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Abstract. Point-cloud registration is usually accomplished on the basis of several corresponding
features to compute the parameters of the transformation model. However, common point fea-
tures are difficult to select because airborne laser scanner (ALS) and terrestrial laser scanner
(TLS) point clouds of the same object have be aligned due to the different sensing positions
and sampling modes. Taking building profile features as objects, a registration method based
on feature constraints is proposed here. The standard six-parameter rigid-body transformation
adopted for alignment of laser scans is replaced by a two-step transformation: horizontal regis-
tration based on a two-dimensional similarity transformation and vertical registration based on a
simple vertical shift. First, the feature-line and feature-plane equation parameters are obtained
from both the airborne and terrestrial point clouds. Second, the plane transformation parameters
are computed after projecting the extracted features onto a horizontal reference plane. Finally, the
elevation transformation parameter is calculated by comparing the heights of flat features. The
ALS and TLS datasets of two buildings (Shanghai Pudong International Conference Center and
Shanghai Ocean Aquarium, China) were used to evaluate the robustness and accuracy. The
results show that the proposed feature-constrained method works well for registration between
two datasets. Five checkpoints and one overlap zone for the Pudong International Conference
Center were selected to evaluate the accuracy and resulted in accuracies of 0.15 to 0.5 m in the
horizontal direction and 0.20 m in the vertical direction. © 2014 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.8.083587]
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1 Introduction

After more than two decades of development, both airborne laser scanning (ALS) and terrestrial
laser scanning (TLS) technologies have become highly operational in their respective domains
for surface reconstruction and information extraction.1–3 Both of these technologies measure the
distance between the objects and a laser sensor. The knowledge of the attitude angles of the laser
rangefinder integrated with information on the absolute position of the sensor (from Inertial
Measurement Unit, Global Navigation Satellite System, or ground control points) is used to
determine the three-dimensional (3-D) coordinates of the mass points, referred to as a point
cloud. The observation point-of-view of ALS and TLS is quite different due to the placement
of the sensors, and the same object scanned by different platforms will produce complementary
data. Indeed, TLS may scan a point cloud depicting different sides of the building from a set of
ground-based standpoints, while the 3-D information on the building roof can be acquired by
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ALS.4 A complete building model could most likely be established from the fusion of the two
datasets after their registration into the same reference system.

The problem addressed in the field of laser scanning can be extended directly to the case of
point clouds derived from image-based methods such as photogrammetry and computer vision.5

Indeed, it has been demonstrated that these techniques might provide dense surfaces that feature
spatial resolution and precision on 3-D coordinates similar to the values obtainable from laser
scanning.6 Additionally, the possibility of registering image-based point clouds and laser scans
has recently been discussed in the literature.7

A common approach for point-cloud registration is to use artificial targets as the source and
target references. The targets are typically objects (for example, small spheres) that are invariant
with respect to the scanner viewpoint.8 Usually, they are composed of retro-reflective material to
simplify their automatic recognition.9 Many commercial software packages support automatic
registration with such targets, including automatic target recognition and estimating the regis-
tration transformation with the targets as reference points. Typically, a 3-D rigid-body transfor-
mation (three shifts and three rotations in space) is implemented, with the scale known because
of the direct measurement of ranges. In Ref. 10, some considerations for estimating this type of
model are discussed, particularly regarding the reliability of the observation and the spatial dis-
tribution of points.

To avoid deploying targets at the scene, considerable research on the automatic registration of
point clouds has been carried out. The existing algorithms can be divided into two main groups:
(1) point-based and (2) feature-based methods. In the former, the iteratively closest point (ICP)
algorithm together with its improvements is the most popular method for aligning two point
clouds.11,12 This algorithm begins with two point clouds referred to different reference systems
that must first be approximately prealigned by the manual measurement of some correspond-
ences or another automatic technique that can provide a rough registration. The concept is the
iterative refinement of the rigid-body transformation by alternating the steps of identifying cor-
responding points across the two point clouds and determining the best rotation and translation
parameters to minimize an error metric based on the distance between corresponding points.
There are many variants and extensions of the initial algorithm designed to increase computa-
tional efficiency, robustness, or convergence. As the ICP, the matching step is the most time-
consuming part of the registration phase, and the integration of the ICP algorithm with random
sample consensus (RANSAC) or least the median of squares (LMS) estimators were proposed
by Ref. 13 to improve the efficiency and robustness.

Reference 14 presented an algorithm that significantly reduces the level of registration errors
between all pairs in a set of range views. Erroneous associations between nearest points might
frequently occur in scans acquired with different point densities or from different points-of-
view,15 such as when ALS and TLS data are merged. For these reasons, ICP is often utilized
to compute the registration between two partially overlapping point clouds that were both
scanned by the same type of platform, but it is rarely applied to align different data categories.

Corner points of buildings are typical types of feature points in urban areas. References 16
and 17 proposed a semiautomatic method for coregistration of ALS and TLS point clouds. The
corner points of buildings are first separately extracted from both datasets. Then a manual selec-
tion is performed to hire the corner points as corresponding feature pairs. Then the feature pairs
are introduced into a similarity transformation model to obtain translations, rotations, and the
scale parameter between the coordinate systems.

