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Abstract

Predictive models of epidemic cholera need to resolve at suitable aggregation levels spatial data per-

taining to local communities, epidemiological records, hydrologic drivers, waterways, patterns of human

mobility and proxies of exposure rates. We address the above issue in a formal model comparison frame-

work and provide a quantitative assessment of the explanatory and predictive abilities of various model5

settings with different spatial aggregation levels and coupling mechanisms. Reference is made to records

of the recent Haiti cholera epidemics. Our intensive computations and objective model comparisons

show that spatially explicit models accounting for spatial connections have better explanatory power

than spatially disconnected ones for short-to-intermediate calibration windows, while parsimonious, spa-

tially disconnected models perform better with long training sets. On average, spatially connected10

models show better predictive ability than disconnected ones. We suggest limits and validity of the

various approaches and discuss the pathway towards the development of case-specific predictive tools in

the context of emergency management.

1 Introduction

Cholera was reported in Haiti for the first time in recent history in October 2010, about nine months after15

the catastrophic earthquake that stroke the country and damaged its poor infrastructures for health care,

water, and sanitation [1]. The source of the infection has been tracked back to the abrupt contamination of

the Artibonite River from an external source, as unambiguously documented on both epidemiological and

genetic grounds [2, 3, 4, 5, 6] (see also [7]). A first epidemic peak originated as cholera spread out from the

Artibonite Valley. The disease was reported within weeks in all Haitian provinces, including the capital city20

Port-au-Prince. More than 150,000 cases and 3,500 casualties were reported by the end of 2010. A second

peak (Spring 2011) was related to the revamping of disease transmission boosted by the rainy season [8].

One year after the beginning of the epidemic, the total toll of cholera in Haiti amounted to about 490,000

cases, with more than 6,200 deaths. At that time, those figures already qualified the Haitian epidemic

as the largest cholera outbreak in recent history. Cholera has not disappeared yet from Haiti about four25

years after its appearance in the country, as shown by the increasing counts of cases and casualties. As of

December 2014, more than 720,000 cases and the death of 8,700 people have been reported.

Several mathematical models of cholera transmission have been developed to describe the course of

the Haitian epidemic [9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Their application to the ongoing epidemic

was made possible by the immediate release of epidemiological data, initially recorded by the disease-30

surveillance systems set up by the Haitian government in the aftermath of the earthquake and later by

the National Cholera Surveillance System [1], as well as by the widespread availability of georeferenced

environmental datasets. Those models were different in assumptions, spatial resolution and degrees of
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spatial coupling, but they all addressed the dynamics of susceptibles, infected individuals and bacterial

concentrations in a discrete and geographically referenced set of local human communities. Mathematical35

modelling of the ongoing Haitian cholera epidemic has certainly provided important insights, especially

concerning spatial transmission mechanisms [10, 11, 12, 14], rainfall patterns [14, 15, 17], intervention

strategies [9, 10, 11, 12, 16, 17], local basic reproduction numbers [16], conditions for large-scale pathogen

invasion [13], and the probability of epidemic extinction [18]. Most models provided predictions about the

unfolding of the epidemic [9, 10, 14, 17, 18]. However, while predictive models have been successfully used40

in endemic settings [19, 20, 21, 22], the predictive power of mathematical models of cholera transmission

has never been evaluated formally and systematically in an epidemic setting (but see [14] for a reassessment

of early predictions of the Haitian epidemic). Bridging this gap is obviously of paramount importance to

understand whether (and, in case, to what extent) predictions drawn in the very course of an outbreak (i.e.

in conditions of severe data limitation and uncertainty about the relevant epidemiological processes) can45

be trusted, and potentially used to aid real-time emergency management, allocate health care resources

and evaluate the effects of alternative intervention strategies.

In this work we aim at evaluating the predictive ability of mechanistic modelling for the Haitian cholera

epidemic. To this end, we adopt the model proposed in [14] and later refined by [18]. This model has

been shown to reproduce cholera transmission dynamics in Haiti in a fairly accurate and robust way. The50

model builds on a spatially explicit epidemiological framework [23, 24] that has already been applied to

both past [25, 26] and ongoing cholera epidemics [10, 17]. To study the role of spatial settings on the

predictive potential of cholera modelling, we consider two different spatial scales, namely a fine-grained

subdivision of the Haitian territory into hydrological units (as in [14, 18]), and a coarse subdivision into

administrative departments (e.g. as in [9, 12, 16]). The same set of epidemiological assumptions (detailed55

below) is retained for the two spatial scales, while different mechanisms of spatial propagation of the disease

are considered. Specifically, a fine spatial resolution based on hydrological divides allows the model to

account for both hydrological transport of pathogens and human mobility. Conversely, a coarser resolution

based on administrative units cannot accommodate a proper description of hydrological connectivity. To

evaluate the effects of the different assumptions on spatial processes that have been made in the literature60

at the latter spatial scale, we test a set-up of the model in which human mobility is the only driver

of spatial disease spread between districts (as in [12]) and four set-ups in which no spatial transmission

mechanisms are considered (i.e. each department’s epidemiological dynamics is assumed to be independent

of the other departments’, e.g. as in [9]). Of these four set-ups, two (which differ from one another for

initial conditions only) assume spatially heterogeneous epidemiological dynamics (different parameters65

across districts), while the other two (differing, again, for initial conditions only) assume homogeneous

epidemiology (same parameters across districts).
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The six model set-ups are calibrated against available epidemiological records by using progressively

longer training sets. Validation (over different temporal windows) is performed to assess quantitatively

the predictive ability of the calibrated models. Calibration and validation results are then analysed in a70

formal comparative framework to discuss strengths and limitations of the different approaches, as well as

to identify the missing steps towards real-time use of the model. The intense computational effort made

here is in fact meant to give practical (and possibly general) directions for management-prone modelling

strategies in an actual epidemic context.

