
ARTICLE

Received 9 Sep 2014 | Accepted 22 Oct 2014 | Published 24 Nov 2014

Ubiquitous long-range antiferromagnetic coupling
across the interface between superconducting and
ferromagnetic oxides
G.M. De Luca1, G. Ghiringhelli2, C.A. Perroni1, V. Cataudella1, F. Chiarella1, C. Cantoni3, A.R. Lupini3,

N.B. Brookes4, M. Huijben5, G. Koster5, G. Rijnders5 & M. Salluzzo1

The so-called proximity effect is the manifestation, across an interface, of the systematic

competition between magnetic order and superconductivity. This phenomenon has been

well documented and understood for conventional superconductors coupled with metallic

ferromagnets; however it is still less known for oxide materials, where much higher critical

temperatures are offered by copper oxide-based superconductors. Here we show that, even

in the absence of direct Cu–O–Mn covalent bonding, the interfacial CuO2 planes of super-

conducting La1.85Sr0.15CuO4 thin films develop weak ferromagnetism associated to the charge

transfer of spin-polarised electrons from the La0.66Sr0.33MnO3 ferromagnet. Theoretical

modelling confirms that this effect is general to all cuprate/manganite heterostructures and

the presence of direct bonding only affects the strength of the coupling. The Dzyaloshinskii–

Moriya interaction, also at the origin of the weak ferromagnetism of bulk cuprates, propagates

the magnetisation from the interface CuO2 planes into the superconductor, eventually

depressing its critical temperature.
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T
he interest for superconducting/ferromagnetic (S/F)
heterostructures1,2 has been recently renewed by the
theoretical predictions of new fascinating interfacial

phenomena, such as triplet superconductivity and P-Josephson
effects in mesa-junctions made of two low-Tc superconductors
coupled through a ferromagnetic barrier3. While the
understanding of S/F heterostructures based on classical low-Tc

metals has been progressing considerably4–6, a proper description
of S/F oxide type interfaces is still lacking, although several
intriguing interfacial phenomena have been reported7–10. To date,
most work in this field has been focusing on the coupling of
YBa2Cu3O7-d (YBCO) and half-metallic manganites, like
La0.66Ca0.33MnO3 (LCMO) or La0.66Sr0.33MnO3 (LSMO), being
the superconducting and ferromagnetic layer, respectively.
Among these, we cite the ‘induced’ ferromagnetism in
the CuO2 planes11 accompanied by interface orbital
reconstructions12, the giant modulation of the magnetisation
across the superconducting transition in ferromagnetic
manganite layers13 and the long-range transfer of electron–
phonon coupling in oxide superlattices14. In YBa2Cu3O7/LCMO
superlattices, the weak ferromagnetism in the interfacial CuO2

planes and the antiferromagnetic (AF) coupling between Cu
and Mn spins have both been attributed to the formation of a
Mn3d-O2p-Cu3d molecular orbital14,15. This oxygen-mediated
link between copper and manganese ions, perpendicular to the
interface, has been assumed to involve only the Cu(2) sites
belonging to the superconducting CuO2 planes, whereas Cu(1)
sites, lying in the charge-reservoir and capable of accommodating
a variable amount of oxygen by the formation of the so-called
chains, are supposed to play no direct role. However, the role of
the Mn–O–Cu(2) bridge for the interfacial magnetic coupling, as
well as its relationship to the reduced superconducting transition
temperatures in cuprate/manganite heterostructures, remains to
be demonstrated.

In this work, we use atomic layer engineering of complex oxide
materials to study the electronic and magnetic properties of
cuprate/manganite interfaces characterised by the absence of a
direct Cu–O–Mn interfacial bonding. By combining atomic-
resolved electron energy-loss spectroscopy (EELS), polarisation-
dependent X-ray absorption spectroscopy (XAS) and theoretical
modelling, we show that, at the interface with a ferromagnetic
manganite, the CuO2 planes of a superconducting cuprate always
develop a weak ferromagnetism, associated with the transfer of
the spin-polarised electrons from the bulk of the ferromagnetic
metal to the interface. Moreover the magnetisation propagates
inside the superconductor via the Dzyaloshinskii–Moriya (DM)
interaction and modifies the magnetic correlations within and
among the CuO2 planes, ultimately reducing Tc in cuprate/
manganite superlattices.

