
Virtual Factory Manager

Marco Sacco
1
, Giovanni Dal Maso

2
, Ferdinando Milella

3
, Paolo Pedrazzoli

4
,

Diego Rovere
4
, Walter Terkaj

1

1 ITIA-CNR, Institute of Industrial Technologies and Automation, National Research

Council, via Bassini, 15 - 20133 Milano, Italy

{marco.sacco, walter.terkaj}@itia.cnr.it
2 Technology Transfer System S.r.l., via Pacini 15, 20131 Milano, Italy

dalmaso@ttsnetwork.com
3SimX Ltd., Furness House, Salford Quays, M50 3XA, Manchester, UK

f.milella@simx.co.uk
4ICIMSI, Institute of Computer Integrated Manufacturing for Sustainable Innovation,

Galleria 2, Manno, Switzerland

{paolo.pedrazzoli, diego.rovere}@icimsi.ch

Abstract. The current challenges in manufacturing engineering are the

integration of the product/process/factory worlds (data and tools) and the

synchronization of their lifecycles. Major ICT players already offer all-

comprehensive Product Lifecycle Management suites supporting most of the

processes. However, they do not offer all the required functionalities and they

lack of interoperability. An answer will be given by the development of a

Virtual Factory Framework (VFF): an integrated virtual environment that

supports factory processes along all the phases of its lifecycle. This paper will

focus on the Virtual Factory Manager (VFM) that acts as a server supporting

the I/O communications within the framework for the software tools needing to

access its data repository. The VFM will ensure data consistency and avoid data

loss or corruption while different modules access/modify partial areas of the

data repository at different times. Finally, an industrial case study will show the

potentiality of the VFM.

Keywords: Virtual Factory, Interoperability, Reference Model

1 Introduction

Manufacturing has to cope with a complex and evolving market environment. While

the world crisis breaks the balance between demand and production, the global market

pushes for a continuous change. Several critical aspects related to the rapid

prototyping of factories have to be addressed. It is critical to provide sufficient

product variety to meet customer requirements, business needs and technical

advancements [1], while maintaining economies of scale and scope within the

manufacturing processes [2]. Therefore, the current challenge in manufacturing

engineering consists in the innovative integration of the product, process and factory

2

worlds and the related data, aiming at synchronizing their lifecycles [3]. This

synchronization can be empowered by digital technologies, as it is shown both by

industrial practice and academic scientific research. Indeed, the topic of Digital and

Virtual Factory [4, 5, 6, 7] have been addressed by several research projects, such as

METNET, SPAS, MANUVAR, EMI, EMERALS [8], VFTS [9], IRMA, DiFac [10]

and Dorothy [11]. The Virtual Factory (VF) paradigm can assist a production

environment by addressing various key issues like: (1) reduction of production times

and material waste thanks to the analysis of virtual mock-ups, (2) development of a

knowledge repository where people can find stored information in different versions,

with both advisory role and support to the generation of new knowledge, (3)

improvement of workers efficiency and safety through training and learning on virtual

production systems, (4) creation of a collaboration network among people

concurrently working on the same project in different places.

The complexity of the problem calls for support tools to effectively address all the

phases of the factory lifecycle. Indeed, the ICT players (e.g. Siemens PLM, PTC and

Dassault Systèmes) already offer all-comprehensive suites containing software tools

that have been developed or acquired in the recent years. These tools deal with most

of the factory planning, design and deployment phases. However, the current

approaches still do not meet the demands of the industry and fail to provide all the

required functionalities. One of the reason is the lack of interoperability. Moreover,

Small and Medium Enterprises cannot afford the present expensive PLM software

suites.

The previous analyses highlight the need of a novel framework for the VF enabling

a step forward in the state of the art, by describing the factory as a whole consisting of

processes, dependencies and interrelations, data and material flows [12]. This

framework should guarantee the democratization of industrial systems for simulation

and analysis, by reducing the total cost of ownership of a holistic virtual

representation of the factory. In particular, the following aspects of democratization

need to be properly addressed:

1. Decrease of the investment and operating costs that are currently associated with

the commercial all-comprehensive software suites.

