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Multimodel Bayesian analysis of groundwater data worth
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Abstract We explore the way in which uncertain descriptions of aquifer heterogeneity and groundwater
flow impact one’s ability to assess the worth of collecting additional data. We do so on the basis of Maxi-
mum Likelihood Bayesian Model Averaging (MLBMA) by accounting jointly for uncertainties in geostatistical
and flow model structures and parameter (hydraulic conductivity) as well as system state (hydraulic head)
estimates, given uncertain measurements of one or both variables. Previous description of our approach
was limited to geostatistical models based solely on hydraulic conductivity data. Here we implement the
approach on a synthetic example of steady state flow in a two-dimensional random log hydraulic conductiv-
ity field with and without recharge by embedding an inverse stochastic moment solution of groundwater
flow in MLBMA. A moment-equations-based geostatistical inversion method is utilized to circumvent the
need for computationally expensive numerical Monte Carlo simulations. The approach is compatible with
either deterministic or stochastic flow models and consistent with modern statistical methods of parameter
estimation, admitting but not requiring prior information about the parameters. It allows but does not
require approximating lead predictive statistical moments of system states by linearization while updating
model posterior probabilities and parameter estimates on the basis of potential new data both before and
after such data are actually collected.

1. Introduction

Sustainable development of groundwater resources requires credible analyses of associated subsurface
flow regimes and their impact on water quality. Such analyses entail characterizing the spatial distribution
of hydraulic parameters and factors controlling groundwater flow, embedding them in groundwater flow
models, and using the models to provide predictions (and associated uncertainty) of groundwater flow
under various development scenarios. Each such step is affected by uncertainties stemming in part from
the complex hydrogeological makeup of the subsurface and lack of precise knowledge about conditions
that would control each scenario. A question therefore arises to what extent might the collection of addi-
tional information about the system reduce predictive uncertainty, at what cost, and what potential benefits
(including risk reduction) might this yield?

A review of literature pertaining to these questions was recently published by Neuman et al. [2012]. Most
approaches in the literature utilize numerical Monte Carlo simulation. Trainor-Guitton et al. [2011, 2013]
assess expected data worth of additional aquifer lithology data for decision making in the context of an
aquifer vulnerability scenario. Liu et al. [2012] quantify the value of information in a groundwater remedia-
tion case using a bootstrap filter. De Barros et al. [2012] investigate the impact of hydrogeological data on
predicting environmental performance metrics such as well drawdown, concentration, or contaminant
travel time and human health risk. Fang et al. [2014] use data worth analysis to optimize a monitoring net-
work and reduce data redundancy in a CO2 sequestration scenario. A major limitation of many existing
approaches is that they rely on a single conceptual-mathematical model of geologic or watershed makeup
and of hydrologic processes therein. Yet hydrologic environments are open and complex, rendering them
prone to multiple interpretations and mathematical descriptions, including parameterizations. This is true
regardless of the quantity and quality of available data. Predictions and analyses of uncertainty based on a
single hydrologic concept are prone to statistical bias (by committing a Type II error through reliance on an
inadequate model) and underestimation of uncertainty (by committing a Type I error through under sam-
pling of the relevant model space). Leube et al. [2012] develop a PreDIA (Preposterior Data Impact Assessor)
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method to quantify expected data worth prior to
data collection, which takes into account concep-
tual model uncertainty through Bayesian model
averaging (BMA). Nowak et al. [2012] use PreDIA to
drive optimal data collection design by minimizing
the probability of making wrong decisions, i.e.,
accepting the alternative hypothesis when the null
hypothesis is true and vice versa, during Bayesian
hypothesis testing. This method relies on Monte
Carlo simulations, which tend to be computation-
ally cumbersome. As an alternative to BMA, Neu-
man et al. [2012] propose a multimodel data worth
assessment approach based on a Maximum Likeli-
hood version of the Bayesian Model Averaging
(MLBMA). The approach is compatible with both
deterministic and stochastic models, consistent
with modern statistical methods of parameter esti-
mation, admits but does not require prior informa-
tion on the probability distribution of parameters,
allows approximating lead predictive moments of
any model by linearization, and updates model

posterior probabilities as well as parameter estimates on the basis of potential new data both before and
after such data become available.