Results
Sample fabrication and structural atomic characterisation.
Superconducting La1.85Sr0.15CuO4 (LSCO) (Tc¼ 25 K (ref. 15)),
ferromagnetic LSMO films (TC¼ 350 K (ref. 16)) and (LSCO/
LSMO) multilayers were deposited by electron diffraction-
assisted pulsed laser deposition (PLD) on TiO2-terminated
SrTiO3 (001) substrates. The MLs were composed of five
stacked (LSMO)m/(LSCO)n bilayer units, with the LSCO
thickness fixed at 23 u.c. (n¼ 23), and the LSMO evolving from
m¼ 50 u.c. next to the substrate to m¼ 15 u.c. at the topmost
level. In heteroepitaxy both materials grow with their bulk
crystalline structure: along the c axis LSMO follows the AO–BO2

plane sequence of perovskites (A¼ La,Sr; B¼Mn), while LSCO
adopts the AO–CO2–AO–AO–CO2–AO stacking (A¼ La,Sr;
C¼Cu), where the adjacent AO layers are in-plane shifted.

Therefore, two different types of interfaces exist within these
heterostructures, depending on the growth sequence (see Fig. 1):
the first one (type A), with LSCO on top of LSMO, forms a direct
Mn–O–Cu bond (AO–BO2–AO–CO2–AO); the other (type B),
with LSMO deposited onto LSCO, does not have such direct
bonding (AO–CO2–AO–AO–BO2–AO). The investigation of the
type B interface, subject of this contribution, allows clarifying the
role of the Mn–O–Cu bridge on the interfacial magnetic coupling
by comparing the local magnetic properties through XAS
and EELS.

The exact stacking sequence at the interfaces is illustrated in
Fig. 1 by atomically resolved images obtained by scanning
transmission electron microscopy (STEM) using a high-angle
annular dark field (HAADF) detector. EELS results, with atomic-
scale spatial resolution, have been used to determine the chemical
species and the oxidation state. In both materials, La(Sr) columns
are the brightest and, as Cu is brighter than Mn, the LSCO layers
appear overall at lighter grey-tone than LSMO. According to
STEM images, at interface A the CuO2 and MnO2 planes are
separated by one La(Sr)O plane (Fig. 1a), and Cu and Mn ions are
bridged through an oxygen ion, whereas at interface B two
La(Sr)O planes separate the MnO2 and CuO2 atomic layers
(Fig. 1b), and Mn and Cu ions are displaced in the plane by a
(1/2, 1/2) vector across the interface. Consequently, interface A
is analogous to the Mn–O–Cu bond formed between YBCO
and LCMO, whereas the direct Mn–O–Cu bond is absent for
interface B.

Mapping the Cu and Mn valence across the interface. We have
mapped the change in the L2,3 edges of Cu and Mn, and K edge of
oxygen across the two interfaces using STEM/EELS. Even in the
absence of direct Cu–O–Mn bonding and despite a larger atomic
separation, we have observed a substantial charge transfer from
the LSMO to the LSCO layer in type B, as shown qualitatively in
Fig. 1c, where we plot Mn and Cu L2,3 EELS spectra across the
interface. The spectra show a progressive decrease of Cu and
Mn valence, manifested in a change of the L3 to L2 ratio, in the
layers located at the interface, suggesting a transfer of electrons
from the bulk manganite film to the manganite and cuprate
interfacial layers17–19. To quantify the effect, in Fig. 1d we show
the layer-resolved Mn valence calculated from the analysis
of O–K-edge spectra18,20, which is a better quantitative
measurement of the Mn-oxidation state (Supplementary Fig. 3)
(whereas oxygen K edge spectra can always be used to measure
the Mn valence in manganites, it is unrealiable for cuprate
superconductors after air exposure. On the other hand,
although the Cu L2,3 spectra are usually too noisy for a
quantitative evaluation of the Cu valence, at a qualitative level
they undeniably show the progressive increase of electron
occupation at the interface). We can see that the Mn valence at
the interface is close to Mn3þ and progressively goes to values
slightly above the bulk 3.33 oxidation state expected from the
La/Sr ratio. These data indicate that for both MnO2 and CuO2

planes the electron occupation is higher at the interface than far
from it. Similar results were observed in LCMO/YBCO
multilayers21,22, and it can be interpreted as transfer of
electrons from inner manganite unit cells to the interfacial
manganite and cuprate layers. Note that the charge transfer takes
place over 4–5 layers of both CuO2 and MnO2 (that is, 1.6 nm on
both sides).

