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ABSTRACT 
 

Models of hysteresis are employed for simulating control devices in complex 
structural systems. This chapter is devoted firstly to review the existent literature on 
passive control system modeling. Subsequently, the exposition is focused on their 
innovative development represented by the semi-active improvement as one of the most 
recent solutions in the field of numerical simulation of structural control systems. Some 
examples of application are finally given. 
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INTRODUCTION 
 
Phenomenological models of mechanical passive systems with hysteresis can be 

employed for simulating dampers or isolation devices into structural models, both with the 
aim of evaluating their effects at a design stage for new buildings or for a supplementary 
implementation on existing ones. Their mathematical formulation usually allows their 
application in refined structural finite element models or in simpler closed form analytical 
approaches. 
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A review of existing literature in the field of passive systems modeling is summarized in 
the first section of the chapter, spreading from recent advances on the dissipative models of 
hysteresis to numerical solution adopted for reproducing the characteristics of base-isolation 
systems, with special care to rubber bearings. 

An innovative semi-active technology for control systems has been introduced in recent 
decades as a progress toward more efficient and adaptable solutions, with respect to the 
classical passive ones. Several examples are reported to the aim of describing the current 
research trend. Rearranging control reactions simultaneously with the hazardous excitation, 
provides enhanced structural behavior for improved usefulness and safety. Consequently, 
current numerical simulation procedures, which proved to be effective for the passive imple-
mentation, are expected to include the semi-active description as well. 

Along with, the second section of the chapter is focused on existent numerical metho-
dologies for simulating the semi-active modulation of hysteresis components in real time. A 
recently proposed semi-active developments of a wide employed passive model is discussed. 
Special attention will be given to the use of the innovative model for design issues and to its 
adoption in developing new semi-active control laws for driving semi-active dissipative 
devices. The theoretical formulation of the original settlement is discussed, allowing to focus 
on the way for tuning the parameters which can be modified on-line for modulating the 
dissipative component. Therefore, special care is given to the methodology for embedding 
new algorithms into the analytical formulation of the model and for testing their efficiency. 

In the remaining of this chapter, the general capability of the previously discussed 
numerical approaches is presented with applications to complex structural systems and 
reference to existing studies from literature. Mitigation of direct dynamic effects (e.g. 
acceleration, displacements) induced by earthquake and wind loadings represents the most 
expected purpose of structural control discipline. 

However, in conclusion, attention is also given to the positive outcomes related to 
indirect effects, coming from the dampers implementation on buildings. 

 
 

OVERVIEW ON STRUCTURAL CONTROL 
 
Passive systems of vibration protection can be presented as the simplest typology of 

structural control solutions: the control device works without using data collected from other 
elements as sensors. The passive protection can be considered asymptotically stable. 

Active systems are the most effective in the vibration protection of mechanical systems. 
However, they are complicated by a large number of elements which participate in the input 
data processing and the formation of the control forces. They are sensors, actuator devices, 
and other facilities, acting in the amplification and manipulation of data. 

The Semi-active system can be considered as passive system with smart qualities: they 
able to change actively its characteristic, driven by an external command, manually or 
automatically. 

Hybrid control systems employ at the same time passive solutions with active or semi-
active ones. When active or semi-active systems are considered, the control forces are 
processed by special algorithms collecting informations on the current conditions from an 
open or a closed loop data flow. 



Hysteresis Modulation in Structural Control Systems and Semi-Active Implementation 3

An open loop control system is a combination in series of elements, from a starting point 
to another point in a flow scheme. Its transfer function is the result of the product of each 
single element transfer function. A closed-loop system is a combination of elements with 
feedback connection [1]. 

 
 

PASSIVE NUMERICAL MODELS OF HYSTERESIS 
 

The Bouc-Wen Model 
 
The most eclectic phenomenological model of hysteretic mechanical systems reported in 

the present literature is probably the Bouc-Wen (BW) endochronic model [2, 3]. It has been 
selected by several Authors for the simulation of the hysteretic component for a wide range of 
control devices. The physical and mathematical consistency of that model [4] and the 
excellent correspondence between the experimental and numerical results are probably the 
main reasons which support and justify its frequent implementation. In this section the 
general approach to the oscillator dynamic equation with the BW model is summarized [5] 
and a number of results reported in the literature are also summarized. 