Previous implementations of MLBMA data-worth assessments were limited to the geostatistical characteri-
zation of aquifer heterogeneity in the presence of multiple variogram models (and eventually measured val-
ues) of log hydraulic conductivity [Neuman et al., 2012] and air permeability [Lu et al., 2012] in two and
three spatial dimensions, respectively. In this study, we explore the ability of their approach to deal simulta-
neously with system parameters and states, specifically hydraulic conductivities and hydraulic heads. We
avoid Monte Carlo simulations by basing our groundwater flow model on stochastic moment equations
(ME). Our approach takes advantage of the ME-based geostatistical inverse approach of Hernandez et al.
[2003, 2006] and Riva et al. [2011]. The resulting algorithm is applied to a synthetic example of steady state
groundwater flow in a two-dimensional random log hydraulic conductivity field with and without recharge.

2. Multimodel Bayesian Data-Worth Assessment Using MLBMA

Bayesian data-worth assessment is conducted in three stages [James and Gorelick, 1994; Neuman et al.,
2012]. The first (prior) stage relies entirely on information and data available at the outset. The second (pre-
posterior) stage relies on statistics of potential new data estimated on the basis of prior information and
data. The third and last (posterior) stage utilizes joint statistics of prior data and new data made available
following the preposterior stage. Posterior statistics serve to assess the quality of their preposterior esti-
mates and, optionally, to furnish statistics for a new prior assessment stage (see flowchart in Figure 1). Key
elements of the process, originally described in Neuman et al. [2012], are recounted for completeness in
subsection 2.1.

2.1. Multimodel Assessment of Data Worth in Groundwater Problems
We limit the description of our approach to a set M of K mutually exclusive stochastic moment models, Mk ,
capable of predicting lead statistics, such as mean and variance/covariance, of steady state groundwater
flow in a given domain. The models are uncertain, having prior probabilities p Mkð Þ that add up to 1. Each
flow model considers log hydraulic conductivity to form a spatially correlated random field characterized by
a given variogram model, which may differ from one flow model to another. Model Mk predicts the mean
(expectation) E hjD;Mkð Þ and the covariance Cov hjD;Mkð Þ of a vector h of random hydraulic head values,
conditional on a given vector D of prior data. The prior data may include measured log hydraulic conductiv-
ities as well as hydraulic heads at selected positions. Averaging across all K models renders the following
(Bayesian-averaged) lead moments [Draper, 1995; Hoeting et al., 1999]

Prior data worth analysis
Analyze data worth based on originally available data D

Preposterior data worth analysis
Analyze data worth based on originally available data D

and additionally hypothetical data C

Posterior data worth analysis
Analyze data worth based on originally available data D

and additionally available data C’

Is sampling 
scheme cost 
effective?

Yes

No
Stop

Collect samples

Figure 1. Overview of Bayesian data worth analysis [after James
and Gorelick, 1994].
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where T denotes transpose. The conditional covariance, Cov hjDð Þ, stemming from Bayesian model averag-
ing (BMA), is seen to be the sum of a within-model covariance EMjDCov hjD;Mð Þ and a between-model
covariance CovMjDE hjD;Mð Þ. The posterior model probability, p Mk jDð Þ, weighs the contribution of model
Mk to BMA moments. Appendix A shows how p Mk jDð Þ is computed in BMA or its maximum likelihood ver-
sion, MLBMA, that we use.

Next we ask how might augmenting the original data set, D, by an additional set of data, C’, affect predic-
tive uncertainty? Neuman et al. [2012] propose quantifying this effect at the posterior stage, after C’ has
been collected, by the scalar measure of reference posterior data worth, Tr Cov hjDð Þ½ �2Tr Cov hjD;C’ð Þ½ �,
where Tr is the trace (sum of diagonal entries) of a matrix. Other measures of uncertainty in the context of
optimal sampling design are discussed by Nowak [2010]. At the preposterior stage, before C’ is collected,
Neuman et al. [2012] generate random estimates C of C

0
on the basis of available data D. One way to gener-

ate such random estimates, C, is to draw them from a multivariate normal distribution

C � N E CjDð Þ; Cov CjDð Þf g (3)

In our case, E CjDð Þ and Cov CjDð Þ are obtained from (1) and (2), respectively, upon replacing h with C. By vir-
tue of the law of total covariance, a trace measure of the conditional predictive uncertainty can be decom-
posed according to