2 Methods75

2.1 The model

The Haitian population is subdivided into n human communities spatially distributed within a domain

that embeds both human mobility and hydrological networks (if applicable). Let Si(t), Ii(t) and Ri(t)

be the local abundances of susceptible, symptomatic infected and recovered individuals in each node i

of the network at time t, and let Bi(t) be the environmental concentration of Vibrio cholerae. Cholera80

transmission dynamics can be described by the following set of coupled differential equations [14, 18]:

dSi
dt

= µ(Hi − Si)− FiSi + ρRi

dIi
dt

= σFiSi − (γ + µ+ α)Ii

dRi

dt
= (1− σ)FiSi + γIi − (ρ+ µ)Ri

dBi

dt
= −µBBi +

p

Wi
[1 + φJi(t)] Ii − l

Bi −
n∑

j=1

Pji
Wj

Wi
Bj

 .85

The population of each node is assumed to be at demographic equilibrium, with µ and Hi being the

human mortality rate and the population size of the local community. The force of infection Fi, which

represents the rate at which susceptible individuals become infected because of contact with contaminated

water, is expressed as

Fi = β

(1−m)
Bi

K +Bi
+m

n∑
j=1

Qij
Bj

K +Bj

 ,90

where the parameter β represents the exposure rate (assumed to be constant over time; for a different

hypothesis see again [18]) and the fraction Bi/(K + Bi) is the probability of becoming infected because

of exposure to a concentration Bi of V. cholerae (K being the half-saturation constant, [27]). Susceptible

individuals can be exposed to the pathogen while travelling outside their home community. Parameter m
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represents the community-level fraction of individuals that travel outside their home site, while Qij repre-95

sents the fraction of people travelling from their home community i to destination j. The force of infection

in a given node thus depends not only on the local concentration of pathogens (for a fraction 1−m of the

susceptible hosts), but also on pathogen concentration in the connected communities (for the remaining

fraction m, properly weighted by mobility patterns). Mobility fluxes are described through a gravity model

[28, 29] in which the attractiveness of node j for node i is directly proportional to the population size of j100

and inversely proportional to the distance between the two nodes (through an exponential kernel with scale

factor D), i.e.

Qij =


Hje

−dij/D∑n
k 6=i Hke

−dik/D if i 6= j

0 otherwise .

Upon exposure to contaminated water, a fraction σ of infected individuals develops symptoms. Symp-

tomatic infected individuals recover at rate γ, or die because of cholera or other causes at rates α or µ,105

respectively. Asymptomatic infected individuals shed V. cholerae bacteria at a much lower rate (about

1,000 times lower, see e.g. [30]) than symptomatic ones and recover more rapidly (in about one day instead

of five, according to [31]). Therefore, it is reasonable to assume that their contribution to environmental

contamination is negligible with respect to that of symptomatic individuals [18]. Asymptomatic infections

can still result in temporary immunity [20], thus contributing to the depletion of the pool of susceptibles110

and affecting the rate of occurrence of symptomatic infections. This assumption translates into a flux of

asymptomatic infected individuals (1− σ)FiSi entering directly the recovered compartment.

Recovered individuals lose their immunity and return to the susceptible compartment at rate ρ or die

at rate µ. Infected individuals showing clinical symptoms are assumed to be non-mobile. Therefore, they

contribute only to the local environmental concentration of V. cholerae at rate p/Wi, with p being the115

rate at which bacteria excreted by one infected individual reach and contaminate the local water reservoir

of volume Wi (assumed to be proportional to population size, i.e. Wi = cHi as in [14]). Note that for

the sake of parsimony a dimensionless bacterial concentration B∗
i = Bi/K can be introduced, along with

a synthetic contamination rate θ = p/(cK). Bacteria die at a constant rate µB and undergo hydrologic

dispersal at rate l. Cholera pathogens can move between nodes i and j with probability Pij . We assume120

Pij = 1 if j is the downstream nearest neighbour of node i and zero otherwise. To include the worsening of

sanitation conditions due to rainfall-induced run-off, which causes additional loads of pathogens to enter

the water reservoir because of the overflow of latrines and the washout of open-air defecation sites [8], the

contamination rate is increased by local rainfall intensity Ji(t) via a proportionality coefficient φ [14].
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2.2 Model set-ups125

We consider six versions of this model: fine-grained spatially connected (M1), coarse-grained spatially

connected (M2), coarse-grained spatially disconnected with heterogeneous parameters (M3 and M4), and

coarse-grained spatially disconnected with homogeneous parameters (M5 and M6). All of them share the

same basic epidemiological assumptions outlined above. Other possible mechanisms, such as bacterial

hyperinfectivity [32] or latent infected stages [11], could obviously be accounted for, yet they have not130

been included in the present work to avoid potential confounding effects and limit the number of candidate

models. This choice also follows from a previous comparative analysis of modelling assumptions in the

context of the Haitian cholera epidemic [14]. The six model set-ups considered here differ from each other

as regards the spatial scale of analysis, i.e. fine-grained (M1) vs. coarse-grained (M2–M6), the inclusion of

spatial coupling mechanisms, i.e. human mobility and hydrological transport (M1) vs. human mobility only135

(M2, in which l = 0) vs. no spatial coupling at all (M3–M6, in which l = 0 and m = 0), and the choice of

initial conditions (spatially disconnected models M3–M6 only, see below).

The six set-ups of the model are also different in terms of parameter parsimony. As a matter of fact,

spatially connected network models account for the spatial heterogeneity induced by spatial interactions,

while spatially disconnected models do not. To circumvent this limitation, epidemiological parameters in140

the latter models are usually allowed to be different for different geographical units (see e.g. [9, 15, 16] for

applications to the Haitian cholera epidemic). As a result, spatially disconnected models may be consider-

ably less parsimonious than spatially connected ones, in which the epidemiological parameters are usually

assumed to be spatially homogeneous (essentially to facilitate model calibration; see [14, 18] and previous

related applications) or linked to remotely acquired proxies [26]. Therefore, georeferenced spatially dis-145

connected models could better account for local heterogeneities in disease transmission than parsimonious

spatially connected ones. To investigate whether prodigality of structural parameters is actually compen-

sated for by improved explanatory/predictive power we thus consider two baseline disconnected models

with spatially homogeneous epidemiological parameters (and, again, different assumptions regarding initial

conditions). The main features of each model are summarized in Table 1.150

Table 1 around here

2.3 Application to the 2010– Haitian epidemic

As stated above, the model is run at two different spatial scales. At the finest resolution (model M1), the