A hysteretic oscillator can be represented by the following equation of motion [6]: 
 

)(),( tfxxxcxm =Φ++ &&&&  (1) 
 

where x is the displacement, the simple superimposed dot means the first time derivative 
(velocity) and the double superimposed dot the second time derivative (acceleration). In 
equation (1), )(tf  is the force excitation depending on the time parameter t, m is the mass, c 

the damping coefficient and ),( xx &Φ  is the restoring force expressed by 
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The auxiliary variable z allows one to introduce a smooth hysteretic behavior; k is the 

pre-yielding stiffness, α represents the ratio between post and pre-yielding stiffness, managing 
all the intermediate yielding states. In particular, 1=α  provides an elastic response and 0=α  
an elastic-perfectly-plastic behavior. A, β, γ, n are time invariant parameters defining the 
amplitude and the shape of the cycles, the linearity in unloading and the smoothness of the 
transition from the pre- to the post-yield region. In detail, A is related to the initial stiffness, β 
adjusts the cycle amplitude and, as a result, the dissipation level (β�0 is employed for low 
energy dissipation), γ defines the unloading path in the hysteresis, n the smoothness of the 
transition. 

The consequential relationship between the model parameters that appear in equation (3) 
and the resulting shape of the obtained hysteresis loops is detailed in [7] using a special form 
of the BW model with normalization. 
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Division by m leads to a more classical form of the second order differential equation (1) 

in terms of the circular frequency 0ω  and the damping ratio ζ : 
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Re-arranging the governing equation (4) in the state space form, the following is 

obtained: 
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where xu1 =  and xu2 &= . The state space formulation is usefully employed for numerical 

implementation in standard computation environments, also going from single to multi-
degree-of-freedom systems. 

Several developments of the initial formulation of the BW model can be found in 
literature, among the others, for reproducing stiffness degradation in hysteretic systems [8], to 
recover Drucker postulate [9]. Next studies result in comprising additional terms and 
representing the pinching behavior, as observed in reinforced concrete and masonry structures 
[10, 11]. The biaxial extension was proposed on reinforced concrete beams [12] and 3D 
frames [13]. More recently the dynamic stability of the model has been investigated in [14], 
where the domain limits for the model parameters are fixed, the model passivity, among other 
general properties, is established in [15]. The nonlinear responses and bifurcations of one-dof 
BW hysteretic oscillators to harmonic excitations have been also investigated in [16]. 

 
 

Parameters Identification for the BW Model  
 
The identification issue can be approached by considering the physical significance of the 

parameters which define the BW model of hysteresis. Mass m and pre-yielding circular 

natural frequency 0ω  of the oscillator are related to pre-yielding stiffness k and the BW 

parameters α and A by the following equation: 
 

)]1(A[km2
0 ααω −+=  (6) 

 
Equation (6) is derived from the time derivative of equation (2) where z&  is replaced by 

its value when z=0. Consequently, equation (6) is the ratio between the restoring force 

),( xx &Φ  and relative displacement derivative with respect to time, i.e. x& . 

The identification of remaining parameters, namely γ and β, can be fixed by setting to 

zero the derivative z&  (simplifying by x& ) and replacing the expression for z as obtained in 
equation (2). In light of this comment, the following relation results: 
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From the definition of elastic force and equation (6) one obtains 
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With A=1 equation (8) can be rewritten as: 
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and equation (6) becomes 
 

km2
0 =ω

 (10) 
 
Equation (9) allows to define different yielding levels of the general BW signature, 

mainly focusing on the hysteresis cycle amplitude definition rather than on the theoretical 
elastic limit [8]. 

The parameters can satisfy the physical and mathematical consistency of the general 
passive BW formulation in equation (3), verifying some properties from [17] such as bounded 
stability of input and output, passivity among the others. More details can be also found in 
[6]. Figure 1 depicts different cycles of hysteresis reproduced by the BW model with essential 
parameters A = 1, n = 1, α = 0.0, β = γ = 40 m-1, k = 80000 kN/m, Φy = 1000 kN. Influence of 
their variation has been highlighted in Figure 1. 

 
 

Lund-Grenoble Friction Model 
 
Friction is a natural phenomenon that is quite complicate to model and it is also an 

important aspect of many control systems which are able to dissipate mechanical energy by 
hysteresis cycles, decoupling dynamic motion of the controlled object from its supports, and 
for high quality servo mechanisms and hydraulic systems as well. Consequently, an accurate 
model of such behavior results necessary to analyze stability, predict limit cycles and perform 
simulations among the others. 
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a      b 

 
c      d 

Figure 1. Hysteresis cycles reproduced by BW model: Φy = 1000, 2000, 3000 kN (a); n = 1, 2, 10 (b); α 
= 0.0, 0.02, 0.04 (c); k = 80000, 20000, 10000 kN/m (d). 

 
a      b 

Figure 2. Hysteresis cycles reproduced by LuGre model: (a) with different yielding limits (1000, 2000, 
3000 kN respectively through α = 80, 40, 26.5 m-1) and post-yielding behavior k=0, 80000x0.02, 
80000x0.04 kN/m. 