2. Wider range of users. The functionalities and usage of simulation and virtual

factory technologies should be extended from the workstations/desktops of the

engineers to the laptops of managers and marketing executives.

3. Usage and management. Democratization also means giving engineers and field

technicians the ability to take advantage of simulation and virtualization of

processes without relying on dedicated specialists.

This paper presents a framework for the VF that is carried out by the European project

“Virtual Factory Framework” [13]. The framework is introduced in Section 2,

whereas Section 3 focuses on the development of its main software components.

Finally, Section 4 shows the results obtained with the first implemented prototypes.

Virtual Factory Manager 3

2 Virtual Factory Framework

The Virtual Factory Framework (VFF) can be defined as “An integrated collaborative

virtual environment aimed at facilitating the sharing of resources, manufacturing

information and knowledge, while supporting the design and management of all the

factory entities, from a single product to networks of companies, along all the phases

of the their lifecycles”. The VFF architecture (see Fig. 1) is based on four Pillars: (I)

Reference Model, (II) Virtual Factory Manager, (III) Decoupled Functional Modules

and (IV) Integration of Knowledge. The key characteristics of the pillars are

openness, scalability and easiness to plugin the decoupled software tools, thus

reducing the investment costs compared to “all-in-one” software suites. Moreover, the

VFF aims at promoting major time and operating cost savings, while increasing the

performance in the design, management, evaluation and reconfiguration of new or

existing factories.

Fig. 1. Virtual Factory Framework architecture

The Reference Model establishes a coherent standard extensible Virtual Factory Data

Model for the common representation of factory objects related to production

systems, resources, processes and products. The common data model can be

considered as the shared meta-language providing a common definition of the data

that will be governed by the Virtual Factory Manager (Pillar II) and used and updated

by the Decoupled Functional Modules (Pillar III). Since the VFF has to deal with the

interactions between several activities, it is necessary to take care of data evolution

along the factory lifecycle phases as well.

The Virtual Factory Manager (VFM) is the core of the VFF and handles the

common space of abstract objects representing the factory as defined by the common

data model (Pillar I). The VFM orchestrates the decoupled functional modules and

provides a controlled access to the different virtual factory instances. Considering the

characteristics of the data model and the need to interface several decoupled modules,

the structure of the VFM has been designed by adopting star network architecture as

shown in Fig. 1. Next section will delve into the structure of the VFM by presenting

its main characteristics and the development of the first prototype.

The Decoupled Functional Modules (named VF modules) are the software tools

that implement the various methods and services to support the activities related to

factory design, performance evaluation, management, production monitoring, etc. The

VF modules can be located on a remote workstation or on the server where the VFM

IEP

(Information Exchange Platform)

Module 1
Existing

application
Module N

Adaptation
Module

Plug-in 1

Plug-in 2

Virtual Factory
Manager

VF Data Repository

Templates
and

Good Practice

Knowledge
Manager

GUI GUI GUI

4

resides. Considering the scope of the VFF approach, the VF modules can be grouped

into categories. For each category, different solutions can be adopted according to the

specific needs and the availability of commercial applications. The integration of VF

modules endowed with different functionalities and level of detail but insisting on the

same factory representation will offer the possibility to reach a wide range of users.

Integration of Knowledge aims at supporting the modeling of complex systems and

providing greater comprehension of the business processes. The Knowledge Manager

(see Fig. 1) is responsible of the knowledge repository that is designed according to

an ontology-based approach. A knowledge association engine will extract the

knowledge from the repository by means of rule-based mechanisms and case-based

reasoning techniques. The exploitation of embedded and constantly growing

knowledge presented as good practice and templates (i.e. toolsets of pre-dealt

problems) will enable the engineers to easily use and manage the virtual factory

without specific expertise or experience.