Feature-based methods consist of the extraction of corresponding feature primitives such as
key points (such as the ones computed by the scale-invariant feature transform or speeded up
robust features operators),18,19 planes,20 and surfaces.21 References 22 and 23 demonstrated the
possibility of applying standard interest operators and feature-based matching (FBM) techniques
used for image registration to align laser point clouds. First, the intensity images for each scan
are aligned using FBM techniques. Then, the final rigid-body transformation is computed using
the corresponding 3-D coordinates on the laser scans. Reference 24 used a scale-space repre-
sentation to detect a set of salient feature points. For each feature point, a significance vector is
computed that is treated as an approximately invariant under rigid transformations. The extracted
signed feature set is used to obtain an approximate alignment of the two surfaces. Similarly,
Refs. 25 and 26 extended the method to the contemporary registration of several scans. As
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lines or planes extracted from a point cloud are fitted by estimation on the basis of many points,
using such 3-D signatures as registration features is expected to offer better results than using
feature points. Reference 27 proposed an autonomous matching procedure based on planar
patches that were automatically estimated by a region growing algorithm. Following their extrac-
tion, patches from different scans are matched subject to certain geometric constraints. The
extraction of the planar patches requires the segmentation of different scans, a task that
might become quite complex in cluttered scenes. Reference 28 used a variation in curvature
as the matching criterion on local points, which required the computation of the normal vector
and the curvature.29 Reference 30 proposed a method using the 3-D line features derived from
both terrestrial and airborne point clouds for a two-steps (coarse and fine) registration.
Unfortunately, these measures are prone to being affected by noise because of the dependency
on the second-order derivatives, which is the main shortcoming of feature-based techniques.

The drawbacks of both categories of registration methods become even more critical when
airborne and terrestrial point clouds are to be registered together. Indeed, the different points-of-
view and the sparse point cloud on the vertical surfaces (such as building façades) which are
poorly sampled from airborne sensors make the registration process highly complex.

For the sake of completeness, the coregistration of ALS and TLS data could also be carried
out using direct-geo-referencing techniques. Indeed, ALS data are geo-referenced using this
approach, which is strictly required for the determination of 3-D coordinates when the sensor
is moving. Static TLS data can also be geo-referenced in this way, as proposed by Refs. 31 and
32. However, this method requires successive refinements to cope with possible bias between the
adopted reference systems.

To overcome the limitations of existing techniques in such applications, this paper proposes a
registration method based on building-boundary extraction from both ALS and TLS laser data.
Unlike the standard consolidated practice in laser scanning data processing, 3-D registration uses
the simplified 3-D similarity transformation (or Bursa) model instead of rigid-body transforma-
tion. Based on building features from different datasets, the paper establishes a constrained rela-
tionship between the building parameters and the transformation model parameters. Planar and
elevation/transformation parameters are then computed using the least squares (LS) method with
redundant observations. In Sec. 5, the method is evaluated using two datasets consisting of ALS
and TLS data for two buildings (Pudong International Conference Center and Shanghai Ocean
Aquarium) in the Pudong district, Shanghai, China. Finally, in Sec. 6, conclusions are described.

2 Principle of Point-Cloud Registration

2.1 Problem Definition

To clearly describe the two different reference systems adopted for the ALS and TLS datasets,
ARS ðXAYAZAÞ is defined as the airborne reference system and TRS ðXTYTZTÞ is defined as the
terrestrial reference system. The ARS is regarded as the target system, while the TRS is treated as
the source system. The problem of point-cloud registration is to find a suitable registration model
and calculate the model parameters to map the source onto the target reference. In this section,
the mathematical model for the registration and the principle of the calculation method are
described.

2.2 Selection of the Registration Model

The essence of the registration method between ALS and TLS data is the adopted transformation
model. Indeed, 3-D coordinate transformations are usually assumed to define the geometric rela-
tionship between two spatial reference systems on the basis of global parameters such as an
isotropic scale, a 3-D shift vector, and a spatial rotation matrix. Therefore, the model plays
a paramount role in this type of problem and directly affects the final accuracy of the registered
coordinates. Usually, the scale is not estimated when two laser scanning datasets are registered,
as already noted in the end of Sec. 1. Indeed, laser scanning can directly measure distances
that define the scale, unlike photogrammetry which is actually based on the measurement of
directions.
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The 3-D similarity transformation is the usual model for generic coordinate transformations.
It is also normally referred to as the 3-D conformal transformation or Bursa model. In this model,
the source reference ðo − xyzÞ could be transformed into the target reference system ðO-XYZÞ
according to the following equation:24X

Y
Z

35 ¼ μRðα; β; γÞ
 x
y
z

!
þ
 Δx
Δy
Δz

!
; (1)

where μ is the scale factor; α, β, and γ are the rotations around the Z-axis, Y-axis, and X-axis,
respectively, which parameterize the rotation matrix R; and Δx, Δy, Δz are the components of
the 3-D translation vector.

Point clouds obtained from the ALS system are usually based on a local datum or on a map-
ping coordinate system. The Z-axis of XAYAZA is approximately aligned along the local plumb
line. Meanwhile, the TLS instrument is leveled by a level plummet33,34 or by using the internal
leveling automatic system when scanning the terrain objects. Therefore, the Z-axis of XTYTZT is
approximately aligned to the Z-axis of XAYAZA. Therefore, the horizontal rotation angles (β and
γ) in the rotation matrix R can be regarded as zero. Consequently, the similarity transformation
model could be simplified to only three shift parameters ðΔx;Δy;ΔzÞ, one rotation angle (α)
around with Z-axis, and the scale parameter (μ): XA
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In many geodetic applications, Eq. (2) is solved through a two-step procedure. In the first
stage, by using common points in the source and target reference systems, the model parameters
are computed using LS or robust estimators to cope with outliers [e.g., RANSAC, and LMS.35]
Then, in a second stage, the estimated parameters are assumed to be known, and the coordinates
of the noncommon points in the source system are mapped into the target system. However, as
above, common points between the ARS and TRS are difficult to find. Both linear features
extracted from ALS data and polygonal features from the TLS data are used to provide corre-
spondences for estimating the unknown parameters in Eq. (2).