Classical friction models, such as Coulomb and viscous friction, can be useful in a 
number of existing numerical schemes. However, in applications with high precision posi-
tioning and with low velocity tracking, a more refined model is necessary. 
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The Lund-Grenoble (LuGre) model [18, 19] allows for a better description of the friction 
phenomena for low velocities and especially when crossing zero velocity occurs. Efficient 
simulations of a dynamic systems and control dampers are reported in literature (e.g. [20, 
21]). The following relations summarize the LuGre model: 

 

zxxz &&& α−=
 (11) 

 

0VzkxxzV ++++= εζβ &
 (12) 

 
where x is the state variable of the system, z the auxiliary variable, k is the pre-yielding 
stiffness and ζ  the damping coefficient, V is the force and α, β, ε are parameters defining 

amplitude and shape of the cycles. Figure 2 depicts different cycles of hysteresis reproduced 
by the LuGre model with basic parameters α = 80 m-1, β =80000 kN/m, ζ =k=ε=V0=0. 

 
 

Modeling Base Isolation Systems 
 
Among control systems, seismic isolation ones are probably the most known and adopted 

with succesful real world applications. Technology spreads from rubber bearings to pendulum 
systems, even if some peculiar innovations can also be noted ( e.g. [22]). Due to their reliable 
efficient behavior for protecting civil structures from earthquake loadings, isolation system 
solutions are also studied for special structures such as nuclear power plant buildings with 
some interesting applications. Furthermore, a consolidated interest on such control solutions 
covers different fields from research to recently proposed design standards [23]. 

In this light, as it is well known, high damping rubber bearings (HDRB) show an 
interesting non-linear mechanical behavior with hysteresis, characterized also by the 
scragging and Mullins’ effects (stiffness and damping degradation) by the horizontal stiffness 
variation (due to temperature and axial load), by strain-rate dependence and ageing. 

Precursor of a large family of numerical models for isoslation systems simulation, 
Ozdemir and Wen models [24, 25] of smooth hysteresis are probably the most eclectic 
phenomenological model presented in the present literature. Thanks to their physical and 
mathematical consistency, with an excellent correspondence between the experimental and 
numerical results, a number of developments have been established, from their original 
formulation, including new features and reproducing new technologies [26, 5]. 

An excellent overview on the present isolation knowledge, including some issues on 
modeling and analysis options as well, can be found in the research report by Grant et al. [27]. 
The main characteristics of a seismic isolation system are described, listing several models for 
the unidirectional numerical simulation. In conclusion, a bidirectional model is also proposed 
for representing the bearings response to 2D horizontal loading in terms of stiffness, damping 
and degradation, on the basis of a decomposition of the bearing resisting force as the sum of 
an elastic component (from Mooney-Rivlin strain energy function) and an hysteretic force. 

A non-differential unidirectional model for elastomeric isolation bearings has been 
proposed by Kikuchi and Aiken [28] as a development from the Fujita one, in order to 
improve the performance into the large strain range. 
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The Fujita model has the characteristic of including a procedure to update model 
parameters, in contrast with other differential models as Ozdemir or Wen one [24, 25]. The 
modeling approach proposed by Kikuchi and Aiken modifies the Fujita one in order to 
improve the performance of the modeling outcomes at high shear strain levels; however the 
effects of strain rate and of variation of axial load on the bearing hysteresis properties are 
neglected. 

Hwang et al. [29] developed an analytical unidirectional model from the proposed 
approach by Pan and Yang [30]. In this last, the shear force experienced by the isolator is 
attributed to the sum of a restoring force, describing the skeleton curve, and a damping force, 
adopted to represent the area of the hysteresis loop. Such model, however, results unable to 
reproduce the Mullins and describe the scragging effect on the isolation bearings. The 
development by Hwang et al. model for high damping elastomeric isolation devices is aimed 
to overcome such limits. Resoring and damping components of the original Pan and Yang 
model result modified to describe the stiffness degradation and the decrease of loop area 
trough a special integral term which accounts the energy dissipated by the elastomeric 
material or bearing during cyclic loading reversals. Nevertheless, the proposed approach 
neglects axial loads influence, as well as the rubber compounding and vulcanization process, 
which can also control the hysteresis behavior of elastomeric isolation bearings. The model 
parameters identification is also not included in this study, which is mainly focused on the 
prediction of the force-displacement hysteresis. 

The unidirectional model for HDRBs by Tsai et al. [31] has been developed by 
modifying the Wen model to include rate-dependent effects under constant axial loads. 
Consequently, it has a differential signature. In spite of the good correlation between 
experimental and numerical results, the model by Tsai et al. does not show the stiffness and 
damping degradations, which are distinctive features of such devices. 