Tr Cov hjDð Þ½ �5Tr ECjDCov hjD;Cð Þ
� �

1Tr CovCjDE hjD;Cð Þ
� �

(4)

where ECjDCov hjD;Cð Þ is the expectation of Cov hjD;Cð Þ over all C vectors generated via (3), and
CovCjDE hjD;Cð Þ is the covariance of E hjD;Cð Þ over all these C vectors. Though the scalar measure of
predictive head uncertainty, Tr Cov hjDð Þ½ �, at the preposterior stage is theoretically the same as that at
the prior stage, computationally the two may differ somewhat from each other due to the finiteness
of the C samples obtained through (3). We denote Cov hjDð Þ obtained at the prior stage by Cov hjDð ÞD
to indicate that it is evaluated on the basis of available data D, and that computed at the preposterior
stage by Cov hjDð ÞDC to indicate that the latter is evaluated on the basis of both available data D and
generated data C in the manner just described. Given that the prior and preposterior predictive uncer-
tainty measures Tr Cov hjDð ÞD

� �
and Tr Cov hjDð ÞDC

� �
coincide in theory, and that Tr ECjDCov hjD;Cð Þ

� �
in

(4) is the expected posterior predictive uncertainty measure Tr Cov hjD;C’ð Þ½ �, it follows that the scalar
measure Tr CovCjDE hjD;Cð Þ

� �
of data worth computed at the preposterior stage is equal to the

expected posterior data worth measure Tr Cov hjDð ÞD
� �

2Tr Cov hjD;C’ð Þ½ �. It is thus clear that our analy-
sis of data worth associated with any sampling scheme entails predictive uncertainty reduction
through the collection of additional data. Other factors affecting sampling design include [e.g. Nowak
et al., 2010, 2012; De Barros et al., 2012] its purpose, choice of uncertainty measure(s), type of environ-
mental performance metric considered, and dimensionality of physical system model. Though we do
not consider these factors in our work, they could easily be included in our method of assessing data
worth.

2.2. ML Estimation of Model Parameters
As noted in Appendix A, MLBMA entails maximum likelihood estimation of model parameters. Here we
accomplish this through a stochastic inverse procedure similar to that proposed for steady state ground-
water flow by Hernandez et al. [2003, 2006] and for transient flow by Riva et al. [2009]. Following is a brief
synopsis of our approach.
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The ensemble mean (expectation), hh xð Þic , of hydraulic head h xð Þ predicted by model Mk conditional (as
indicated by the subscript c) on prior data D, equivalent to E hjD;Mkð Þ, satisfies (in our case) the conditional
mean steady state flow equation [Guadagnini and Neuman, 1999]

r � hK xð Þicrhh xð Þic2rc xð Þ½ �1hf xð Þi50 (5)

subject to boundary conditions

hh xð Þic5hH xð Þi on CD (6)

hK xð Þicrhh xð Þic2rc xð Þ½ � � n xð Þ5hQ xð Þi on CN (7)

where hK xð Þic is conditional mean hydraulic conductivity, K xð Þ; K ’ xð Þ represents zero mean random fluctua-
tions in K xð Þ about hK xð Þic ; rc xð Þ52hK ’ xð Þrh’ xð Þic is residual flux; h’ xð Þ represents zero mean random fluc-
tuations in head about hh xð Þic ; hf xð Þi is unconditional mean of a random source term f xð Þ; hH xð Þi is
unconditional mean random head prescribed on Dirichlet boundary segments CD; hQ xð Þi is unconditional
mean random flux prescribed normal to Neumann boundary segments CN ; n xð Þ is a unit outer vector nor-
mal to the boundary C5CD [ CN ; and f xð Þ; H xð Þ, Q xð Þ are statistically independent random functions.

The conditional covariance of hydraulic head predictions between locations x and y,
Chc x; yð Þ5 Cov hjD;Mkð Þ, satisfies the second-moment equation

rx � hK xð Þicrx Chc x; yð Þ1pc x; yð Þ1ChKc x; yð Þrxhh xð Þic½ �1hf ’ xð Þh’ yð Þic50 (8)

subject to boundary conditions

Chc x; yð Þ5hH’ xð Þh’ yð Þic on CD (9)

hK xð Þicrx Chc x; yð Þ1pc x; yð Þ1ChKc x; yð Þrxhh xð Þic½ � � n xð Þ

5hQ’ xð Þh’ yð Þic on CN

(10)

where pc x; yð Þ5hK ’ xð Þrx h’ xð Þh’ yð Þic is a conditional mixed third moment and ChKc x; yð Þ is the conditional
cross covariance between heads and hydraulic conductivities.