2.3 Principle of Feature-Constrained Registration Between ALS and TLS Data

Terrestrial and airborne light detection and ranging (LiDAR) systems are different platforms that
can be used to capture point clouds from different points of view. In Fig. 1, black dots denote the

Fig. 1 The principle of data registration using building features.
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ALS 3-D points while red dots denote the TLS point cloud. The red line represents the boundary
contour of the building roof and the blue polygon denotes one of the façades of the building. The
roof boundary contour and the façade surface could be easily extracted from ALS and TLS data,
respectively, as introduced in Sec. 3. In the real scene, the red line feature is a part of the façade
polygon. Both of them can be perpendicularly projected into the same line on a horizontal plane
adopted as a reference (the green dashed line in Fig. 1). Therefore, these features are exploited as
constraints between the ARS and TRS to estimate the registration parameters. The detailed steps
of this procedure will be described in Sec. 4.

2.4 Flowchart of the Proposed Method

The flowchart of the proposed method is integrated with three main steps (Fig. 2), namely,
(1) feature extraction and feature parameter computation; (2) horizontal model parameter com-
putation; and (3) vertical model parameter computation. The segmentation of point clouds, both
terrestrial and airborne, is first used to obtain the different parts of the whole building dataset.
Then, the feature extraction methods and feature parameter computations are applied to the dif-
ferent subdatasets of the building. The horizontal model parameter is computed according to the
procedure described in Sec. 4.1. Eventually, the vertical shift parameter is calculated as described
in detail in Sec. 4.2. The estimated model parameters can be evaluated for accuracy during the
second and third steps using independent checkpoints.

Due to the vertical setup of the Z-axis in both reference systems adopted for the ALS and TLS
data, the registration process can be separated into two steps. First, the horizontal transformation
parameters can be computed using a method based on the extracted linear features and con-
straints. Next, four of the total five parameters (Ξh ¼ ½ α Δx Δy μ �T) of the simplified
similarity Eq. (2) can be computed.

Second, to accurately compute the unique remaining unknown parameter (Ξv ¼ ½Δz�T), a
fitting procedure is applied to the small overlap area between the roof points, as captured
by both laser scanning systems. The details of these steps will be introduced in the following
sections.

Fig. 2 Flowchart of the method adopted for registration of airborne and terrestrial point clouds.
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3 Independent Feature Extraction from Laser Scanning Datasets

3.1 Roof Boundary Line Extraction and Parameter Adjustment from
ALS Point Cloud

The extraction of the roof contour line and the computation of its parameters are described in this
section. Although automatic building methods outlining the extraction methods have been pub-
lished, e.g., Ref. 36 in this paper, the semiautomatic operations are used to obtain the boundary
line of the building. As a preliminary operation, the portion of the whole airborne point cloud that
contains the target building must be extracted using classification methods by Terrasolid, which
was developed by a Finnish company. The parameter computing procedure is based on two
steps. First, the point cloud of the building in the target system ðXAYAZAÞ is used to classify
the edge points, and the initial feature parameters are computed using a model-fitting procedure.
Then, the estimated parameters of the roof boundary features are refined in a second step.

The roof boundary contour line of the building in the ALS dataset is a 3-D line. From this
feature, a two-dimensional (2-D) line must be derived in the horizontal plane to be used for regis-
tration, as shown by the green dashed line in Fig. 1. As the point cloud was collected using a local
coordinate system and local geoid, the ALS point cloud is projected into the horizontal plane (see
Fig. 3) with the Z vector as zero. The boundary points are then extracted by the Canny operator.37

The boundary points usually consist of interior points which must be segmented into simple lines.
In this paper, the complete contour was manually segmented into single elements.

Using the boundary points, a linear model is fitted to obtain the line parameters ðKi; BiÞ of
each line feature i together with the fitting accuracy σ̂0Ai and the covariance matrix QAAi of
the estimated parameters. Here, Ki denotes the slope parameter for a 2-D line and Bi denotes
the intercept. Each segment of the fitting boundary could be presented as

Y ¼ KiX þ Bi. (3)

The boundary points used for fitting lines could not represent the precise boundary of a build-
ing roof because of the noise of the reflectance of material and the discrete sampling by the ALS
system. Most of the boundary points are located near or on the boundary, but not at extract boun-
dary (see Fig. 4). Therefore, the fitted boundary line differs from the real position of the roof edge.
Here, a parallel shift adjustment is used to improve the accuracy of the fitted boundary. Under the
hypothesis that the outmost point is located at the boundary, the shift d in Fig. 4 is the distance
between the outmost point and the fitted boundary.

The fitted boundary will split all points into two groups: the outer points (see blue dots in
Fig. 3) and the inner points (yellow dots). The outer points are located between the fitted

Fig. 3 Schematic diagram of the projection of the airborne laser scanner (ALS) point cloud onto
the horizontal plane.
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boundary and the real boundary while the inner points are located on the opposite side. The
outmost point is one of the outer points which is located furthest away from the fitted boundary.