An unidirectional model for HDRBs under constant axial load is proposed by Jankovsky 
in [32] accounting nonlinear rate dependent effects. I consists in a non-differential model, 
developed as well from the Pan and Yang solution [30]. The shear stiffness, K, and damping, 
C, coefficients at a given time, t, are obtained based on the actual values of displacement, x(t), 
and velocity, ẋ(t) as follws: 
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where a1-a11 are parameters to be defined for fitting experimental data (e.g. by least squares 
method). In particular, a1 is related to the basic stiffness level which is modified by a2 and a3 
for higher shear strains, a4 and a5 control the stiffness at the maximum displacements; a6-a8 
increase stiffness value in case of motions with lower amplitudes; a9 – a11 manage damping 
value so as to obtain appropriate hysteresis loops. It has been proved how cyclic experimental 
tests are well reproduced by the model, even though its performance gets worse when a 
seismic signal is applied (see Figure 3 with a1=212390 N/m, a2=3431000 N/m3, a3=-8767000 
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N/m5, a4=518290 N/m, a5=4.3595 s/m, a6=586760 N/m, a7=3.9664 s/m, a8=91.482 1/m, 
a9=15377 N, a10=408680 N/m2, a11=0.13985 m/s). The adopted parameters have been 
collected in an example of application from [32] (Example 2). 

Abe et al. [33, 34] proposed differential hysteretic models of laminated rubber bearings, 
HDRB, lead-rubber bearings (LRB) and natural rubber bearings (NRB), under biaxial and 
triaxial loading conditions on the basis of experimental results. 

Firstly, an unidirectional model is derived by extending the Ozdemir [24] elasto-plastic 
model; secondly, a bidirectional model of the bearing is developed by including symmetric 
components of the characteristic matrix. 

The restoring force for the device unidirectional model is the sum of three contributions: 
an elastic-plastic model (F2 hysteretic component) and two elastic non-linear springs, namely 
a non-linear elastic spring (F1) and a hardening spring (F3). 

From an analytical point of view the force-displacement relation for the first non-linear 
spring reads 

 

max
1 1 (1 )exp( ) 1 exp( ) sgn( )

U
F K U a b U Uβ β

α
 

 = + − − + − −   
   (15) 

 
where U is the relative displacement while K1, a and b are parameters. In Equation (15), the 
first term reproduces the force linear evolution, while the second one the non-linear behavior. 

The hysteretic contribution F2 is described by the following differential equation 
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where the Yt and Ut parameters are in turn defined as 
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= +
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0(1 )t

S

U
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U
= +
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being Y0 is the initial yielding force, U0 the initial yielding displacement, UH the displacement 
where hardening starts, US a parameter for controlling the degradation of the elastic stiffness 
of the elastic-plastic spring, Umax the maximum displacement experienced during the loading 
history and p a parameter governing the shape of the hardening branch. 

Finally a further non-linear spring is introduced in parallel for capturing the increment of 
the tangential stiffness experienced by the devices at very high strain levels. This results in 
the F3 contribution, defined as 

 

3 2

r

H

U
F K U

U
=

 (18) 
 

where r is the parameter to prescribe the shape of the hardening curve, K2 a constant to 
describe the contribution of the hardening spring to the total stiffness. 
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a      b 

 
c      d 

Figure 3. Non-differentical unidirectional Jankovsky model: cyclic loading (a) produces the model 
response (c). Seismic input (b) the model response (d). Dotted lines in (a) and (b) denote velocity. 

Details on these model components can be found also in [23] where it has been designa-
ted for isolation system simulation under a nuclear power plant building. 

Figure 4 depicts the Abe et al. model response (with K1=1.51 KN/mm, α=8.97 mm, 
β=0.301, a=9.5 KN, b=0.0675 1/mm, n=0.451, Y0=13.7 KN, Uh=52.1 mm, p=4.17, U0=2.07 
mm, Us=30.4 mm, K2=0.21 KN/mm, r=1.73) under the same cyclic and seismic condition of 
Figure 3 for comparison. The adopted parameters have been collected in an example of 
application from [34] (HDR-D sample). Comparing Figures 3 and 4, even if the models 
reproduce different devices from literature, the seismic response of the non-differential model 
is questionable. Besides the tests from Figures 3 and 4, several others have been conducted at 
different amplitudes: it can be concluded that the differential approach results more accurate 
in the simulation of the device response under seismic-type loading histories; conversely, 
both unidirectional models [32] and [33, 34] perform similarly when cyclic loading are 
considered. Ryan et al. in [35] approach the problem of the influence of the axial load 
variation on the isolator response. In particular the horizontal stiffness and yielding strength 
have been deepen. They underlined for both HDRB and LRB isolation devices the following 
considerations: (i) lateral stiffness decreases with the increasing axial load; (ii) lateral yield 
strength decreases with decreasing axial load (LRB only); (iii) vertical stiffness decreases 
with increasing lateral deformation. 
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a      b 

Figure 4. Differential unidirectional Abe et al. model: cyclic loading (Figure 3a) response (a) and 
seismic (Figure 3b) response (d). 