3 Virtual Factory Manager

This section presents the analysis of the requirements for the VFM (Sect. 3.1) and its

proposed architecture (Sect. 3.2). Finally, the VFM prototype is described (Sect. 3.3).

3.1 VFM Requirements

The main goal of the VFM design and implementation consists in obtaining an open

integration platform representing a common and shared communication layer between

already existing and newly developed software tool to support the factory design and

management. This final goal leads to the definition of several requirements:

• Platform independent interfacing capabilities. The VF modules are software

tools developed by different vendors/organizations, with different programming

languages, operating systems and HW architectures. The VFM has to interface

all of them by providing its services in an open and “proper” way.

• Management of concurrent access and data consistency. Several software tools

can access and/or modify partial areas of the factory data at different, and

possibly overlapping, times. Therefore, the VFM is required to ensure that

concurrent accesses occur without endangering the data integrity and slowing

down the planning process to unacceptable levels.

• Management of evolving Factory Data. The VFM has to provide functionalities

for managing the evolution and revision of the data related to complex entities

like production systems, processes and products.

• Data safety must be ensured in case of hardware failures or user errors.

• Addition of customized functionalities. Third party developers need an

appropriate mechanism to enrich the set of functionalities provided by the VFM

without impacting on its core.

• Response time. The interaction between the VFM and the VF modules requires

the support of communication mechanisms that are able to provide answers in

an appropriate time frame.

Virtual Factory Manager 5

3.2 VFM Architecture

The architecture of the VFM was designed to provide support to the required

functionalities. Each solution implemented by the VFM is based on stable and well-

established technologies in order to obtain an overall system capable to respond to

industrial needs of reliability. The resulting VFM architecture is shown in Fig. 2 as an

UML component diagram.

Fig. 2. UML component diagram of the VFM

The VF Data Repository is the central data repository where all the shared data will

be stored. The evolution of the factory data is managed by the Versioning System that

organizes and updates the set of virtual factory instances. The Versioning System

guarantees the data safety as well, since it allows restoring an older version at

anytime, thus preventing data losses due to user errors. Moreover, rollback methods

can be used in case of data inconsistencies due to broken connections or other factors,

always ensuring data safety.

The functionalities of the VFM are exposed as web services that have been

identified as a suitable and widely adopted solution to guarantee platform

independent interfacing capabilities. The Application Server provides the front end

for the exposure of VFM functionalities and takes care for the information transport

of the VFM. The Web Application Container is the component of the architecture that

provides a platform for implementing and publishing VFM functionalities.

The Information Exchanging Platform (IEP) is the main component of the VFM

and provides VF modules and plugins with a high level access to the data stored in the

VFM. It represents the preferred (even if not the only one) way to connect to the

VFM, since it provides a complete set of methods for structured data retrieval and

validation, data locking mechanism and factory version management. In particular,

the locking mechanism helps to manage the concurrent access of the VF modules.

6

A Plugin is a component that enables the VFM to be scalable by hosting server

side third party software, thus adding customized functionalities. Server side software

packages provide their own specific services interfacing the containing framework

that ensures local optimized access to the IEP and support to a container already

configured for exposing methods as web services.

The interaction between the VFM and the VF modules mainly consists in an

exchange of data streams only after specific requests (e.g. download/upload of data,

locking of data, etc.) are made by the VF module. This kind of interaction requires no

“real-time” response from the VFM. Nevertheless, if some module has specific

requirements on the type of interaction (e.g. for response time or for data encryption),

the implementation of a server side plugin with a dedicated proprietary interface is

always possible and supported by the VFM structure.

3.3 VFM Prototype

The implementation process of the VFM prototype was driven by the adoption of

open source platforms while following the architecture in Fig. 2. This decision was

taken to obtain a completely open solution that can be developed and maintained by

different actors. Java was chosen as software platform because of the availability of

high-level and reliable tools that enable the application in real industrial scenarios.