After the parallel shift, the relocated boundary is regarded as the best-fit boundary to
represent the real contour of the building roof that will be used for registration in Sec. 4.
However, to avoid error when the outmost point is an outlier, a manual check is also performed
before each feature is shifted.

With reference to Fig. 5, let LA be the boundary line fitting the boundary points and d be
the distance from the outmost point to LA (index i that identifies the i’th bounding feature will be
omitted hereafter). After a shift d in the direction orthogonal to the extracted boundary LA,
the output boundary feature will be termed as LB. According to the relationship between
the boundary features LA and LB, the parameters describing the new line (i.e., KLB and BLB)
can be computed by

BLB ¼ BLA þ Δb ¼ B1 þ
d

cos φ
(4)

KLB ¼ K1 ¼ tan φ; (5)

where φ is the angle between LA and the X-axis. BLB and BLA are the intercept parameters of
lines LB and LA, while B1 and K1 are the intercept and the slope parameter of line 1. KLB is
the slope parameter of line LB.

3.2 Roof Boundary Line Extraction From TLS Point Cloud

The terrestrial point cloud of a building usually describes the external façades. Several papers have
been published in order to obtain the façade points from a point cloud.38,39 Therefore, it is easy to
obtain each single 3-D plane (the blue polygon in Fig. 1) using a model fitting approach for the
segmentation of the whole point cloud.40 To derive the best-fitting plane, an iterative procedure is
used for the LS estimate of the parameters (P1, P2, and P3) according to the equation

Fig. 4 Line feature extraction and adjustment from airborne boundary points in a horizontal view.

Fig. 5 Improvement of the extraction of single building boundary feature parameters from ALS
dataset, after projection onto the horizontal plane.
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P1X þ P2Y þ P3Z ¼ 1. (6)

After any iteration, the points featuring larger absolute residuals [usually three times the
root-mean-square error (RMSE)] will be removed, and the LS solution will be recomputed.
This procedure is intended to reduce the number of noisy points.

To establish the relationship between the same features captured in the ALS and TLS point
clouds, the 3-D plane function will also be projected onto a 2-D line in the horizontal plane
(green dashed line in Fig. 1). In this plane, the model in Eq. (6) is simplified as follows because
of the constant elevation Z

P1X þ P2Y ¼ 1. (7)

Then, the above function is converted into the slope-intercept model to make it comparable
with the parameters estimated from the ALS data

y ¼ kxþ b; (8)

where

k ¼ −
P1

P2

; b ¼ 1

P2

. (9)

4 Point-Cloud Registration Using Common Features of Building

4.1 Horizontal Model Parameter Estimates

The horizontal parameters Ξh of the simplified similarity model are estimated using the two sets
of linear features extracted from the ALS and TLS datasets. As shown in Fig. 6, LT is the pro-
jected boundary feature extracted from the TLS point cloud and LA is the boundary feature of
the corresponding façade extracted from the ALS point cloud. In this paper, we manually ensure
the relationship between LT and LA with the assistance of digital maps or pictures of scanned
object. This will reduce the possibility of mismatching.

Suppose we have a pair of generic points with index i and j in LT, whose coordinates are

ðXi
T; Y

i
TÞ and ðXj

T; Y
j
TÞ, respectively, and their corresponding two points (index I and J) in LA,

with coordinates ðXI
A; Y

I
AÞ and ðXJ

A; Y
J
AÞ, respectively. For any pair of points in the horizontal

plane, one can define the corresponding line function.
The parameters of line LT ðKij

T ; B
ij
T Þ and line LA (KIJ

A , B
IJ
A ), whose estimates have already

been described in Secs. 3.1 and 3.2, are used below. According to the model parameters in vector
Ξh, which expresses the horizontal component of the transformation between the TLS and ALS
point clouds, the coordinates of both points can be calculated from the following equations:�

XI
A ¼ μXi

T cos αþ μYi
T sin αþ Δx

YI
A ¼ −μXi

T sin αþ μYi
T cos αþ Δy (10)

Fig. 6 The linear features in the terrestrial reference system and airborne reference system after
projection onto the horizontal plane.

Wu et al.: Feature-constrained registration of building point clouds acquired. . .

Journal of Applied Remote Sensing 083587-8 Vol. 8, 2014



�
XJ
A ¼ μXj

T cos αþ μYj
T sin αþ Δx

YJ
A ¼ −μXj

T sin αþ μYj
T cos αþ Δy

. (11)

Then, the slope parameters can be calculated as follows:

KIJ
A ¼ YJ

A − YI
A

XJ
A − XI

A

. (12)

By substituting Eqs. (10) and (11) into Eq. (12), the slope parameter of the LA could be
derived as follows:

KIJ
A ¼ −ðXj

T − Xi
TÞ sin αþ ðYj

T − Yi
TÞ cos α

ðXj
T − Xi

TÞ cos αþ ðYj
T − Yi

TÞ sin α
. (13)

In the TLS system, points i and j are located in LT. Therefore, the coordinates of points i and
j should satisfy the following equation:�

Yi
T ¼ Kij

TX
i
T þ Bij

T

Yj
T ¼ Kij

TX
j
T þ Bij

T

. (14)

The slope parameter can ultimately be obtained by substituting Eq. (14) into Eq. (13)

KIJ
A ¼ − tan αþ Kij

T

1þ Kij
T tan α

. (15)

Equation (15) describes the relationship between the rotation α in the simplified similarity
transformation model and the feature parameters Kij