Haitian territory is subdivided into watersheds on the basis of hydrologic divides, inferred from drainage

directions extracted from a digital terrain model [DTM, see e.g. 33]. We use the DTM provided by the155

US Geological Survey (USGS, available online at http://nationalmap.gov/viewer.html), with a grid
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resolution of 100 m and a precision of ±0.5 m in the elevation field (Fig. 1a). Following the procedure

detailed in [14], the Haitian territory is subdivided into 365 hydrological units with an average extent

of 76 km2 (Fig. 1b). The use of hydrologically-defined units allows a straightforward identification of

the hydrological connection from each watershed to its unique downstream neighbour (or to the ocean,160

for coastal watersheds). The hydrologic connectivity matrix [Pij ] thus follows directly through nowadays

standard extraction techniques [34]. Note that absorbing boundary conditions are assumed at the ocean

outlets, i.e. pathogens that leave the river network from a coastal outlet cannot re-enter the system.

Figure 1 around here

At the coarsest resolution, the official Haitian subdivision in ten administrative departments is retained.165

Note that this scale corresponds to that at which epidemiological records, consisting of daily counts of

cholera cases reported in each of the ten administrative departments, are currently made available by

the Haitian Ministry of Health (available online at http://mspp.gouv.ht/newsite/; Fig. 1c). At such a

coarse resolution, however, the information on hydrological connectivity is lost (models M2–M6).

Human communities are defined as the population hosted within each computational unit (watershed170

or department, depending on the spatial scale considered), estimated by using a remotely sensed map of

population distribution produced by the Oak Ridge National Laboratory (data available online at http:

//www.ornl.gov/sci/landscan/index.shtml; Fig. 1d). The spatial resolution is 30 × 30 arc-seconds,

resulting in cells of about 1 km2. Distances dij among communities in the fine-scale model are computed

using the road network provided by the OpenStreetMap project (available online at www.openstreetmap.175

org; Fig. 1e). Specifically, pairwise shortest distances along the road network are computed between

the centroids of population distribution in each community. Great-circle distances between population

centroids are used in the department-based connected model.

Systematic collection of rainfall through rain gauges has been relatively rare in post-earthquake Haiti,

with on-the-ground rainfall measurements available only for Ouest (by USGS) and Sud (by Haiti Regener-180

ation Initiative) departments (see Figure 1 in [15] for a map of the existing rain gauges). Therefore, daily

rainfall Ji(t) for each community i is computed from satellite data collected by the NASA-JAXA’s Tropical

Rainfall Measuring Mission (TRMM 3B42 precipitation estimates, see http://trmm.gsfc.nasa.gov/ for

details). Rainfall data have a spatial resolution of 0.25 degrees of latitude and longitude (Fig. 1f). Precip-

itation fields are first downscaled to the resolution of the DTM with nearest neighbour interpolation and185

then averaged over the watershed/department area to obtain a representative value for the whole commu-

nity. Because of the lack of surface measurements, it is not possible to perform a thorough comparison

between remotely sensed estimates and on-the-ground data. Comparison of the surface data from Port-à-

Piment (Sud, 2010–2012 data available online at http://blogs.cuit.columbia.edu/haitienvironment/
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environmental-monitoring/precipitation/monthly-rainfall/) to satellite estimates (at the scale of190

either the watershed or the administrative department that include the gauge station) suggests that remote

sensing may consistently underestimate local rainfall measurements (Fig. S1 online). This bias can be partly

due to the complexity of Haitian orography, which can induce significant variations in local precipitation

intensities within the spatial resolution of TRMM 3B42 estimates [15]. However, satellite-based rainfall

estimates can qualitatively reproduce the rainfall patterns recorded on the ground (Pearsons’s r = 0.63195

[0.59] for satellite estimates at the watershed [department] scale).

As initial conditions for model simulations we assume that, as of the date of the reported beginning

of the outbreak (around October 20, 2010; t = 0), the local numbers of infected people Ii(0) match

the reported cases detailed in [3]. The locations of the first cases are tracked accurately at the fine

spatial resolution (M1), while at the coarser scale (M2–M6) the reported cases can only be attributed to200

administrative departments. We note that just a few watersheds/departments were actually home to

cholera cases as of October 20, 2010. This obviously represents an issue for the initialization of spatially

disconnected models M3–M6. The lack of spatial coupling mechanisms, in fact, would keep the departments

that were initially left untouched by the epidemic indefinitely in a cholera-free state. Suitable initial

conditions are thus to be set also in these departments. A possible alternative to initialize the model205

would be to let t0 vary across departments following the observation of the first cases. However, this would

require to change calibration/validation windows across sites (see below). As such, we have decided not to

follow this route. We test instead two different settings (for both spatially heterogeneous and homogeneous

models), one in which one symptomatic carrier is placed in each of the cholera-free departments at t = 0

(M3 and M5), and one in which the initial number of infected individuals is calibrated in each department210

(including, for consistency, also those with cholera cases reported at the beginning of the epidemic, M4 and

M6). As for the other state variables, we assume that the whole population is susceptible at the beginning

of the epidemic, i.e. Si(0) = Hi − Ii(0) (and Ri(0) = 0), because of the lack of any pre-existing immunity,

consistently with assessment of prior conditions in Haiti [3]. Local pathogen concentrations are assumed

to be initially at equilibrium with the local number of infected cases, i.e. B∗
i (0) = θIi(0)/(HiµB) [14].215

2.4 Model calibration

Some of the model parameters (namely µ, α and γ) can be reliably estimated from the literature or

from epidemiological/demographic records, while numerical fitting is necessary to calibrate the remaining

ones. To mimic quasi-real-time use of the model presented above in an ongoing epidemic context we use

twelve different calibration windows with increasing durations – ranging from one month (November 2010,220

when the first data became publicly available) to one year (from November 2010 to October 2011) with a

one-month step.
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Model fitting is performed via Markov Chain Monte Carlo (MCMC) sampling [35, 36]. Specifically, we

use the algorithm DREAM (Differential Evolution Adaptive Metropolis [37], available online at http://

jasper.eng.uci.edu/software.html), an efficient implementation of MCMC that runs multiple different225

chains simultaneously to ensure global exploration of the parameter space, and adaptively tunes the scale

and orientation of the jumping distribution using Differential Evolution [38] in addition to a Metropolis-

Hastings update step [39, 40]. We adopt the DREAMZS variant of the DREAM algorithm [41], which

allows for an effective exploration of the target posterior distribution with just a few parallel chains. The

algorithm is initialized with broad flat prior distributions for parameter values and is allowed to run up to230

convergence (O(105) iterations).