The VF Data Repository was developed as a file system where all the data are

stored on the server in form of files. The adoption of a file-based system instead of a

Database Management System (DBMS) is justified by its flexibility and the

possibility to apply a versioning system. Most of the data are stored in XML files [14]

that can be validated by a set of XSD (XML Schema Definition) [15] files

representing the the VF Data Model. Besides XML files, the file system can host files

of any kind (e.g. binary files for graphical and geometric representations).

The Versioning System was developed by adopting Subversion [16] that is a

widespread open source version control system. Its original purpose is to maintain

versions of software source code and text documents, but it can be used to track

changes in any kind of file and it is suitable for the VFM needs since it is efficient

when applied to text-based files as the XML files are.

The Application Server was implemented as an Apache HTTP Server [17] that is

an open source modular web server and one of the most deployed HTTP servers.

Moreover, Apache is well known for being reliable and for supporting most of the

programming languages and platforms.

The Web Application Container was developed using Apache Tomcat [18] that is

an open source project of the Apache Software Foundation. It powers several large-

scale and mission-critical web applications for a wide range of companies and

organizations. Tomcat can be paired with “Tomcat mod” that is a supporting

component required to forward the information received by the Apache Server to

Tomcat, and then to the plugins.

The IEP component was implemented as a Tomcat web application and its

functionalities are exposed as a set of cross-platform web services based on SOAP

(Simple Object Access Protocol) [19], thus enabling any VF module to use them. The

IEP prototype provides both automated versioning and locking mechanisms to

prevent data inconsistency thanks to “check-out” and “commit” operations.

Virtual Factory Manager 7

4 Testing the VFM prototype

This section explores the potentiality of the VFF and in particular of the VFM by

showing how different software tools can interoperate while addressing the same

industrial problem. In particular, the test case is focused on the design of a factory

layout for a Romanian company (Compa S.A.) playing in the automotive market. A

reduced version of the final VF Data Model was developed as an XSD file and three

software tools were deployed in the VFF as VF modules: GIOVE Virtual Factory

[20], Factory Layout Planner [21], and 3DCreate by Visual Components Oy [22].

GIOVE Virtual Factory (GIOVE VF) is a virtual reality collaborative environment

aimed at supporting the factory layout design. Machines, operators and other

resources can be selected from a library and placed in the 3D scene of the virtual

factory. The virtual environment can schematically display performance measures

that are provided by simulators and/or monitoring tools. Thanks to its user-friendly

interface, GIOVE VF enables the collaboration between managers, experts and also

workers in an intuitive way.

Factory Layout Planner (FLP) is a client/server application that enables the

collaborative development of a factory layout thanks to three key features: the 3D

visual editing of the layout, the possibility to act on the same layout in a distributed

environment, the ability to perform Discrete Events Simulation (DES) on the layout.

The collaboration on the layout can be both remote and local; the former allows user

distributed all over the world to cooperate in the layout creation, the latter allows

users to act on the same device at the same time on a common model. This

functionality can be achieved thanks to the integration of multi-touch tables.

3DCreate by Visual Components Oy performs material flow and robotic simulation

on the same platform for simulation and visualization of complete manufacturing

systems. 3D equipment models can be created with increasing level of details to a

point where they represent real factory counterparts in look and behaviors. New

factory layouts are created from a catalog by simply snapping equipment models

together. The user can run simulations and perform a large number of general layout

validations, like collision detection, resource utilizations, cycle times, etc.

The interoperation between the previously described software tools represents an

interesting test bed for validating the VFM concept because:

• The tools were developed with different programming language and can operate

on different OS and platforms, thus enabling the validation of the VFM

“universality”: i.e. GIOVE VF was developed in C++, whereas FLP in Java.

Visual Components, developed in C++, was connected to the VFM through

Python.

• The tools share some functionalities (e.g. visualization of a 3D factory layout),

thus enabling a validation of the VFM functionalities.