Considerations on HDRB and LRB numerical modeling are also included. Note that the 
proposed solutions, although an improvement in the isolation knowledge, are declared in [35] 
as an incomplete representation of the experimental response. 

However this literature study can be considered original and of interest for deepening the 
influence of axial load variation on the isolators response, accounting also different technolo-
gies. 

Besides the study by Ryan et al., the one by Yamamoto et al. [36] proposes a two-
dimensional model for the numerical simulation of seismic isolation bearings including also 
the influence of axial load. Such model is based on an analytical approach comprising shear 
and axial springs, having properties which vary with the vertical load. 

In particular, the dependence of axial loads is captured by the material nonlinearity 
formulation of the axial springs and by the transversal geometric nonlinearity of the shear 
stiffness. 

A three dimensional development of this model has been reported in [37]; however, it has 
to be noted that no evaluation of the model performance is given under three dimensional 
loading paths (e.g. circular or 8-shaped in the horizontal plane) and/or seismic loads. 

Among the approaces herein summarized, the one proposed by Abe et al. [33, 34] seems 
the most promising for base isolation behavior reproduction in complex structural models. It 
has been selected in [23] due to its good representation of the experimental response for both 
cyclic and seismic loading, particularly when bidirectional loading paths in the horizontal 
plane are considered. 

It could also represented an interesting enhancement with respect to simplest bilinear 
models of isolators, as proposed in existent standards (see [23] for references). 

This choice is oriented to eliminate part of uncertainties related to the simulation of the 
isolation system, being the numerical approach by Abe et al. strictly associated to the actual 
behavior of the devices. 
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THE SEMI-ACTIVE MODEL OF HYSTERESIS 
 

The Semi-Active Choice in the Structural Control Discipline 
 
Semi-active approaches for structural control show several good points in comparison 

with passive and active solutions, which should be underlined as follow [1, 38, 39]: 
 
1 improvement of passive solutions by online adjustments of the damping or stiffness; 

this is done according to feedback signals and control commands. 
2 simplification of the design and the implementation of control systems in comparison 

with active solutions; this is also due to their requirements of low power supply and 
low maintenance costs. 

 
Specifically, passive systems have the advantage of being generally more robust than 

active systems because they are independent from external power sources and processed 
commands. They perform with fewer operating costs and require a lower maintenance. Their 
main disadvantage is their inability to adapt to different intensities of excitation. To overcome 
this limit, semiactive control schemes can be implemented on structural systems. 

Semi-active control strategies share the same advantages as passive systems, requiring 
only a limited amount of active external power to modify the working parameters of the 
semiactive control devices. This is contrary to the active control case, in which the external 
power is used to directly inject mechanical energy in the structure through the reactions at the 
device ends. 

Semi-active systems can also be employed in decentralized configurations where the 
whole control system is subdivided into a number of subsystems. When decentralization is 
employed, e.g. for space structures as long-span bridges, low-order control laws represent a 
suitable choice. Such algorithms for control force computation are low-order in the sense that 
they only use the feedback from the nodes that are directly influenced by the devices [38]. 

Decentralization of control systems, compared to its centralization, presents several good 
points, of which two in particular have to be underlined: 

 
1 decentralised control systems perform satisfactorily even under adverse conditions 

showing interesting robust qualities. When local failures occur, if the system is 
totally decentralized, none of the devices depends on any other. It is therefore 
acceptable to foresee the failures of one control device at a time, mantaining the 
global efficency of the control system by the remaining ones. 

2 Furthermore, the advantages of designing decentralized control schemes result from 
the reduction of transmission costs within the feedback loops, the reduction of the 
overall computational effort and the possibility of a more effective power supply to 
the devices. 

 
Another intersting classification related to semi-active control systems, but not 

exclusively, is related to their collocated configuration. It occurs when the processed control 
forces act along the same degree of freedom along which the monitoring data are collected. 
On the contrary, the system is termed as non-collocated. 
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Toward the Semi-Active Implementation 
 
Smart semi-active device typologies, as those electro-inductive (EI) and electro-magnet-

rheological ones (EMR) can be effectively simulated by numerical models [19, 40]. The 
existent literature develops appropriate rheological models by connecting together simple 
elements, as spring and dashpot, with non linear parts, depending on the intrinsic 
characteristics of the device (e.g. viscous, hysteretic or elastic). Some research works report 
on the force’s hysteretic component of real devices which are efficiently reproduced by 
differential models: among others, the BW one plays a major role, being able to perform with 
reasonable efficacy [6]. The overviewed solutions adopted for simulating conventional semi-
active dampers, as the EI and EMR devices, are able to reproduce the inherent characteristics 
of the physical systems, consequently improving their knowledge. However, such devices are 
also able to modulate their dissipation capability, increasing and decreasing online the 
hysteretic cycles amplitude by external commands, operating simultaneously with the 
external excitation and adapting themselves to the structural conditions. 