A Gaussian model is assumed for the likelihood of the epidemiological observations in MCMC sampling.

Goodness of fit is measured as the residual sum of squares (RSS) between weekly reported cholera cases

in each of the nd = 10 Haitian departments as recorded in the epidemiological bulletins and simulated by

the model over the ncw weeks of the calibration window, i.e.235

RSS =

nd∑
i=1

nc
w∑

j=1

[Cr(i, j)− Cs(i, j)]
2 ,

where Cr(i, j) and Cs(i, j) are the weekly reported cases in department i during week j according to records

and model simulations, respectively. The estimation of weekly cases from the model output requires to

compute

Cs(i, j) = σ

∫ tj+∆t

tj

FiSidt ,240

where tj marks the beginning of the j-th week and ∆t = 1 week. Note that the simulation results for the

fine-grained version of the model (M1) are computed at the watershed level and need to be upscaled to the

departmental level. The upscaling procedure is performed by accounting for the fraction of population of

each watershed that belongs to a given administrative department.

We repeat the calibration procedure twelve times for each of the six model set-ups introduced above,245

each of which is characterized by a different number of tuning parameters. Specifically, M1 has 9 calibration

parameters (β, θ, σ, ρ, µB, φ, l, m, D), chosen as in [18] to ease across-study comparison. M2 has

8 calibration parameters, the same as M1 except for l = 0. We have decided to fit the same set of

epidemiological parameters for both spatially connected (M1 and M2) and spatially disconnected models

(M3–M6). For disconnected models with spatially heterogeneous parameters (M3 and M4) calibration is250

performed department-by-department. Independent calibration runs (e.g. as done in [9]) in fact represent

the simplest possibility when longitudinal data at different locations are available, but results in a large

number of fitting parameters, namely 60 for M3 (β, θ, σ, ρ, µB, φ, calibrated independently for each of
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the ten administrative departments) and 70 for M4 (same as M3, plus the initial number of infectives Ii(0)

in each department). More parsimonious spatially disconnected models with heterogeneous parameters255

could actually be devised (see again [9]), also by constraining some epidemiological parameters across sites.

Thus, the most parsimonious models are those with spatially homogeneous parameters (M5 and M6): the

fitting parameters of M5 are 6 (the same as M1 with l = 0 and m = 0), while those of M6 are 16 (the same

as M5, plus the initial number of infectives in each of the ten departments).

To assess the explanatory power of the different versions of the model, for each calibration window260

we rank their performances according to Akaike’s Information Criterion (AIC) [42] suitably corrected for

small sample sizes [43]. AIC is a model-selection procedure that explicitly takes into account the trade-off

between model accuracy and complexity, measured as the number of free parameters Θ (i.e. the structural

parameters of the model, inclusive of initial conditions for M4 and M6, plus residual variance for each

independent calibration run; see [43]). After calibrating M1–M6 against the epidemiological data, for each265

best-fit model simulation we compute

AIC = 2Θ + η ln

(
RSS

η

)
+ 2Θ

Θ + 1

η −Θ− 1
,

where η = ndn
c
w is the number of data points in the calibration window. The model with lowest AIC

score is retained as the best candidate to explain the observed epidemic patterns in the relevant calibration

window, with Akaike differences ∆AIC > 4 being required for a significant ranking (see again [43]). Fitting270

is performed also for the shortest window (one month), but M3 and M4 are not included in AIC scoring

because in that case the number of calibration parameters exceeds the available data points.

2.5 Model validation

Model validation is performed by extending model simulations outside the calibration windows. For each

calibration window we use twelve validation intervals with increasing durations (ranging from one month275

to one year with monthly steps), each of which starts right after the end of the relevant calibration window.

Actual precipitation fields are fed to the model also during the validation periods. We simulate each model

for the best-fit parameter combination found during calibration and for an ensemble of N = 100, 000

sets from the posterior distribution of the model parameters obtained through MCMC sampling, including

variance residual to account for total predictive uncertainty (observational errors are assumed to be additive280

and normally distributed as in [44]; see Fig. S2 for two examples of the evaluation of total predictive

uncertainty). In this way, model predictions explicitly include parameter uncertainty and observational

errors. Conversely, other possible sources of uncertainty, such as process noise [45], biases in the input

rainfall patterns [46] and structural modelling errors [47] are not explicitly accounted for, and may thus be
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reflected in increased parameter/observational uncertainty.285

Predictive power is assessed by using three different indicators, namely

V1 =

√√√√ 1

ndnvw

nd∑
i=1

nv
w∑

j=1

[Cr(i, j)− Cs(i, j)]
2 ,

V2 =
1

ndnvw

nd∑
i=1

∣∣∣∣∣∣
nv
w∑

j=1

Cr(i, j)−
nv
w∑

j=1

Cs(i, j)

∣∣∣∣∣∣ ,
V3 =

100

ndnvw

nd∑
i=1

∣∣∣∑nv
w

j=1Cr(i, j)−
∑nv

w
j=1Cs(i, j)

∣∣∣∑nv
w

j=1Cr(i, j)
,

where nvw is the number of weeks in the validation window. The first indicator (V1) is the standard deviation290

of the prediction residuals and represents a natural modification of the goodness-of-fit score used in model

calibration. The second and the third quantities are based on the cumulative number of cases predicted

by the model in each department over the whole validation window, suitably averaged over the number of

data points in the validation period to make it possible to compare the predictive power of the model over

different windows. Although they may downplay temporal errors, these two quantities provide an easily295

readable measure of absolute (V2) or relative (V3) prediction errors, respectively. They are evaluated for the

best-fit model simulation (V Bf
x , x = 1, 2, 3), the ensemble of N simulations accounting for total predictive

uncertainty (V Ns
x ; in this case the three indicators are evaluated for each simulation, then average values

are computed), and the median of the model predictions, that is the median of the weekly local cases

predicted in the N model runs (VMe
x ). This procedure is repeated for each of the six model set-ups, 12300

calibration intervals and 12 validation windows.