T and KIJ
A as computed from the segmented

data. Using a similar transformation process, the intercept parameter of LA could be described
using the following equation:

BIJ
A ¼ μBij

T þ Δyðcos αþ Kij
T sin αÞ þ Δxðsin α − Kij

T cos αÞ
cos αþ Kij

T sin α
. (16)

By combining Eqs. (15) and (16), the constraint relationship between the feature param-
eters (slope and intercept of the line) and the model parameter vector Ξh can be established.
The features extracted in Sec. 3 should theoretically satisfy Eqs. (15) and (16). Therefore, four
parameters could be calculated using one set of slope parameters (Kij

T and KIJ
A ) and three sets of

intercept parameters (Bij
T and BIJ

A ). When redundant observations exist, e.g., in the case that
three sets of features were extracted, the model parameters could be obtained using the LS
estimate. In this case, Eqs. (15) and (16) should be linearized (see Appendix A).

4.2 Vertical Model Parameter Estimates

The vertical parameter Ξv of Eq. (2) could not be computed using the same method illustrated for
the horizontal component Ξh. The vertical parameter mainly describes the shift ΔZ between the
target and source systems. Therefore, a different procedure is implemented here, consisting of
three steps. The first step is to fit a flat roof edge to all the roof edge points. After filtering those
points with residuals featuring the highest RMSE, the average elevation of the roof edge (Z̄A) in
the ALS dataset can be obtained

Z̄A ¼ 1

n

Xn
i¼1

Zi
A; (17)

where n denotes the number of valid points with elevation Zi
A used in the averaging process.

Then, the TLS data were used to slice the points at the top of the building as the second
step. The whole TLS point cloud can be segmented into different vertical layers by the
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depth interval. Then, the average elevation of the building roof (Z̄T) was computed from
the points of the top layer

Z̄T ¼ 1

m

Xm
i¼1

Zi
T; (18)

where m denotes the number of points on the top layer.
At the third step, ΔZ was computed by the following equation, according to Eq. (2)

Δz ¼ Z̄A − μZ̄T . (19)

5 Case Studies

In this section, two experiments concerning the data registration between the ALS and TLS point
clouds of two buildings are presented and discussed. The reference system of the ALS point
cloud is considered as the target system, while the reference system of the TLS point cloud
is taken as the source system. The following sections include the description of the two datasets,
the feature extraction stage, the estimate of the simplified similarity Eq. (2), and the evaluation of
the achieved accuracy.

5.1 Case Study Buildings and Datasets

Two buildings in the Pudong district, Shanghai, China, were used as case studies. The first
building is the Pudong International Conference Center (Pudong ICC) and the second is the
Shanghai Ocean Aquarium.

The size of the Pudong ICC building is approximately 160 m × 100 m × 60 m

(length × width × height). The ALS point cloud was captured in 2006 using an ALTM 3100
LiDAR system (Optech Company, Toronto, Canada), providing 76,426 points for the case
study building. The adopted reference system is the local mapping system established by
the Shanghai Municipality. The average point spacing is 0.16 m. The ALS point cloud is
shown in Fig. 7(a).

The TLS point cloud was captured using a focus 3-D phase-shift laser scanner (http://www
.faro.com/en-us/products/3d-surveying/faro-focus3d/overview) on March 2013. During
the data acquisition, 21 stations were set up at an average distance of 30 m apart. The point
cloud captured from each station was referenced to the topocentric vertical system of each
station, whose vertical axis had been aligned along the local plumb line using a bubble-level
sensor. After preprocessing, including cutting and compressing, all laser scans were registered
together using the ICP method. The output point clouds were referenced to a project topocentric
reference system (the intrinsic reference system of the first station was assumed to establish
the TLS datum) and consisted of a total of 635,941 points with an average point spacing of
0.12 m. The TLS point cloud is shown in Fig. 7(b).

A second case study is the Shanghai Ocean Aquarium, which includes two adjacent build-
ings. The sizes of the two buildings are 65 m × 65 m × 40 m and 48 m × 37 m × 20 m. As in
the Pudong ICC, the ALS point cloud and TLS point cloud were scanned using ALTM and
FARO Focus 3-D.

The ALS point cloud was captured in 2006 and consists of 37,901 points. The average point
spacing is approximately 0.16 m. The TLS point clouds were obtained at the end of December
2013. During the data acquisition, 14 stations were set up at a minimum distance of 20 m apart.
Taking the first reference system (RS) as the RS, after preprocessing the output point cloud
contains 381,658 points. The average point spacing of the TLS point cloud is 0.11 m. The data-
sets are shown in Fig. 8.
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5.2 Feature Extraction from ALS and TLS Datasets

5.2.1 Feature parameters extracted for the Pudong ICC building

The south and east façades of the Pudong ICC building consist of simple linear and polygonal
features (see Fig. 9). Consequently, the features can be easily extracted from both the TLS and
ALS point clouds using the methods introduced in Sec. 3.

In this experiment, four linear features (red lines in Fig. 9) were selected to apply the regis-
tration procedure. The feature lines were manually selected from the two datasets to make
sure the correspondence between the ALS and TLS features was correct. Table 1 shows the
computed slope and intercept parameters of the linear features in the horizontal planes of the
corresponding systems.