Electronic and magnetic properties by X-ray spectroscopy.
To probe the magnetic properties and the orbital occupation of
the interface B, we have used polarisation-dependent XAS at
the L2,3 edges of Cu and Mn, at low temperature (10 K) and in
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high magnetic field (up to 6 T). In particular we have chosen a
multi-layer having, on top of the LSMO/LSCO sequence descri-
bed above, a thin (6 nm) LSMO film. By recording simultaneously
the surface-sensitive (probing depth B6 nm) total electron yield
(TEY) and the bulk-sensitive (probing depth 450 nm) fluores-
cence yield (FY) signals, we could reliably isolate the signal
coming from the shallowest interface, which is of type B
(Supplementary Fig. 5). We remind here that by using circularly
polarised photons, the X-ray magnetic circular dichroism
(XMCD) spectra provide information on the spin and orbital
magnetic moments23–25, whereas X-ray linear dichroism (XLD)
can be used to determine the orientation of the empty 3d
orbitals26,27. In this way even tiny magnetic moments and orbital
anisotropies can be detected.

As previously shown in ref. 24, a small XMCD signal is
measured already in isolated LSCO films under a sufficiently
strong magnetic field (41 T), with the sign of the dichroism
(negative at L3 and positive at L2 in accordance with the usual
conventions) proper of a Cu magnetic moment parallel to the
applied field. This XMCD signal is due to the canting of the Cu
spins out of the CuO2 planes, it has been found also in other
cuprates24 including YBCO, and it is a consequence of the DM
interaction. What happens is that in the strong magnetic field the
weak AF coupling between neighbour CuO2 planes is overcome
by the DM interaction, which favours a ferromagnetic alignment
of the out-of-plane spin component24. On the other hand, at the
LSMO/LSCO type B interface, we find a different behaviour.
A dichroism signal is observed both at Mn and Cu also in
relatively small fields, down to 0.1 T. As shown in Fig. 2, below
1 T the Cu moments align opposite to the applied field and to Mn
spins, but for higher fields the Cu dichroism reverses sign,

indicating that above 2 T the Cu and Mn moments are both
parallel to the external field. The low-field behaviour is the same
as in LCMO/YBCO interface in refs 11,28,29, that is, the
interfacial CuO2 planes are antiferromagnetically coupled to the
ferromagnetic manganite layers even without a direct Cu–O–Mn
bonding and, consequently, without a substantial orbital
reconstruction. The AF coupling is compensated by a magnetic
field of B2 T.
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Figure 2 | XMCD spectra as function of the magnetic field. Evolution

vs field of the Mn and Cu L2,3 XMCD spectra of a (LSMO)m/(LSCO)23uc

multi-layer covered by a 6 nm ferromagnetic LSMO layer. The spectra,

measured by TEY at normal incidence, have been normalised to the

maximum of the XAS intensity at L3. The magnetic field was parallel to

the incident beam and to the crystalline c axis. For a more direct

comparison, the Cu XMCD signal has been amplified by a factor 15.
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interface region). A constant background has been subtracted and the spectra have been normalised to the L2 edge. The Cu spectra have been smoothed

by adjacent averaging. (d) Valence of Mn as function of the atomic layer determined from the O-K spectra of LSMO layer using the method
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To identify the role of the orbital occupation on the induced
magnetism, we have measured Cu L2,3 XLD of the interface B.
The very-strong linear dichroism, determined by high (very-low)
absorption of photons with polarisation perpendicular (parallel)
to the c axis, confirms that LSCO at the interface retains the large
bulk orbital anisotropy because of the almost exclusive x2� y2