3 Results

All the six versions of the model are able to grasp qualitatively the evolution of the epidemic during the

calibration phase (Figs. 2 and S3), except for model M5 that consistently underestimates reported cholera

cases. In terms of explanatory power, models M1 and M2 perform similarly in the shortest calibration305

window, but M1 significantly outperforms all the others for six calibration windows out of twelve (Table 2),

ranging from two to seven months. Model M6 is selected for the five longest calibration windows (8–12

months). Model M2 is the second-best for the four shortest calibration runs, after which it is outperformed

by M6. Model M1 is also second-best for intermediate calibration windows (8–10 months), while M4 is

second-best for the two longest calibration windows (11–12 months). The least supported models are M6310

for the shortest calibration timespan, M3 and M4 for windows of 2–6 months, M5 for windows longer than

six months.
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Figure 2 and Table 2 around here

As an example of the outcomes of the calibration procedure, Fig. 3 reports the best-fit parameter

values of model M1 and the related uncertainties as obtained for different calibration windows. Local315

disease transmission, represented by the basic reproduction number (R0 = σβθ/µB/(µ + α + γ); see

[27]), is found to be higher for long calibration windows (panel a). Conversely, higher fractions of moving

people, shorter movement distances and higher hydrological dispersal rates are selected for short calibration

intervals (panels b–c). Also, a longer immunity is selected for short calibration intervals, while higher values

of the rainfall coefficient are selected for long calibration runs. As expected, the interquantile ranges of320

parameter uncertainty are quite large for short calibration windows, but progressively narrow for longer

intervals, thus making it difficult to get reliable estimates of some of the model parameters (e.g. R0 and ρ)

over relatively short timespans (see again panel a). Estimated initial conditions (M4 and M6) averaged over

the different calibration runs are found to be well correlated with reported cases (Pearson’s r = 0.50 [0.84]

for M4 [M6]), although with large absolute differences (on average, ≈ 5, 400 [≈ 4, 500] cases per department325

for M4 [M6]).

Figure 3 around here

Sharp differences among the six versions of the model emerge in the validation trials (Fig. 4; see also

Fig. S4 for the whole sequence of validation experiments). Spatially connected models (M1 and M2), even

when tuned over very short calibration windows (say 1–2 months, see Fig. 4a), are able to forecast at330

least the order of magnitude of the observed cholera cases for several weeks after the end of the calibration

window. To a lesser extent, the same is true for parsimonious, spatially disconnected models M5 (one-month

calibration window) and M6 (two-month calibration window). Conversely, spatially disconnected models

with heterogeneous parameters (M3 and M4) largely overestimate cholera incidence. No model is actually

able to predict consistently the peak of cholera cases recorded during Spring 2011.Similar patterns can be335

found for relatively longer calibration windows (3–4 months, Fig. 4b), although with better predictions of

the 2011 Spring peak (especially by M6), which however are robustly achieved (most notably by spatially

connected models M1 and M2) only with calibration windows as long as 6 months (Fig. 4c), i.e. with a lead

time of about one month. Validation performances greatly improve for longer calibration windows (7–10

months, Fig. S4), especially for spatially connected models M1–M2 and parsimonious disconnected models340

M5–M6, which become able to predict actually observed peak and lull phases with a prediction lead time as

long as one year. Note that model M1 tends to remarkably overestimate cholera incidence towards the end

of the longest validation runs. Once tuned over even longer calibration windows (11–12 months, Fig. 4d)

almost all models display good predictive ability at least for a few months after the end of the calibration
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window. The Spring peak of 2012 is poorly captured by all models. The subsequent lull phase is better345

predicted by M2 among all.

Figure 4 around here

An exhaustive investigation of the possible combinations of calibration/validation windows for perfor-

mance indicator V1 (Fig. 5a–c) shows that the predictive ability of spatially connected models (M1 and M2)

usually outperforms that of the spatially disconnected ones for short calibration windows or long valida-350

tion intervals. Disconnected models with heterogeneous parameters (M3 and M4) are rarely found to be

best, and only for long calibration and short validation periods. Disconnected models with homogeneous

parameters (M5 and M6) may represent better predictive tools for intermediate calibration periods, or for

long calibration/intermediate validation runs (best-fit parameters only). Similar patterns are found when

considering V2, although with a larger share of validation trials in which model M6 performs best (Fig. 5d–f).355

A clear pattern emerges for V3: model M1 usually performs best for short calibration windows (with some

exceptions), while model M6 represents the best predictive tool for long calibration windows (Fig. 5g–i).

The best predictive performances are attained by either best-fit runs or median model projections for all

the considered validation indicators (Figs. S5–S7).

The values of the validation performance indicators averaged over all the combinations of calibration360

and validation intervals (Table 3) show that spatially connected models M1 and M2 have better overall

predictive abilities than spatially disconnected ones. Averaging the validation performance indicators

over the different validation windows (Fig. S8) shows that spatially connected models actually are better

predictive tools for either short or long calibration intervals, but not always for calibration windows of

intermediate length. By averaging the validation performance indicators over the different calibration365

windows (Fig. S9) it becomes evident that the predictive ability of the spatially connected models (M1 in

particular) is higher than that of the spatially disconnected ones for almost all validation intervals.