5.2.2 Feature parameters extracted for Shanghai Ocean Aquarium

There were eight linear features that could be extracted from the Shanghai Ocean Aquarium.
However, two of them were blocked by the adjacent walls and very few terrestrial point clouds
were acquired [see Figs. 8(b) and 10]. Hence, six features were then selected according to the
point distribution of the façades in this case study. The location of the features used and their
corresponding feature parameters are shown in Fig. 10 and Table 2.

Fig. 7 The first building used to assess the registration method (Pudong International Conference
Center—Pudong ICC): (a) ALS point cloud and (b) TLS point cloud.
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5.3 Computation of Parameters

5.3.1 Transformation parameters for Pudong ICC

Using the slope and intercept parameters extracted in Sec. 5.2.1 and the linearized Eqs. (27) and
(29) in Appendix A, the adjusted parameters of the simplified similarity transformation model
were calculated and are shown in Table 3.

Fig. 8 The second building (Shanghai Ocean Aquarium) used to assess the registration method:
(a) ALS point cloud and (b) TLS point cloud.

Fig. 9 The linear features extracted from the ALS and TLS datasets of the building adopted as
a case study. Numbers in this figure mean the ID of each feature.
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Table 1 The slope and intercept parameters of the linear features.

ID

Parameters of terrestrial line features Parameters of airborne line features

K B K B

1 1.0768 254.55 −1.6862 4865.53

2 −0.9278 84.73 0.5922 −796.06

3 1.0769 260.40 −1.6831 4866.25

4 −0.9278 84.33 0.5911 −791.97

Fig. 10 The linear features extracted from the ALS and TLS datasets on the Shanghai Ocean
Aquarium building. Letters in this figure denote the ID of each feature.

Table 2 The slope and intercept parameters of linear features.

ID

Parameters of terrestrial line features Parameters of airborne line features

K B K B

A −3.1912 −18.40 0.8074 −1552.38

B −3.1194 −234.07 0.8010 −1460.71

C 0.3217 −6.21 −1.2385 4494.07

D −3.1193 −75.86 0.8471 −1648.73

E 0.3197 −47.01 −1.3040 4430.80

F 0.3219 −64.99 −1.2374 4398.64
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5.3.2 Transformation parameters for Shanghai Ocean Aquarium building

Using the feature parameters listed in Table 2 and the linearized Eqs. (27) and (29), the trans-
formation parameters of the Shanghai Ocean Aquarium building were listed in Table 4.

5.4 Accuracy Evaluation

The real accuracy evaluation is important for a coordinate matching case. In this paper, some
points of two buildings were selected to implement the real accuracy evaluation processing.
Moreover, an overlap area of the Pudong ICC building exists in the eaves, therefore, a real
accuracy evaluation was also performed for this part.

5.4.1 Check point extraction and evaluation of the accuracy for
two buildings

In this experiment, the two kinds of checkpoints of the Pudong ICC building were selected to
evaluate the real horizontal and vertical accuracies after registration.

The first type (TYPE-1), contains five points and is the center of the sphere or cylinder.
Among them, two were the centers of spheres, and the other three were the centers of cylinders.
First, the points belonging to different cylinders and spheres were manually selected. Then,
a center-fitting program was applied to measure the corresponding primitives. The original
coordinates of the checkpoints in the source (TLS) and target (ALS) reference systems were
calculated.

The second type (TYPE-2) is the corner of the building roof and contains six points. The
coordinates of the second type of checkpoints were manually selected. Using the parameters of
the estimated simplified similarity transformation model, each checkpoint from the TLS point
cloud was mapped onto the target ALS system.

A comparison was then conducted to evaluate the difference between the transformed and
known coordinates. The results and RMSE of each set of coordinates are shown in Table 5,
where ΔP denotes the horizontal positional accuracy

Table 3 Results for the model parameters after the adjustment for the Pudong ICC building.

Parameters Value of the proposed method

α0 106.6149� 0.0248

Δx ðmÞ 2302.56� 0.24

Δy ðmÞ 641.01� 1.21

Δz ðmÞ 6.79� 0.02

μ 1.0074202� 0.00030

Table 4 Results for the model parameters after the adjustment for the Shanghai Ocean Aquarium
building.

Parameters Value of the proposed method

α0 249.1204� 0.0177

Δx ðmÞ 2965.71� 0.29

Δy ðmÞ 828.91� 0.88

Δz ðmÞ 4.79� 0.02

μ 1.0034707� 0.00020
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ΔP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔX2 þ ΔY2

p
. (20)

Then, the total transformation accuracy is evaluated by computing the RMSE of each coor-
dinate departure (see Table 5). Compared with the accuracy results of TYPE-1 and TYPE-2
checkpoints, we can find that the accuracy of TYPE-1 checkpoints is greater than TYPE-2.
This is because the TYPE-1 checkpoints are obtained by fitting a point cloud, and the accuracy
is better than TYPE-2 checkpoints.

Six corner points are also manually selected from the Shanghai Ocean Aquarium building.
The total transformation accuracy is evaluated by computing the RMSE of each coordinate
departure (see Table 6).

Comparing Table 6 with Table 5, we find that the horizontal accuracy of the two buildings
can reach 0.15 to 0.50 m. Also, the vertical accuracy is great than 0.25 m.

5.4.2 Overlap zone accuracy evaluation for Pudong ICC building

The eaves of the Pudong ICC (see line 2 part in Fig. 9) were used to evaluate the residuals after
registration in the overlap portion between the ALS and TLS datasets. The ALS system collected
the point’s coordinates of the eaves from the top view, while the TLS system captured the point’s

Table 5 Coordinate differences of checkpoints and corresponding root-mean-square error
(RMSE) of Pudong ICC building.