symmetry of the empty 3d states26,30. Nonetheless FY and TEY
signals show a remarkable difference in the E//c component, as
highlighted by the inset of Fig. 3: after normalisation of the
respective in-plane spectra, the TEY spectrum, dominated by the
signal from the interface, is two times stronger than the one
measured in the bulk-sensitive FY mode. It is also shifted to lower
energy, indicating the formation of a state mainly composed by
Cu 3d3z2� r2 orbitals. However, the redistribution between in-
plane and out-of-plane orbitals at the interface is much weaker
than reported for LCMO/YBCO SLs12. Thus in our LSCO/LSMO
multilayers, we observe the same magnetic reconstruction found
in LCMO/YBCO, but without substantial modifications of the Cu
orbital occupation, as one should expect in the absence of the
direct Cu–O–Mn bonding. This means that the AF coupling does
not need a straight Mn–O–Cu bridge.

Theoretical modelling. The results are explained quantitatively
by a theoretical model capable of reproducing the two following
key experimental findings: in both LSMO/LSCO and LCMO/
YBCO systems the main electronic modification at the interface
with respect to the bulk consists of an increased Cu 3d3z2� r2

character; even in isolated superconducting layers the Cu–Cu DM
interaction competes with the weak out-of-plane AF exchange, so
that a moderate magnetic field favours a parallel alignment
of out-of-plane components of Cu spins even in the bulk
(Supplementary Fig. 6), while the in-plane components keep the
usual short-range AF coupling. Consequently, by extending the
work of Salafranca and Okamoto31, we have used a two-band
version of cuprate model Hamiltonian, derived from Cu 3d3z2� r2

and 3dx2� y2 orbitals whose energy separation has been taken
from our recent experimental inelastic X-ray scattering studies of
ref. 32 (Supplementary Note 4 and Supplementary Fig. 10).
For manganites, we consider a single band with eg character

(Supplementary Note 5). Compared with the bulk charge
distribution, the excess positive charge of the La/Sr layers at the
interface B creates an electrostatic potential well. As shown in the
Supplementary Notes 6 and 7 and Supplementary Figs 7–9, these
electrostatic effects have been explicitly included in the
calculations. The effects of an external magnetic field and two-
body interactions, such as DM term in the cuprate, have
been included within a low-temperature mean-field approach
combining complex magnetic solutions together with
superconducting d-wave pairing. Finally, interface effects were
simulated by including in the Hamiltonian an explicit tunnelling
term for the charge transfer between manganite and cuprate, and
a term, called HA, accounting for the inter-layer AF coupling with
coupling constant JA

31.
The calculated layer-resolved band occupations indicate that

the LSCO and the LSMO electron density profile is perturbed by
the combined effect of the potential well and of the charge
transfer of spin-polarised electrons from the manganite to the
cuprate. As shown in Fig. 4a, the Cu 3dz2 orbital is losing
electrons at the interface, while remaining essentially unchanged
in all the other layers; on the contrary the Cu 3dx2� y2 electron
occupation increases at the interface. These results are confirmed
qualitatively by the comparison between orbital selective bulk and
interface XAS data (Supplementary Fig. 5). On the other hand the
Mn total electron density at the interface is larger than the
nominal bulk value 0.66 (in particular it is B1 at the interface)
and decreases to a value close to, but smaller than, the nominal
one only after five planes. The theoretical predictions are in fair
agreement with the experimental data. The layer-resolved Mn
valence measured by EELS of Fig. 1d shows the same trend
predicted by theory, with a quite good quantitative agreement. In
particular, the interfacial Mn valence evolves from B3 (electron
occupation B1) at the interface, to B3.4 (electron occupation
B0.6), slightly larger than the nominal bulk valence, 10 u.c. from
the interface. Concerning the electron occupation of copper, a
quantitative comparison between experimental results and
theoretical calculations is hindered by the low signal-to-noise
ratio in the experimental data. Nevertheless we observe a
qualitative agreement between the EELS results of Fig. 1c and
theory of Fig. 4a, both showing an increase of the interfacial
electron occupation. This trend is also confirmed by a
comparison between bulk (FY) and interface sensitive (TEY)
XAS spectra as shown in Supplementary Fig. 5.