Figure 5 and Table 3 around here

4 Discussion

Almost all models are able to reproduce complex spatio-temporal epidemic patterns during calibration,370

provided that the algorithm used for parameter fitting is fed with a sufficient amount of epidemiological

data (Fig. 2). Model M5 represents an exception in this respect, most likely because of its relatively poor

structural properties (lack of spatial coupling mechanisms, homogeneous parameters, fixed initial condi-

tions). Differences in the explanatory power of the different model set-ups do emerge, though. Interestingly,

in fact, spatially connected models are consistently selected for short to intermediate calibration windows,375
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while parsimonious, spatially disconnected models (with calibrated initial conditions, which could implic-

itly account for the disregarded spatial component of epidemic spread) perform better over long calibration

intervals (Table 2). We argue that spatially disconnected models cannot directly account for the spatial

mechanisms of pathogen dissemination (i.e. hydrological transport and human mobility), which play a

crucial role in the initial phase of the outbreak, when the infection starts propagating into disease-free380

regions [13, 48]. Conversely, spatial coupling may become less important when looking at longer time

horizons, once the epidemic has already spread all across the country. In this case, in fact, epidemiological

dynamics is expected to be mostly controlled by local factors, which could indeed determine some spatial

heterogeneity in the transmission processes [49]. The relatively good AIC scores of M4 for the longest cali-

bration runs (11–12 months) seem to support the idea that spatially disconnected models with site-specific385

parameters could indeed account for this spatial heterogeneity, although the calibration windows used in

this work may be too short to let this pattern emerge more clearly. The outcomes of model fitting in the

fine-scale spatially connected model M1 (which provides the most detailed account of the spatial dissemina-

tion of the pathogen) further supports this explanation, with higher values of the dispersal rates/fractions

selected for short calibration runs, and higher values of the basic reproduction number selected for long390

calibration intervals (Fig. 3). The present study thus helps clarify which modelling tool might be best

suited to describe outbreak unfolding depending on the stage of development of the epidemic.

As far as accurate spatiotemporal projections are concerned (e.g. as evaluated by validation indica-

tor V1), spatially connected models seem to have greater predictive ability than spatially disconnected

ones, especially for short calibration intervals (or long validation windows; Fig. 5). This finding may be395

particularly important in the early phase of an outbreak, when data are limited and the epidemic is under-

going rapid growth. We argue that the intrinsic lack of spatial coupling mechanisms and/or the prodigality

of structural parameters determine the inability of spatially disconnected models to accurately project

cholera dynamics in the first phase of the epidemic. On the one hand, in fact, the lack of spatial coupling

mechanisms leads to biased estimations of initial conditions or local infection processes. On the other400

hand, the prodigality of structural parameters (which results in high uncertainty in parameter estimation)

may act on top of the first shortcoming, thus leading to unsatisfying epidemiological projections even in

the short run. Taken together (as in models M3 and M4), these two features may determine a sizable excess

of predicted cholera cases in the validation periods. Therefore, the use of spatially disconnected models

with heterogeneous parameters for prediction purposes in the initial stage of an epidemic (i.e. when spatial405

coupling is of paramount importance and data availability is forcedly limited) seems hazardous at best.

This remark is empirically confirmed by some early projections of cholera transmission dynamics in Haiti

drawn from a spatially disconnected model with heterogeneous parameters published a few months after

the beginning of the epidemic [9]. In that study, the authors predicted more than one million cases in the
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first year of the epidemic – a figure that fortunately has not been reached even four years after the beginning410

of the epidemic. By contrast, the first predictions drawn from a parsimonious, spatially connected model

of cholera dynamics in Haiti [10] correctly predicted the unfolding of the epidemic with a prediction lead

time of five months, and were retrospectively judged quite robust in a later comparative reassessment [14].

Should coarser projections be of interest (e.g. as evaluated by validation indicator V2, which quantifies

absolute errors in terms of cumulative cases; or V3, which measures relative errors and is less sensitive to415

deviations during high-prevalence periods), spatially disconnected models with homogeneous parameters

would represent the tool of choice for intermediate-to-long calibration windows, while spatially connected

models would still be best for short calibration runs (see again Fig. 5). This distinction could be relevant,

for instance, to decision makers interested in robust projections of total epidemic evolution over decisional

time scales spanning from a few weeks to a few months.420

As for the prediction of epidemic peaks, model validation outcomes are far from perfect also for the best-

performing models. For instance, for calibration windows shorter than four months, none of the considered

models is able to robustly predict the cholera peak observed during Spring 2011, which has been linked to

heavy seasonal precipitations [14]. As a matter of fact, these calibration windows correspond to the first,

explosive phase of the epidemic, in which rapid transmission dynamics most likely beclouded the effect425

of rainfall (fairly scarce during this period, except for the passage of Hurricane Thomas at the beginning

of November 2010) and possibly of other environmental drivers as well [8]. The outcomes of parameter

calibration support this interpretation, with higher values of the rainfall coefficient being progressively

selected for increasingly long calibration windows. The six model set-ups are not able to forecast the peak

of Spring 2012 either. However, in this case, other mechanisms could have played a role. A relatively large430

share of cases was in fact localized in the capital city Port-au-Prince during the peak. The mismatch could

have thus been caused by a poor estimation of local rainfall intensity. Satellite-based precipitation estimates

may be of limited utility when looking at local features [50, 15], but represent a precious alternative to

traditional ground measurements wherever the latter are rare, provided that they at least correlate with

actual rainfall patterns (as our preliminary analyses seem indeed to confirm). This is true, in particular, for435

our country-scale model of cholera transmission, in which rainfall is considered as a forcing term for local

contamination rates acting through a coefficient that has to be numerically calibrated. On the other hand,

the errors possibly introduced in the model by inaccurate rainfall estimates are most likely translated into

higher uncertainty in parameter values, and would perhaps deserve an explicit treatment (e.g. as in [46];

see also [14, 17, 18] on the use of stochastic rainfall generators for projections of the Haitian epidemic).440

All these considerations point to the importance of ground-truthing of remotely sensed rainfall patterns,

and calls for a better integration of satellite estimates and co-located surface measurements. Further

progress in this area will come through improved rainfall forecasting, which will also allow for real-time
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testing of our models. Another possible source of error could be represented by environmental and/or

social factors not accounted for in the model. The analysis of epidemiological reports at the communal445

level (which are recorded but not yet available to the scientific community, see e.g. [1, 8]) represents a

possible way to reduce structural modelling errors. Such data could in fact shed light on highly localized

transmission processes that may be difficult to describe when working at broad spatial scales [18]. However,

increasing the spatial resolution of the model could make the application of a fully deterministic framework

inappropriate (especially during lull phases in which disease transmission could be remarkably affected by450

demographic stochasticity [18]) and call for the inclusion of process noise in the modelling framework –

which in turn would make numerical procedures much more involved (see e.g. [45]).