• The tools have complementary functionalities (e.g. navigation in a 3D

environment, DES and kinematic simulation provided by GIOVE VF, FLP and

Visual Components, respectively), thus showing the benefits of interoperability.

During the test each software tool had a different user and was run on a different

computer. The three software tools were connected to a server hosting the VFM and

exposing its web services. The basic VFM functionalities were successfully tested

8

since all the three VF modules could access the web

thus meeting the requ

XML files in the VF D

three tools thanks to the common data model. Figure

offer only a slightly different

(a)

Fig. 3. Same factory view offered by (a) GIOVE VF, (b) FLP and (c) Visual Components.

The interoperation between the VF modules was tested by incrementally modifying a

factory layout in a collaborative way, starting from a simple layout and then gradually

increasing its complexity by adding production resources and using functionalities

provided by the VF modules. Every step

out/modify/commit cycle.

selective way, leaving untouched data that

capable of using. For example

(Fig. 4.a), the FLP user modif

and creating connections between the resources

afterwards. The modifications i

correctly visualized by the GIOVE

to meet the requirement of

(a)

Fig. 4. (a) The GIOVE VF user and (b) the FLP user modify the same factory layout.

Already existing factory instances can be used as a starting point to develop new

layouts or when a stakeholder wants to evaluate “what if” scenari

overwriting the existing data and upsetting the lifeline of a factory instance. A new

instance can be created from an existing one at any stage of its lifeline thanks to the

“branch-out” functionality provided by the IEP. For example, the Visual

user created a new factory instance starting from the version previously saved by the

since all the three VF modules could access the web services exposed by the

thus meeting the requirement of platform independent interfacing capabilities.

VF Data Repository were correctly imported and interpreted by the

three tools thanks to the common data model. Figure 3 shows how the three tools

offer only a slightly different graphical representation of the same factory view.

(b) (c)

Same factory view offered by (a) GIOVE VF, (b) FLP and (c) Visual Components.

The interoperation between the VF modules was tested by incrementally modifying a

factory layout in a collaborative way, starting from a simple layout and then gradually

increasing its complexity by adding production resources and using functionalities

vided by the VF modules. Every step was performed through a check

out/modify/commit cycle. The VF modules have to access the factory data in a

selective way, leaving untouched data that the VF module does not use and/or is not

For example, after the GIOVE VF user created a draft factory layout

FLP user modified the layout by adding new machines and operators

and creating connections between the resources (Fig. 4.b), so that a DES could

The modifications implemented by the FLP user were finally checked and

correctly visualized by the GIOVE VF user, thus demonstrating how the VFM

to meet the requirement of guaranteeing the data consistency across VF modules.

(a) (b)

(a) The GIOVE VF user and (b) the FLP user modify the same factory layout.

Already existing factory instances can be used as a starting point to develop new

layouts or when a stakeholder wants to evaluate “what if” scenarios without

overwriting the existing data and upsetting the lifeline of a factory instance. A new

instance can be created from an existing one at any stage of its lifeline thanks to the

out” functionality provided by the IEP. For example, the Visual Components

user created a new factory instance starting from the version previously saved by the

services exposed by the VFM,

latform independent interfacing capabilities. The

interpreted by the

3 shows how the three tools

graphical representation of the same factory view.

Same factory view offered by (a) GIOVE VF, (b) FLP and (c) Visual Components.

The interoperation between the VF modules was tested by incrementally modifying a

factory layout in a collaborative way, starting from a simple layout and then gradually

increasing its complexity by adding production resources and using functionalities

performed through a check-

have to access the factory data in a

VF module does not use and/or is not

created a draft factory layout

by adding new machines and operators

could be run

mplemented by the FLP user were finally checked and

VFM is able

across VF modules.

(a) The GIOVE VF user and (b) the FLP user modify the same factory layout.