Though the above conditional moment equations are exact, they cannot be solved directly (closed) without
high-resolution Monte Carlo simulation through exhaustive sampling of the random parameter space. A
finite element approach that allows solving these equations in an approximate manner was developed by
Guadagnini and Neuman [1999]. The conditional mean hY xð Þic and covariance CYc x; yð Þ of log hydraulic con-
ductivities, Y5ln K , play the role of model parameters. We estimate them by ML as described in Appendix B.
Our method of assessing data worth thus consists of the following steps:

1. Calibrate each postulated model against all available measurements (log hydraulic conductivity and/or
head) by minimizing NLL in (B4) to obtain estimated log hydraulic conductivity values at measurement and
pilot point locations, as described in Appendix B.

2. Project the estimated log hydraulic conductivity values onto the computational grid via kriging to obtain
hY xð Þic and hY ’ xð ÞY ’ yð Þic according to (B1) and (B6), respectively.

3. Solve the conditional moment equations with these parameters for hh xð Þic and Chc x; yð Þ. Step 1–3 are
performed with the Fortran code INME developed by Riva et al. [2010].

4. Compute the Kashyap information criterion KIC for each model using (B7) and a corresponding posterior
weight according to (A3).

5. Compute multimodel conditional statistics of head according to (1)–(2) and analyze the worth of addi-
tional data at selected locations in space, as described in subsection 2.1.

3. Illustrative Example

We illustrate our approach to data worth assessment through a synthetic example. In our example, ground-
water flows at steady state through a rectangular domain of length 18 and width 10 (all quantities being
given in arbitrary consistent units), depicted in Figure 2, similar to the case considered by Hernandez et al.
[2006]. The domain is discretized into Ne5180 square elements of unit size. Heads are prescribed
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deterministically as 10 on the left and 5 on the right boundaries, the top and bottom boundaries being
impermeable. An unconditional, zero-mean reference log hydraulic conductivity field (Figure 2a) of point
values (having zero measurement or resolution scale) is generated with a sequential Gaussian simulation
code developed by Deutsch and Journel [1998], modified to accommodate a truncated power variogram
model

c sð Þ5r2 kuð Þ 12exp 2
p
4

s
ku

� �2
" #

1
p
4

s
ku

� �2
" #H

C 12H;
p
4

s
ku

� �2
" #8<

:
9=
;; 0 < H < 1 (11)

obtained through superposition of Gaussian modes (TpvG) [Di Federico and Neuman, 1997; Neuman and Di
Federico, 2003; Neuman et al., 2008]. Here s is separation distance (lag), ku is an upper cutoff scale propor-
tional to domain size, A is a coefficient which assures that the TpvG (11) converges to a power law model
when ku !1 [Neuman and Di Federico, 2003], H is a Hurst scaling exponent, r2 kuð Þ5Ak2H

u =2H is variance
(sill) and C �; �ð Þ is the incomplete gamma function. By disregarding the measurement or resolution scale of
Y xð Þ in comparison to domain size, the integral scale of Y becomes equal to I kuð Þ52Hku= 112Hð Þ. We set
the parameter vector characterizing the TpvG model to h5 A;H; kuð ÞT 5 0:1; 0:25; 10ð ÞT . The selected value
of H corresponds to an antipersistent log hydraulic conductivity field, consistent with Neuman [1994] and
Neuman et al. [2008]. These TpvG parameters yield r250:63 and I53:33, corresponding to a mildly hetero-
geneous Y field that is well within the range of applicability of the stochastic moment equations we employ.
The associated ratio between domain and log conductivity integral scales is consistent with Neuman et al.
[2008]. Reference hydraulic head contours associated with the above conditions are depicted in Figure 2a.

We sample log hydraulic con-
ductivities and hydraulic heads
at random locations of the cor-
responding reference fields.
We then superimpose zero-
mean white Gaussian head and
Y measurement errors with var-
iances r2

hE50:150 and r2
YE5

0:001 on these sampled values.

For the purpose of moment-
equations based geostatistical
inverse modeling, we distrib-
ute 30 pilot points across the
domain (Figure 2b); Y values at
these points are treated as
adjustable parameters.