Type Index ΔX ΔY ΔZ ΔP RMSEΔX RMSEΔY RMSEΔZ

TYPE-1 S1 0.007 −0.031 −0.235 0.032 0.120 0.085 0.200

S2 −0.095 0.106 0.248 0.142

A1 −0.190 −0.041 −0.241 0.194

C1 0.149 0.010 0.147 0.149

C2 0.072 −0.149 0.081 0.165

TYPE-2 J1 0.006 −0.398 0.086 0.398 0.190 0.276 0.243

J2 −0.190 −0.362 0.107 0.408

J3 0.227 0.287 0.335 0.365

J4 0.035 0.078 0.392 0.085

J5 −0.287 −0.177 −0.222 0.337

J6 0.107 0.095 0.128 0.143

Table 6 Coordinate differences of checkpoints and corresponding RMSE of Shanghai Ocean
Aquarium building.

Index ΔX ΔY ΔZ ΔP RMSEΔX RMSEΔY RMSEΔZ

Q1 0.200 0.177 0.001 0.267 0.258 0.288 0.201

Q2 −0.279 0.361 0.147 0.456

Q3 0.293 −0.270 0.354 0.476

Q4 0.188 −0.294 0.065 0.486

Q5 0.158 −0.348 −0.139 0.382

Q6 −0.285 −0.136 0.368 0.408
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coordinates from the bottom view. Two main steps were performed. First, the ALS point cloud
was used to fit a plane. Then, the transferred TLS point cloud was projected to the fitted plane to
obtain the projection difference. The results are graphically shown in Fig. 11.

To evaluate the distribution of the difference levels, the residual data were sliced into nine
classes (shown in the first column of Table 7). The number of points in each class was calculated,
and the percentage and the cumulative percentage were also computed. It is clear that 99% of
the points were in the range between −0.3 and 0.3 m, which indicates that the calculated model
parameters worked to match the TLS and ALS point clouds.

5.5 Registration Results

According to the model parameters calculated in Sec. 5.3, the TLS point cloud is mapped onto
the ALS system. In Fig. 12, the registration results of the two buildings are shown. The color in
Fig. 12 represents the data sources of the point cloud. From these figures, we can conclude that
the computed parameters worked well for registering data between the reference systems.

Fig. 11 Residuals on the eaves of the Pudong ICC building between the ALS and TLS point
clouds after registration.

Table 7 Number of points in different layers.

Class (m) # Points Percentage (%) Cumulative percentage (%)

−0.3 to −0.2 2637 19.32 19.32

−0.2 to −0.1 3334 24.42 43.74

−0.1 to 0 2527 18.51 62.25

0 to 0.1 2082 15.25 77.50

0.1 to 0.2 1901 13.93 91.43

0.2 to 0.3 1040 7.62 99.05

0.3 to 0.4 120 0.88 99.93

0.4 to 0.5 2 0.01 99.94

0.5 to 0.6 8 0.06 100.00
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6 Discussion and Conclusion

With the rapid development of laser scanning technologies, airborne and terrestrial LiDAR data
have become important sources for 3-D city modeling and the high-resolution mapping of urban
environments. Data fusion of airborne and terrestrial point clouds is likely to be beneficial for the
completeness of building modeling because these sensors perform data acquisition from com-
plementary positions. Terrestrial laser scanners usually scan the building façades, while an ALS
scans the roof surface. The core issue of the registration method is the 3-D coordinate trans-
formation and parameter calculation. In a more general case, a 3-D similarity transformation
model can be adopted to account for differences in scale that might arise, for example,
when one dataset is derived from an image-based photogrammetric reconstruction. The manual
selection of common points to compute such a transformation is challenging because of the
different coverages of the two datasets and the discrete sample modes. This problem is partly
overcome here by introducing a new data registration approach based on linear and polygonal
features extracted from both the airborne and terrestrial point clouds. The key procedures of this
method are as follows: (1) feature extraction and feature parameter calculation in the correspond-
ing reference systems; (2) horizontal model parameter estimation by exploiting linear and
polygonal features as constraints after projection onto a horizontal plane; and (3) vertical
model parameter computation based on the difference in point height on the building roof
between terrestrial and airborne LiDAR data. The experimental results demonstrated that the

Fig. 12 Visualization of the registration results: (a) Shanghai Pudong ICC and (b) Shanghai
Ocean Aquarium.
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proposed method works well for registration between the two types of point clouds. The TLS and
ALS point clouds of two buildings were selected to implement the registration. The evaluated
accuracy for one of the case studies was �15 cm in the horizontal direction and �20 cm in
elevation, respectively, in the case of a dataset for which the average distance of the laser scan-
ning point cloud was 12 cm for the terrestrial dataset and 16 cm for the airborne dataset. Further
analysis is needed to determine the sensitivity of this procedure to larger point spacing in both
point clouds, especially in the airborne dataset, where lower sampling steps at the 50 to 100 cm
level are quite common.

The application of the proposed method has some strict requirements. The main condition is
that both raw datasets must be referred to as topocentric reference systems, with the vertical Z-
axis aligned with the local plumb line. This condition is easy to fulfill in ALS because the data
are normally rendered in a topographic reference system. The condition can also be easily
achieved with modern terrestrial laser scanners, which are equipped with internal leveling sen-
sors able to compensate for the Z-axis direction. Alternatively, external level plummets or a set of
ground control points measured within a geodetic network can provide topocentric coordinates.
Of course, this condition may be imperfect in real datasets due to residual errors. When the object
lacks a large vertical extension, errors in the vertical alignment of the terrestrial dataset may be
neglected. However, they could be significant for high-rise buildings. In this case, the extraction
and registration of vertical features between the datasets could help to overcome this problem.