The calculations provide also a layer-resolved map of the Cu
spin component along the c axis, that is, perpendicular to the
interface (Supplementary Note 8). In a LSCO single layer film, at
zero field, the perpendicular component of the magnetisation,
related to the spin canting, oscillates around a zero mean value,
because of the AF exchange between adjacent CuO2 planes. On
the other hand, the magnetisation profile changes drastically in
the case of the cuprate/manganite interface. The first two layers
are always antiferromagnetically coupled to the LSMO across the
interface (Fig. 4b). Thus, the manganite film acts as an exchange
biasing field for the weakly ferromagnetic cuprate: below a certain
value of the external field (2 T) the antiparallel coupling of the
first two Cu layers dominates, so that the overall magnetisation is
small with a negative average value and opposite to the manganite
(Fig. 4b). At higher fields (42 T), although the antiparallel
orientation of the first interfacial planes is maintained, the rest of
the LSCO orients parallel to the external field. Indeed, the role of
the DM term is to ferromagnetically correlate the out-of-plane
component of Cu spins of neighbour CuO2 planes, while the
strong in-plane short-range AF coupling still dominates even at
the optimal doping, as demonstrated by the persistence of
collective magnetic excitations observed by resonant inelastic
X-ray scattering33. In Fig. 4c, we show that the calculated average
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magnetisation along the z axis omz4¼Sizmz(iz)/Nz is linear as
function of the magnetic field for different values of the exchange
term JA. It is negative for small magnetic fields, and positive for
large fields vanishing at fields of the order of 2 T, in fair
agreement with XMCD data (see also Supplementary Figs 11
and 12). The comparison with the experimental data (red
squares) obtained with the sum rules23,24,34 can be used
to quantify the value of JA. For LSCO coupled to LSMO
(interface B), we have found JAE0.15 t, four times smaller than
what was estimated in previous experiments for YBCO31.

Discussion
The main outcome of this work is schematically pictured in Fig. 5:
the charge transfer of spin-polarised electrons from the
manganite to the cuprate layer substantially modifies the
magnetisation profile and, eventually, the magnetic correlations

of several CuO2 planes, beyond the interfacial one. It is thus a
general property of to cuprate/manganite heterostructures and
interfaces. The charge transfer modifies the superconducting
doping only within 1–4 CuO2 layers at the interface while, as
shown by our calculations, the magnetisation profile in the
cuprate layer is perturbed over at least 10–15 atomic layers,
in agreement with the estimates made by Giblin et al.35 for
YBCO/LCMO. The reduction of the critical temperature in
our cuprate/manganite multilayers (more than 10 K, see
Supplementary Materials) cannot be explained by the modest
change of doping occurring in the first interfacial CuO2 layers.
On the other hand, the perturbation of magnetic correlations
among the CuO2 planes, because of the magnetic proximity effect,
extending deeper in the cuprate layers, is likely to have the main
role in the suppression of Tc. This takes place, for example, by the
stabilisation or enhancement of electronic orders in competition
with superconductivity (such as the charge ordering
recently discovered in the superconducting cuprates36). This
interpretation is in agreement with other studies and particular
with ref. 8, where it was demonstrated that the suppression of
coherent Drude spectral weight does not take place in SLs where
the manganite layer is replaced by a paramagnetic metallic
compound like LaNiO3, confirming the important role played by
the interplay between magnetism and superconductivity in these
systems.

Methods
Samples. The LSCO/LSMO multilayers, were grown by reflection high-energy
electron diffraction-assisted PLD on TiO2-terminated SrTiO3 single crystals,
obtained following the Kawasaki technique, in a BHF solution (pH¼ 5.5)37, using a
KrF laser (l¼ 248 nm) with fluency of 1.2 J cm� 2 and a repetition rate of 4 Hz.
During the deposition the temperature was kept at 750 �C in oxygen pressure of
0.2 mbar. After the growth the sample was cooled down in oxygen atmosphere to
avoid the formation of oxygen vacancies. The superlattices were characterised
ex situ by resistivity and magnetisation measurements (Supplementary Fig. 1 and
Supplementary Note 1) with a PPMS (Physical Properties Measurement System)
system as function of the temperature.