Already existing factory instances can be used as a starting point to develop new

os without

overwriting the existing data and upsetting the lifeline of a factory instance. A new

instance can be created from an existing one at any stage of its lifeline thanks to the

Components

user created a new factory instance starting from the version previously saved by the

GIOVE VF user, thus showing how the VFM can

the Visual Components user

(Fig. 5.a) and checked potential collisions of the robot by means of a kinematics

simulation (Fig. 5.b). Finally, the

a VF module tries to access a factory version that is currently locked by another user,

then the request is denied and the factory data can be downloaded in read

(a)

Fig. 5. A Visual Components user (a) adds a fence to the layout and then (b) performs a

kinematics simulation of the robot to

5 Conclusions

The proposed framework and the

of interoperability to address

prototype and the feasibility studies presented in this paper

cornerstone for future developments

The use of XSD/XML has guaranteed to have a pre

the data (XML) that

XSD/XML represents an expressive technology where several default data

be extended and complex constraints and properties can be modeled

complex processes associated with the virtual factory

knowledge and the characterization of

This is hardly given by the current data representation

document references (cross

referential consistency

possibility to adopt an ontology

Web technologies for the VFM will be evaluated.

In the coming months more complex industrial cases will be addressed and more

software tools will be integrated to present a complete solution for the

lifecycle. Finally, further functionalities will be added to the VFM.

Acknowledgments. The research reported in this paper has received funding

European Union Seventh Framework Programme (FP7/2007

agreement No: NMP2 2010

would like to thank

industrial case information.

Virtual Factory Manager

thus showing how the VFM can manage evolving factory data

the Visual Components user modified the layout by adding a fence around the rob

5.a) and checked potential collisions of the robot by means of a kinematics

Finally, the management of concurrent access was tested too. If

a VF module tries to access a factory version that is currently locked by another user,

then the request is denied and the factory data can be downloaded in read-only mode.

(a) (b)

A Visual Components user (a) adds a fence to the layout and then (b) performs a

kinematics simulation of the robot to detect possible collisions with the fence.

framework and the VFM provide a concrete answer to the requirements

to address the product/process/factory lifecycle. T

the feasibility studies presented in this paper represent

for future developments.

The use of XSD/XML has guaranteed to have a pre-defined syntactic structure

(XML) that can be validated according the XSD definitions. Moreover

represents an expressive technology where several default data-

complex constraints and properties can be modeled. Howeve

associated with the virtual factory require also the support of

the characterization of data with their relations on a semantic level.

This is hardly given by the current data representation based on XSD, since

document references (cross-references) are poorly modeled, thus endangering

referential consistency and the management of distributed data. Therefore, the

possibility to adopt an ontology-based representation of data and exploit the Semantic

logies for the VFM will be evaluated.

In the coming months more complex industrial cases will be addressed and more

will be integrated to present a complete solution for the whole

, further functionalities will be added to the VFM.

The research reported in this paper has received funding

European Union Seventh Framework Programme (FP7/2007-2013) under

agreement No: NMP2 2010-228595, Virtual Factory Framework (VFF). The authors

thank COMPA S.A. (Sibiu, Romania) for kindly providing

industrial case information.

Virtual Factory Manager 9

manage evolving factory data. Then

around the robot

5.a) and checked potential collisions of the robot by means of a kinematics

was tested too. If

a VF module tries to access a factory version that is currently locked by another user,

only mode.

A Visual Components user (a) adds a fence to the layout and then (b) performs a

requirements

The VFM

represent a first

syntactic structure for

. Moreover,

-types can

However, the

require also the support of

on a semantic level.

based on XSD, since inter-

thus endangering the

. Therefore, the

the Semantic

In the coming months more complex industrial cases will be addressed and more

whole factory

The research reported in this paper has received funding from the

2013) under grant

The authors

for kindly providing the

10

6 References

1. Huang, G.Q., Simpson, T.W., Pine II, B.J.: The power of product platforms in mass

customization. International Journal of Mass Customisation 1(1), 1--13 (2005)

2. Terkaj, W., Tolio, T., Valente, A.: Designing Manufacturing Flexibility in Dynamic

Production Contexts. In: Tolio, T. (ed) Design of Flexible Production Systems. Springer,

pp. 1--18 (2009)

3. Tolio, T., Ceglarek, D., ElMaraghy, H.A., Fischer, A., Hu, S., Laperrière, L., Newman, S.,

Váncza, J.: SPECIES -- Co-evolution of Products, Processes and Production Systems.