As far as long-term predictions are concerned, a possible limitation of our approach is the underlying

assumption that epidemiological processes do not change over time. Rainfall is in fact the only term in the

model that depends explicitly upon time. However, local exposure/contamination rates could also have455

changed over the timescales considered in this study (as proposed by [8], who suggested that transmission

patterns may have changed significantly in time and space). A first plausible mechanism to explain this

change is the increasing awareness of the population about the mechanisms of cholera transmission, as a

result of the campaigns for hygiene promotion set up by Haitian authorities and non-governmental orga-

nizations [51, 49]. Increased knowledge about cholera and its transmission dynamics may have prompted460

behavioural changes in the population at risk of infection, thus significantly influencing cholera dynamics

[52]. As an example, [18] estimated that such increased awareness may have led to a 20% reduction of

exposure risk just in a few months after the beginning of the epidemic. Another possible mechanism of

change is the progressive improvement of living conditions, potentially linked to the return of internally

displaced people to their original households after the earthquake that stroke the country in January 2010465

[53]. Structural interventions, aimed e.g. at improving access to safe water and basic sanitation, could also

have helped reduce cholera transmission [54]. Because of the isolated and sporadic nature of such interven-

tions, however, it is difficult to include their effects in a reasonably parsimonious mechanistic framework.

Changes in human mobility patterns between the initial, explosive phase of the epidemic and the following

phases, possibly triggered by the unfolding of the outbreak, could also have had nontrivial effects on disease470

dynamics [24]. All these missing features can be compensated for by biased parameter estimates, which in

turn can contribute to the remarkable variations of parameters calibrated with different fitting windows.

The shortcomings of our approach do not preclude a quantitative assessment of the overall predictive

ability of the different models. On average, in fact, the spatially connected models performs better than the

others, although quantitative differences are relatively small for some indicators (Table 3). Some practical475

observations are thus in order. First, because of their added information value, spatially connected models

should represent the tool of choice for accurate predictions of the spatio-temporal patterns of cholera
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epidemics in their initial phases, when data are scant and the spatial spread of the pathogen is of paramount

importance. Predictions drawn from current mathematical models of diseases like cholera must always be

taken with care – but extra-care should be applied, in particular, whenever these predictions come from480

spatially disconnected models endowed with many structural parameters and calibrated over relatively

short intervals. Second, although temporal, spatially aggregated models are usually much easier to fit

to longitudinal data than spatiotemporal ones, spatially connected models for cholera epidemics are not

necessarily doomed to be much more complex than spatially disconnected ones. This must be made clear

not only to model makers, but also to consumers of models with diverse (and not always quantitative)485

backgrounds (e.g. general medical and public health readers as discussed in [55]). For modellers, some

additional complexity clearly lies in the derivation of the connectivity structures for hydrological transport

and human mobility; however, the increasing availability of georeferenced information on hydrological and

transportation networks, human demography and mobility, sanitation infrastructure and treatment center

distribution, coupled with objective manipulation techniques, has allowed rapid progresses in the field of490

spatially explicit modelling of eco-epidemiological dynamics over the past few years. For model users,

spatially connected models are often only seemingly more complex than spatially disconnected ones; while

the mathematical notation might indeed look complicated at first sight, they offer a natural language to

describe eco-epidemiological processes that are intrinsically rooted in spatial dynamics.

All these observations point consistently to the importance of being spatially explicit (and connected)495

when dealing with the early phases of a cholera epidemic. As a matter of fact, when only limited data are

available, information about spatial coupling mechanisms proves essential for making reasonable predic-

tions. One question could arise related to what spatial scale of analysis should be used. Our analysis has

showed, in fact, that a clear distinction emerges between spatially disconnected vs. connected models, while

the predictive performances of the latter appear to be quite independent of the spatial scale of analysis.500

A possible explanation of this result is that river transport has played a limited role in disease propaga-

tion at the country scale after the initial contamination of the Artibonite River [8], and that neglecting

hydrological connectivity can be compensated for by increased human mobility in model M2 (estimates

of m are indeed systematically larger in M2 than in M1; see also [10], in which a fine-grained, spatially

connected model without hydrological transport was successfully applied to the Haitian epidemic). An505

alternative explanation is the spatial resolution of the available epidemiological data, which are currently

aggregated for administrative departments (i.e. the scale used in the coarse spatially connected model and

in the spatially disconnected ones). As such, the current lack of more detailed epidemiological records may

preclude a fair assessment of the actual explanatory/predictive power of the fine-scale spatially connected

model. We thus suggest that the spatial scale of analysis should be suitably chosen so as to i) match (at510

least) the resolution of the available epidemiological records; ii) allow for the description of processes that
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are deemed important for the epidemiological dynamics (such as hydrological transport, whose inclusion

usually requires a finer scale of analysis than that dictated by administrative boundaries); iii) match the

expectations of decision makers with respect to the level of spatial detail required in the epidemiological

projections (i.e. prediction of large-scale patterns vs. local features) and in the assessment of intervention515

strategies. In this respect, coarse-grained spatially connected models (see e.g. [12]) could represent a good

trade-off between spatial accuracy, implementation effort and computational requirements, and could be

used effectively to deploy robust epidemic predictions relatively soon after the beginning of an outbreak.