Low-temperature magnetic hysteresis loops on a single LSMO film, showed that
the easy axis of magnetisation is parallel to the interface plane, with a coercive field
below 0.1 T. By Xx-ray characterisation we found that the c axis of LSCO of
1.32 nm is perfectly correlated to the Tc of films deposited by PLD and cooled down
in molecular oxygen for the x¼ 0.15 composition, as reported in ref. 28.

STEM and EELS characterisations. The structural and chemical integrity of the
LSMO/LSCO multilayers were investigated by aberration-corrected STEM and
EELS carried out in a Nion UltraSTEM (Nion) microscope operating at 100 keV
and equipped with a cold field emission gun, a third generation C3/C5 aberration
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weak fields the DM interaction propagates the antiparallel orientation of Cu

with respect to Mn far from the interface, whereas for H42 T the external

field establishes a parallel direction as in bulk LSCO.
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corrector and a Gatan Enfina EEL spectrometer (Gatan) (Supplementary Fig. 2 and
Supplementary Note 2). The abruptness of the interfaces and the interfacial atomic
plane stacking were investigated by analysing the normalised integrated intensities
of the Cu L2,3 and the Mn-L2,3 EELS edges as a function of position, and the
intensity of the HAADF images, which is proportional to Z2, where Z is the atomic
number. Spectrum images were acquired on a 5� 13 square grid, with spacing
equal to B0.8 a, where a is the pseudocubic LSMO lattice parameter. Within each
square, the electron beam performed a subscan on a 16� 16 grid and the exposure
time for each square was set to 2 s. These conditions were chosen to maximize the
Cu signal, which tends to be largely masked by the extended fine structure of the
strong, preceding La-M4,5 edge, and to minimize sample drift by reducing the total
acquisition time. The spectra were then deconvolved to eliminate the effect of
plural scattering through the foil thickness estimated equal to 0.6 l (l; electron
mean free path) using a low-loss spectrum image collected immediately after the
acquisition of the core-loss spectra.

XAS, XMCD and XLD measurements. Soft XAS was performed at the ID08 beam
line of the European Synchrotron Radiation Facility. The APPLE II type undulator
source allows a full control of the X-ray beam circular and linear polarisation.

The linear polarisation direction, in XLD, could be oriented either in the ab
plane of the samples or at an angle from it. Having the polarisation either vertical V
or horizontal H in the laboratory frame, with the sample mounted having a vertical
ab plane, we measured XAS spectra at the incident angle y¼ 70� (Supplementary
Note 3 and Supplementary Fig. 4).

In circular polarisation, we have the XMCD signal, which is the difference in the
absorption of light due to a reversal of the light polarisation or magnetisation. The
magnetic field can be swept from þ 5 to � 5 T in the direction of the X-rays beam,
in a rate of 3 T min� 1. The minimum temperature on the sample is around 8 K. In
this experiment up to 32 Cu L-edge XAS spectra, acquired with plus and minus
helicities, have been averaged to eliminate any source of systematic error and to
reduce the noise level. We have performed measurements in grazing incidence and
normal incidence conditions. The sum rules were used to calculate the spin and
orbital moments on the Cu L2,3 edge, following the works in refs 23,24,34. During
XLD and XMCD experiment the spectra were acquired simultaneously in both FY
and TEY configurations. The FY measurements were used to determine the bulk
electronic properties (probing a depth of the order of (6–10 nm) of the LSCO
superconducting layer (Supplementary Fig. 5).

Theory. Theoretical calculations are based on inhomogeneous mean-field
solutions of the heterostructure.

Combined magnetic and superconducting order parameters have been analysed
in the cuprate layers. Along the z axis, the size of the cuprate is equal to that
manganite and is equivalent to Nz¼ 24 planes (see SI-theory). Because of the
breaking of the translation invariance along the z axis, order parameters and
density occupations are self-consistently calculated plane by plane.
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