CIRP Annals - Manufacturing Technology 59(2), 672--693 (2010)

4. Zöllner, M., Keil, J., Behr, J., Gillich, J., Gläser, S., Schöls, E.: Coperion 3D – A Virtual

Factory on the Tabletop. In: Proceeding of 5th INTUITION International Conference:

Virtual Reality in Industry and Society (2008)

5. Ding, J., Wang, Y., Chen, K.: An Interactive Layout and Simulation system of Virtual

Factory, Applied Mechanics and Materials 20-23, 421-426 (2010)

6. Yang, S., Ahn, B., Seo,K.: Development of a prototype customer-oriented virtual factory

system. The International Journal of Advance Manufacturing Technology 28(9-10), 1031--

1037 (2006)

7. Zhai, W., Fan, X., Yan, J., Zhu, P.: An Integrated Simulation Method to Support Virtual

Factory Engineering. International Journal of CAD/CAM 2(1), 39--44 (2002)

8. Jain, S., Choong, N.F., Aye, K.M., Luo, M.: Virtual factory: an integrated approach to

manufacturing systems modeling. International Journal of Operations & Production

Management 21(5/6), 594--608 (2001)

9. Kazlauskas E.J., Boyd E.F., Dessouky M.M.: he Virtual Factory Teaching System

(VFTS): Project Review and Results. In: Proceedings of ED-MEDIA 2002 World

Conference on Educational Multimedia, Hypermedia & Telecommunications (2002)

10. Sacco, M., Redaelli, C., Cândea, C., Georgescu, A.V.: DiFac: an integrated scenario for

the Digital Factory. In: Proceedings of 15th International Conference on Concurrent

Enterprising (2009)

11. Pedrazzoli, P.: Design Of customeRdRivenshOes and multisite factory – DOROTHY. In:

Proceedings of 15th International Conference on Concurrent Enterprising (2009)

12. Pedrazzoli, P., Sacco, M., Jönsson, A., Boër, C.: Virtual Factory Framework: Key Enabler

For Future Manufacturing. In: Cunha, P.F., Maropoulos, P.G. (eds.) Digital Enterprise

Technology, Springer US, pp. 83-90 (2007)

13. Sacco, M., Pedrazzoli, P., Terkaj, W.: VFF: Virtual Factory Framework. In: Proceedings

of 16th International Conference on Concurrent Enterprising, Lugano, Switzerland (2010)

14. Extensible Markup Language (XML), http://www.w3.org/XML/

15. XML Schema Part 1: Structures Second Edition, http://www.w3.org/TR/xmlschema-1/

16. Collins-Sussman, B., Fitzpatrick, B., Pilato, M.: Version Control with Subversion,

http://svnbook.red-bean.com/index.en.html (2008)

17. Apache, HTTP Server Project, http://httpd.apache.org/

18. Apache Tomcat 6.0, http://tomcat.apache.org/tomcat-6.0-doc/index.html

19. SOAP Specifications, http://www.w3.org/TR/soap/

20. Viganò, G.P., Greci, L., Sacco, M.: GIOVE Virtual Factory: the digital factory for human

oriented production systems. In: Proceedings of the 3rd International CARV Conference,

Munich, Germany, pp. 748--757 (2009)

21. Ceruti, I.F., Dal Maso, G., Ghielmini, G., Pedrazzoli, P., Rovere, D.: Factory Layout

Planner. In: Proceedings of 16th International Conference on Concurrent Enterprising,

Lugano, Switzerland (2010)

22. 3DCREATE Visual Components, http://www.visualcomponents.com/Products/3DCreate