Consequently, the development of an operational method for modifying in real time the 
BW hysteresis cycles, through suitable semiactive laws, may have consequences of practical 
interest. 

In [6] an innovative analytical approach for controlling, by a modified semi-active 
version of the Bouc-Wen model, the hysteresis component of simulated semi-active control 
systems is first presented. The next section is devoted to present it. 

 
 

A General Approach to Semi-Active Modeling 
 
As introduced in previous section, semi-active devices can be regarded as passive ones 

able to adjust their reaction on-line with the external excitation, through suitable algorithms. 
Managing their intrinsic dissipation level or stiffness, removing energy from the system or 
decoupling the structural motion from the base external excitation, they have been shown to 
significantly outperform the passive schemes by a moderate energy supply. Their practical 
installation in a wide variety of structures demonstrates their positive function on alleviation 
of wind and seismic response of buildings, sometimes showing better performances than 
active systems, which usually are considered the best performers in terms of internal forces 
and displacements reduction. Acting simultaneously with the hazardous excitation, they also 
provide enhanced structural behavior for improved usefulness and safety, making the semi-
active techniques a very attractive choice for buildings whose functionality is of paramount 
relevance [6, 38]. 

The numerical simulation of control devices allows evaluating their efficiency into 
complicated structural systems, as high-rise buildings or long-span bridges, under a wide 
variety of external forces. For improving the normal solutions adopted for simulating 
conventional semi-active dampers, in [6] an operational method for modifying in real time the 
hysteresis cycles has been first developed, through suitable semi-active laws embedded into 
the BW numerical model, with promising consequences for buildings. 

When semi-active systems are employed in real applications, the information collected 
from the monitoring system is processed by suitable algorithms. Subsequently, the damper 
configuration is modified so as to exert the necessary control reactions. 
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The same procedure can be translated into the simulation environment, where the BW 
model parameters are updated to modify, as needed, the hysteresis forces which represent the 
control actions during the real time mock-up. The methodology in [6], for embedding semi-
active algorithms and achieving the resulting semi-active BW expression, considers three 
different control laws, suitable for managing dissipative devices: the on/off SkyHook, the 
continuous SkyHook, the BangBang. An innovative one, called continuous BangBang, is also 
introduced. The proposed procedure has been demonstrated effective for managing, in real 
time, the hysteresis component of semi-active systems defining a semi-active version of the 
BW model, termed for brevity as DM (DoManeschi) model. 

The general formulation of the DM model can be summarized by the following 
equations: 

 

( ) ( )supsup )1( xxckzxxkF bcbc && −+−+−= αα
 (19) 

 

( ) ( ) ( ) 1

supsupsup

−−−−−−= n

bc

n

bcbc zzxxzxxxxAz &&&&&&& γβ
 (20) 

 

),,( hf highlow γγγ =
 (21) 

 

),,( hf highlow βββ =
 (22) 

 
The variable z is the auxiliary BW variable allowing to introduce a smooth hysteretic 

behavior in the control force F, xbc and xsup are respectively the coordinate of the body mass to 
be controlled and the support where the device is connected, k the pre-yielding stiffness, α the 
ratio between post and pre-yielding stiffness (α =1 provides an elastic response and α=0 an 
elastic-perfectly-plastic behavior), A an n are time invariant parameters, c is the intrinsic 
viscous component (not considered in the remaining of this chapter). 

Parametersγ , β  embeds the general semi-active control law into the BW model for 

hysteresis modulation defining its semi-active version. They are functions of the BW model 
parameters γ, β which control the dissipation level, ranging from the high and low limits (γhigh 
βhigh, γlow βlow) which define the semi-active domain, and the adopted h gain [6]. Algorithms 
can be introduced through equations (21) and (22), guaranteeing mathematical consistency 
and passivity of the resulting formulation. 

Considering the continuous BangBang , the following equations replace (21) and (22) 
ones [6]: 

 

( )( )[ ] ( )[ ]{ }lowhighbclowbcbclow xhxxxxH γγγγγ −−−+= ,max,minsupsup &&&
 (23) 

 

( )( )[ ] ( )[ ]{ }lowhighbclowbcbclow xhxxxxH βββββ −−−+= ,max,minsupsup &&&
 (24) 
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The device yielding force level is modulated through γ , β  parameters in equation (19) 

and equations (23) and (24); H[.] is the Heaviside step function. 
The discrete BangBang semi-active configuration of the BW model is defined by the 

following expressions [6]: 
 

( )( )[ ]supsup xxxxH bcbclow && −−∆−= γγγ
 (25) 

 

( )( )[ ]supsup xxxxH bcbclow && −−∆−= γββ
 (26) 

 

Two values can be assumed by γ , β  parameters, depending whether the high or the low 

state for damping is required and the increments are defined as 
highlow γγγ∆ −=  and 

highlow βββ∆ −= . 

