approximated by power law. Furthermore
it can be seen that the slope β of the regression line depends
on the time scale, being lower for the daily mean time series
with respect to the hourly mean. β values for all considered
time series and the corresponding least square fitting standard
error, βerror, are reported in Table IV and V for daily and
hourly time series respectively. It is possible to observe that
the average slope of power spectra assumes the value of about
0.46 and 1.37 at daily and hourly scale respectively.

As an example in Figure 5 the autocorrelation functions
and approximated decaying laws for both daily and hourly



TABLE IV. SLOPE OF THE POWER SPECTRUM AND CORRESPONDING
LEAST SQUARE FITTING STANDARD ERROR COMPUTED FOR DAILY MEAN

TIME SERIES.

station β βerror

Aberdeen 0.48 +/- 0.03
Caselle 0.44 +/- 0.03
Como 0.61 +/- 0.05
Parma 0.49 +/- 0.03
Picabo 0.40 +/- 0.03

Twinfalls 0.34 +/- 0.05

TABLE V. SLOPE OF THE POWER SPECTRUM AND CORRESPONDING
ERROR COMPUTED FOR HOURLY MEAN TIME SERIES.

station β βerror

Aberdeen 1.48 +/- 0.01
Como 1.26 +/- 0.01

mean wind speed at Aberdeen are shown. It is possible to see
that at daily scale the autocorrelation of wind speed decays
approximately as C(k) = |k|−0.8 while at hourly time scale
as C(k) = |k|−0.5.

Fig. 5. Autocorrelation for hourly (red line) and daily (blue line) mean wind
speed recorded ad Aberdeen. The cyan and red lines represent the |k|−0.8

and |k|−0.5 decaying laws, respectively.

In summary, results of the spectral analysis show that wind
speed can be classified as a Brown 1/f noise. In particular
at daily time scale wind speed looks quite similar to a white
noise since its correlation function reaches a value of about 0.4
after lag 1, while at hourly time scale it keeps some degree of
correlation until lag 6.

IV. CONCLUSION

In this paper we have performed a fractal, multi-fractal
and power spectra analysis of wind speed time series recorded
at different meteorological stations. As a general comment,
we can affirm that the fractal behavior of considered time
series emerges clearly from all the approaches. Indeed key
parameters of fractal analysis has been confirmed by several
independent techniques. In more detail

• The fractal analysis shows that daily and hourly mean
wind speed time series exhibit an average value of
the box dimension of D = 1.19 and D = 1.41
respectively, while the estimated average value of
the Hurst exponent is H = 0.81 and H = 0.75
respectively, which allow to quantifying the degree of
persistency in the behavior of both daily and hourly
mean wind speed.

• The multi-fractal analysis further confirms the frac-
tal behavior and shows some features of the fractal
spectra which exhibits a classical bell-like shape with
average width ∆α = 0.47.

• The power spectrum analysis points out that the con-
sidered time series behave as a 1/fβ noise character-
ized by slope β = 0.46 and β = 1.37 for daily mean
and hourly mean wind speed time series, respectively.
In other terms it is possible to say that wind speed
time series are Brown noise like.

Since the data were recorded in different geographical areas
it may be reasonable to assume that the validity of such
values could be extended. However, this aspect requires further
investigations. Results of the performed analysis may be useful
for modeling purposes. Since wind speed time series have been
demonstrated to be low dimensional chaotic, it may be helpful
to consider specific non linear modeling strategies.
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