Another requirement of the proposed method involves the roof shape of the building. The
precondition for applying this method to compute the horizontal transformation parameters is
that the extracted features (both lines and polygons) must be the same objects in the real scene. In
the case of an overhanging roof, the feature lines of the ALS point cloud and the feature polygons
of the TLS point cloud may be different. In this case, the proposed method could not be used due
to the lack of common feature constraints.

The initial values of the model parameters, especially the horizontal parameters, are impor-
tant for quick convergence to the optimal values. There are two possible solutions. The first is to
select some approximate common points and calculate the model parameters by traditional
methods, then use the results as initial values. The second solution is based on the use of
the feature-constraint functions Eqs. (15) and (16) to calculate the initial value based on two
pairs of corresponding features.

The focus of this paper is on the registration procedure, including the model selection and
the extraction of common features for its estimate. Further improvements could be based on
the use of a wider class of common features to compute the registration parameters.41

To incorporate this procedure in an operational pipeline for the fusion of airborne and laser
scanning data over large areas, other tasks should be automated, such as the extraction of single
buildings from an airborne point cloud. However, these aspects have been widely addressed in
the existing literature and have not been dealt with here.42 In a similar way, the labeling of cor-
responding features during different steps is manually accomplished now, but the extension
toward a fully automatic pipeline is needed for extensive application of this technique.

As already mentioned in Sec. 1, this method could be applied for refining coregistration when
terrestrial data have been geo-referenced using a “direct” technique. This case also includes data
gathered by a mobile laser scanning system to increase productivity.43 In particular, this field of
application seems highly promising and deserves focused investigation.

Appendix A
Derivation of parameter α from Eq. (15):

VKIJ
A
¼ − tan α0 þ Kij

T

1þ Kij
T tan α0

þ
�
∂KIJ

A

∂α

�
0

dα − KIJ
A ; (21)

where α0 denotes the initial value of parameter α; dα is the estimated correction of α0; and VKIJ
A
is

the correction of observation KIJ
A . The coefficient ½ð∂KIJ

A Þ∕ð∂αÞ�0 is given by
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�
∂KIJ

A

∂α

�
0

¼ Kij2

T þ 1

ρðcos α0 þ Kij
T sin α0Þ2 . (22)

Let lKIJ
A
be the constant term of Eq. (21)

lKIJ
A
¼ KIJ

A −
− tan α0 þ Kij

T

1þ Kij
T tan α0

. (23)

Analogously, Eq. (24) will be converted by total differential to Eq. (16)

VBIJ
A
¼ BIJ0

A þ
�
∂BIJ

A

∂α

�
0

dαþ
�
∂BIJ

A

∂Δx

�
0

dΔxþ
�
∂BIJ

A

∂Δy

�
0

dΔyþ
�
∂BIJ

A

∂μ

�
0

dμ − BIJ
A ; (24)

where the coefficients are as follows:8>>>>>>>>>>><>>>>>>>>>>>:

BIJ0
A ¼ μ0Bij

T
þΔy0ðcos α0þKij

T
sin α0ÞþΔx0ðsin α0þKij

T
cos α0Þ

cos α0þKij
T
sin α0�

∂BIJ
A

∂α

�
0
¼ μ0Bij

T
ðsin α0−Bij

T
cos α0ÞþΔx0ð1þKij2

T
Þ

ρ 0 0ðcos α0þKij
T
sin α0Þ2�

∂BIJ
A

∂Δx

�
0
¼ sin α0−Kij

T
cos α0
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sin α0�
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�
0
¼ 1�

∂BIJ
A

∂μ

�
0
¼ Bij

T

cos α0þKij
T
sin α0

. (25)

Let lBIJ
A
be the constant term of Eq. (24)

lBIJ
A
¼ BIJ

A − BIJ0
A . (26)

According to the above analysis, the plane parameters of the simplified Bursa model can be
calculated by

V2q×1 ¼ A2q×4
ddΞh − l2q×1; (27)

where q denotes the number of line-feature pairs, V denotes the residuals of the observations
after the LS estimate (the slope and intercept value of line-feature pairs), and ddΞh denotes the
correction to the model parameters Ξh. The design matrix A is as follows:

A ¼

266664
Kij2

T
þ1

ρ 0 0ðcos α0þKij
T
sin α0Þ2 0 0 0

μ0Bij
T
ðsin α0−Bij

T
cos α0ÞþΔx0ð1þKij2

T
Þ

ρ 0 0ðcos α0þKij
T
sin α0Þ2

sin α0−Kij
T
cos α0

cos α0þKij
T
sin α0

1
Bij
T

cos α0þKij
T
sin α0

· · · · · · · · · · · ·
· · · · · · · · · · · ·

377775
2q×4

. (28)

Vector l includes the constant terms

l ¼

266664
KIJ

A − − tan α0þKij
T

1þKij
T
tan α0

BIJ
A − μ0Bij

T
þΔy0ðcos α0þKij

T
sin α0ÞþΔx0ð−Kij

T
cos α0þsin α0Þ

cos α0þKij
T
sin α0

· · ·
· · ·

377775
2q×1

. (29)
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