In analogy with the last one, the discrete semi-active on/off SkyHook configuration of the 
BW model results [6]: 

 

( )[ ]supxxxH bcbclow &&& −∆−= γγγ
 (27) 

 

( )[ ]supxxxH bcbclow &&& −∆−= βββ
 (28) 

 
Accordingly to [6], the semi-active continuous SkyHook form of the BW model is: 
 

( )[ ] ( )[ ]{ }lowhighbclowbcbclow xhxxxH γγγγγ −−+= ,max,minsup &&&&
 (29) 

 

( )[ ] ( )[ ]{ }lowhighbclowbcbclow xhxxxH βββββ −−+= ,max,minsup &&&&
 (30) 

 

whereγ , β  parameters can assume continuously variable values between the two high and 

low limits. 
The h gain adopted for the continuous semi-active versions (equations (23)-(24) and (29)-

(30)) consists in )xmax(/ bodylow &γ , where the denominator is the expected maximum body mass 

velocity [6]. 
When semi-active hysteretic control systems are adopted, their ability in energy 

dissipation and their aptitude in decoupling the support vibration from the body mass are 
valuable mitigation resources that should be estimated. These properties are also investigated 
in [6] for the proposed DM model with different configurations. Such observations may 
improve the semi-active structural control design perspective. 

Figure 5 depicts the mean control force and equivalent damping factor for semi-active 
dampers with identical sinusoidal input time histories, at increasing amplitudes, for re-
producing a standard motion of the dampers connection points. 
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Figure 5. Restrain and dissipation vs. different input cycle amplitudes. 

Forces and displacements are here normalized to the device highest yielding level. Four 
different control algorithms are implemented: the SkyHook, the continuous SkyHook, the 
BangBang and the continuous BangBang law through the following parametes: A=1, n=1, α
=0, the yielding forces Φy=1000kN and 500kN respectively for the high and low semi-active 
limit, k=80000kN/m, with γlow=βlow and γhigh=βhigh.. A significant decoupling of relative 
motions between the support and body mass to be controlled, with respect to the discrete 
algorithms, is exerted by the continuous semi-active laws; on the contrary, highest dissipation 
levels are provided from the discrete ones. 

The BW model in its original formulation, from which the DM one has been derived, has 
proven to perform with reasonable efficiency in reproducing the force’s hysteretic component 
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of real passive device, playing a major role among other differential ones. It can reproduce 
also the hysteresis signature coming from a wide range of semi-active damper technologies, 
e.g. an innovative EI one characterized in laboratory for structural control applications on 
bridges [19]. It represents a fascinating solution for the feasibility of larger passive devices of 
this type to be installed in long span bridges. This is of interest due to two facts: that they are 
much shorter than passive hydraulic dampers of identical maximum stroke and that they can 
easily be converted into the semi-active type, adapting themselves to different seismic 
intensity levels by using specific control laws. An additional aspect to be underlined of such 
devices is the self-centering ability after an extreme loading event, realigning the deck with 
its original axis and the towers. 

Figure 6 depicts some input kinematic conditions with standard sinusoidal shapes for the 
proposed semi-active models of hysteresis. Namely the continuous line is the sinusoidal 
motion in terms of displacements for the support and the body mass to be controlled (xbc and 
xsup respectively). Figure 7 reports the hysteresis response of the models. The BW parameters 
have been set as those in Figure 5 (A=1, n=1, α =0, Φy=1000kN and 500kN respectively for 
the high and low semi-active limit, k=80000kN/m, with γlow=βlow and γhigh=βhigh.). 

Several results from literature are intended as a realistic validation of such innovative 
semi-active technology implementation on complex structures by numerical simulations 
through finite element models. The next section is devoted to summarize some research 
works where bridge structures in particular are considered. 

However, the numerical simulation by suitable models of hysteresis and the detailed 
approaches are intended to a wide application at different building typologies. 

 
 

APPLICATIONS EXAMPLES 
 
The previously discussed numerical approaches have demonstrated to be capable to 

reproduce control systems with passive and semi-active signature in complex structural 
models (e.g. finite element ones). 

 

 

Figure 6. Restrain and dissipation vs. different input cycle amplitudes. Continuous line for the support, 
dotted for the body mass to be controlled. 
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Figure 7. Models response to the sinusoidal input of Figure 6. SH and BB refer to discrete SkyHook and 
BangBang models, CSH and CBB respectively to the continuous ones. 