These findings may have implications that extend beyond cholera dynamics, possibly being relevant to

other diseases, not necessarily waterborne. As an example, multi-layer network models like the one pre-520

sented in this work could be used, with the necessary modifications, to study vector-borne epidemics,

although in this case a proper characterization of the spatiotemporal patterns of vector movement may not

be straightforward (see e.g. [56]). We also note that in endemic settings, provided that space-time data

are available, other mathematical tools could be more appropriate than those used in this work, including

time-series analysis [19, 57, 58, 21], spatially implicit [20] and Markov chain models [22, 59].525

In conclusion, the wealth of data gathered during the Haiti cholera epidemic [3, 1, 8] paves the way for a

new generation of epidemiological models, which will be required to accommodate real-time assimilation of

epidemiological, hydrological and ecological information, as well as reliable projections of rainfall patterns,

so as to improve epidemic forecasts and the evaluation of alternative interventions strategies (possibly

within an adaptive management scheme; see e.g. [60, 61]). The inclusion of these features will turn tools530

that at their current stage are mostly descriptive into full-fledged decision-support systems for the prediction

of the residual evolution of the epidemic and the design of optimal (ideally, in a multicriterial sense; e.g.

[62]) intervention strategies. Such quantitative decision support tools will inform decision makers towards

sustainable choices, i.e. towards the design of public health policies and sanitary interventions linked to the

territory where the measures are to be implemented. Real-time support to epidemic management will also535

allow timely decisions and a quantitative assessment of alternative intervention strategies, thus possibly

contributing to the optimization of sanitary and humanitarian efforts.
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Tables

Table 1: Summary of the main characteristics of the six model set-ups.

model spatial spatial epidemiological initial calibration
scale coupling parameters conditions parameters

M1 watershed hydrological transport spatially homogeneous estimated 9
and human mobility

M2 department human mobility spatially homogeneous estimated 7
M3 department none spatially heterogeneous estimated 60
M4 department none spatially heterogeneous calibrated 70
M5 department none spatially homogeneous estimated 6
M6 department none spatially homogeneous calibrated 16

Table 2: AIC differences for the six tested set-ups of the model for different calibration interval lengths.
Asterisk (∗) indicates that the candidate set-up cannot be safely discarded (∆AIC < 4). Double asterisk
(∗∗) indicates that the model has not been included in model selection because the number of structural
parameters exceeds the number of available data points.

calibration
length M1 M2 M3 M4 M5 M6

(months)

1 0.0 1.3∗ —∗∗ —∗∗ 29.3 55.4
2 0.0 59.7 711.1 1552.1 96.3 113.7
3 0.0 69.6 302.6 406.7 143.4 157.9
4 0.0 80.5 234.7 284.2 209.7 102.4
5 0.0 82.5 223.9 213.6 214.0 19.0
6 0.0 165.0 246.1 263.1 261.4 54.2
7 0.0 95.0 247.6 87.3 254.6 9.3
8 7.6 58.6 175.5 115.7 182.6 0.0
9 23.5 140.5 159.0 24.2 210.9 0.0
10 44.3 149.4 172.2 55.5 244.2 0.0
11 43.3 132.5 175.3 6.5 291.7 0.0
12 60.4 141.5 234.6 20.7 307.1 0.0
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Table 3: Validation performance indicators averaged over all combinations of calibration and validation
windows. See text for details on model validation and the computation of the different indicators.

M1 M2 M3 M4 M5 M6

〈V Bf
1 〉 659 674 5711 3788 780 1467
〈V Ns

1 〉 963 1122 2192 1985 1195 1420
〈VMe

1 〉 674 712 1428 1084 836 801

〈V Bf
2 〉 317 323 2326 1484 451 700
〈V Ns

2 〉 552 705 1055 1073 760 759
〈VMe

2 〉 323 382 734 640.2 488 447

〈V Bf
3 〉 6.7 6.3 54.2 12.8 7.3 7.2
〈V Ns

3 〉 13.0 15.6 19.6 19.7 15.8 14.0
〈VMe

3 〉 6.5 7.3 12.1 9.5 7.8 6.7
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Figure legends

Fig. 1. Data for the Haitian cholera epidemic model. (a) Digital terrain model; (b) geomorphological

subdivision in hydrological units and main river networks; (c) administrative departments and cumulative710

cholera cases reported in the first year of the epidemic; (d) high-resolution population distribution map;

(e) main road network infrastructure; (f) remotely sensed rainfall intensity (average 1998–2012). See text

for data sources and details on spatial manipulation of the georeferenced datasets.

Fig. 2. Fitting of models M1–M6 for different calibration windows. Shown are results for 2- (a), 4- (b), 6- (c)

and 12-month (d) calibration windows. Black dots indicate total weekly incidence in data, while coloured715

lines represent best-fit model simulations. Data and results are aggregated at the country level for an

easier visual reference, but model fitting is performed at a higher resolution, i.e. that of the administrative

departments shown in Fig. 1c. See Fig. S3 for the whole set of calibration intervals (1–12 months with

monthly steps, starting November 1st, 2010).

Fig. 3. Parameter values of model M1 for different calibration windows (1–12 months). (a) Basic repro-720

duction number (which depends on parameters as detailed in the text) and duration of acquired immunity

[years]; (b) community-average fraction of mobile susceptible individuals and scale factor of the exponential

kernel of human mobility [km]; (c) pathogen’s hydrological dispersal rate [day−1] and rainfall coefficient

[day mm−1]. Lines and shaded areas represent best-fit model simulations and 5–95% credible intervals of

parameter uncertainty. Non-calibrated parameters set as in [14]: γ = 0.2, α = 4.0 10−3, µ = 4.5 10−5 (all725

in [day−1]).

Fig. 4. Model validation for different durations of the calibration window. Shown are results for 2- (a), 4-

(b), 6- (c) and 12-month (d) calibration windows. Validation intervals span from one month to one year,

and begin right after the end of the relevant calibration window. Black dots indicate total weekly incidence

in data, while coloured lines represent best-fit model simulations (thick line) or the medians (thin) of model730

predictions. See Fig. S4 for the whole set of calibration intervals.

Fig. 5. Quantitative assessment of validation results. Panels a to i show the best performing model for

each combination of calibration/validation windows for different validation performance indicators (labels).

Raw values of the validation indicators are given in Figs. S5–S7.
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