Mitigation of direct dynamic effects is traditionally the primary target of control systems 
(e.g. acceleration and/or displacements mitigation). However, attention is also given to the 
positive outcomes related to indirect effects coming from the dampers implementation on 
buildings. 

The international control benchmark on cable stayed bridges, attracting in the last years 
the attention of the control community, has been considered in [38] for studying passive and 
semi-active decentralized collocated solutions for seismic mitigation. The passive BW and 
semi-active on/off DM models are employed. Robust feasible solutions are investigated 
starting from a first step where passive devices are applied to the bridge numerical model 
between the deck and the piers. Subsequently, an open-loop semi-active improvement of the 
passive control system is implemented and, finally, an innovative decentralized solution for a 
semi-active scheme in closed-loop configuration is introduced. The device force displacement 
relationship fits the results of laboratory tests during the characterization process of an EI 
device [19]. 

In [22] the results of simulation tests to identify the mechanical signature of an innovative 
isolation device known as the Roll-N-Cage (RNC) isolator are presented. The seismic 
performance of an RNC passive control scheme is subsequently investigated on an updated 
model of the cable-stayed bridge benchmark. The force–displacement relationship of the 
device is reproduced using the standard Bouc–Wen model of smooth hysteresis. Subseqently, 
the numerical assessment of the device efficiency is established through its implementation 
into a bridge model considering several ground motions as external excitations. It was found 
that the RNC isolator is promising as a reliable isotropic horizontal isolation device for bridge 
structures. 

The same updated version of the controlled cable-stayed bridges is considered in [41] 
including new aspects in the knowledge of the relative transversal motion of the main girder 
with respect to the towers under seismic motions. Earthquake restrainers in the transverse 
direction are considered in the original benchmark configuration. 
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The proposed updated bridge model first reproduces this kinematic arrangement, 
subsequently this restriction has been overcome and a new configuration with transversal 
releases is studied. The control strategies consist in passive and decentralized semi-active 
systems working in the horizontal plane, likewise those studied for the original statement in 
the previous investigation [38]. The proposed arrangement schemes markedly mitigate the 
transversal structural response of the bridge with sensible effectiveness. 

The main goal of the study in [42, 43] consists in the evaluation of the control system 
performance, for iconic bridges, when local failure occurs in the control system devices. 
Model of a cable-stayed bridge and a suspension one are developed at the numerical level in a 
commercial finite element code, starting from original data. The models are used to simulate 
the structural response under extreme loading conditions, such as seismic excitation and wind. 
Different types of control systems for the mitigation of the bridge response, implementing 
passive and semi-active dampers respectively, are employed through the BW and MD 
approaches from the literature. 

Some general observations, by means of a proposal for quantitative robustness indexes in 
terms of control performance, are also provided. Resilience advantages in bridge structures by 
means of smart control strategies is an innovative research topic currently under investigtion 
at the Politecnico di Milano. 

Collocated and non collocated decentralized control strategies for an existent suspension 
bridge are studied in [44] against strong wind buffeting adopting a numerical approach. An 
original procedure for implementing BW and DM models into a multipurpouse finite element 
code is included by a mixed implicit-explicit step by step formulation. The bridge model 
results useful to assess the efficacy of passive and discrete semi-active control schemes. Their 
efficacy in mitigating instant loading effects is shown and the factors contributing to their 
positive performance both for mitigating instant structural variables and also fatigue damages 
are highlighted. Protection of composite decks in long span bridges against fatigue damage 
through decentralized control schemes is an interesting research topic currently under 
investigation at the Politecnico di Milano. 

The numerical model of an existing suspension bridge is used in [45] to reevaluate an 
optimization procedure for a passive control strategy, already proven effective in [44] with a 
simplified model of the buffeting wind forces. The BW is used for reproducing the dissipative 
behavior of the passive control scheme. Such optimization procedure, previously imple-
mented with a quasi-steady model of the buffeting excitation, is reevaluated adopting a more 
refined version of the wind-structure interaction forces. It is based on the use of indicial 
function, adopting to reflect coupling with the bridge orientation and motion. The final 
outcomes show that the previously identified optimal passive configuration withstands. 

The research work [23] is focused on the development of a numerical procedure for the 
computation of seismic fragilities in base isolated Nuclear Power Plants. A special procedure 
for fragility computation is proposed making use of the Response Surface Methodology to 
model the influence of the random variables on the dynamic response and the Monte Carlo 
method is used to compute the failure probability. The nuclear building is equipped with a 
base isolation system based on the introduction of High Damping Rubber Bearing elements 
showing a markedly non linear mechanical behavior and simulated by the Abe et al. [33, 34]. 
The isolation devices result the critical elements in terms of seismic risk and the dynamic 
behavior of the building, belonging to rigid body motion one, is captured by low-dimensional 
numerical models. 
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