In addition to the generating
TpvG variogram model of Y
data, we consider standard
two-parameter exponential
and spherical variogram mod-
els, as illustrated in section
3.1.1. We select three different
recharge scenarios based on
preliminary simulations: (a) the
generating scenario of no
recharge; (b) uniform recharge
rate of 0.4 over a localized area
of the aquifer (Figure 2a); and
(c) uniform recharge rate of
0.012 over the entire synthetic
aquifer. Reference heads asso-
ciated with these scenarios are
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Figure 2. Setup of illustrative example. (a) Reference field of log hydraulic conductivity, Y,
and contoured hydraulic head distributions (solid black: no recharge; dashed red: localized
recharge; dashed blue: uniform recharge; the rectangle indicates the localized recharge
area); (b) Sampling and pilot points locations; Y and h, respectively, represent locations
where log conductivities and hydraulic heads are originally available; P indicates pilot
points; numbered empty triangles and squares, respectively, indicate locations of 5 addi-
tional Y and h samples employed in all test cases except TC3.
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contoured and juxtaposed in Figure
2a. Whereas contours representing
diverse recharge scenarios differ from
each other, each is plausible in light
of the available head data; though
one cannot rule out any of the scenar-
ios a priori, our approach will help
rank them a posteriori. Table 1 lists
two sets of models we shall consider
jointly in our analysis: whereas one
set excludes models used to generate
our reference conditions, the other
set includes them.

We examine a set of test cases, listed
in Table 2. The table also lists the

range of variability of the coefficient of variation (expressed as ratio between standard deviations of mea-
surement errors and sampled reference values) for original h (i.e., eTCi

h;data, i 5 1, 2, . . ., 8) and Y (i.e., eTCi
Y;data)

data, together with corresponding ranges of the coefficients of variation eTCi
h and eTCi

Y (i 5 1, 2, . . ., 8) associ-
ated with additional h and Y measurements, respectively, made available in some of the test cases.

Test cases TC1 and TC2 are designed to assess the reliability of our proposed data worth methodology.
Both rely on a set of 20 Y and 15 h measurements distributed randomly throughout the flow domain and
placed originally at the analyst’s disposal. Five additional measurement points of Y and of h, planned to be
collected at other random locations in these two (and some other) test cases, are depicted in Figure 2b. The
combined data worth of these additional measurements is quantified on the basis of the two model sets
listed in Table 1 for test cases TC1 and TC2, respectively.

Test cases other than TC1 and TC2 are patterned after these two and are designed to investigate the influ-
ence of diverse factors on the performance of the methodology with TC1 as the base case. Test case TC3
differs from TC1 in the (randomly selected) locations of the additional Y and h measurements; its purpose is
to test our ability to discriminate between diverse sampling schemes.

Test cases TC4 and TC5 compare situations in which additional samples of only Y or only h, respectively, are
made available. Their purpose is to compare the relative worths of these two data types.

Test cases TC6, TC7, and TC8 investigate the effects of diverse prior data sets on the worth of additional
samples. The prior data set in each of these three test cases forms a subset of those employed in test cases
TC1–TC5.

Table 1. Sets of Models Postulated in Various Test Cases

Test Cases Model Identifier Y Variogram Model Rercharge Conditions

All but test
case TC2

Exp_rchall Exponential Uniform recharge
Exp_rchstp Exponential Localized recharge
Sph_rchall Spherical Uniform recharge
Sph_rchstp Spherical Localized recharge

TC2 Exp_rchno Exponential No recharge
Exp_rchall Exponential Uniform recharge
Exp_rchstp Exponential Localized recharge
Sph_rchno Spherical No recharge
Sph_rchall Spherical Uniform recharge
Sph_rchstp Spherical Localized recharge
TpvG_rchno TpvG No recharge
TpvG_rchall TpvG Uniform recharge
TpvG_rchstp TpvG Localized recharge

Table 2. Main Characteristics of Test Cases Examined; Ranges of Variability of Coefficient of Variation (Ratios Between Standard Deviations of Measurement Errors and Sampled Refer-
ence Values) for Original Y (i.e., eTCi

Y;data ; i 5 1, 2, . . ., 8) and h (i.e., eTCi
h;data) Are Also Listed, Together With Corresponding Ranges of Coefficients of Variation eTCi

h and eTCi
Y , Respectively, for

Additional Y and h Measurement Samples Selected From Reference Field

Test
Case

No. of
Original Y

No. of
Original h

No. of
Additional Y

No. of
Additional h eTCi

Y;data , eTCi
Y (i 5 1, 2, . . ., 8) eTCi

h;data , eTCi
h z(i 5 1, 2, . . ., 8) Description

TC1 20 15 5 5 20.63 � eTC1
Y;data � 0.18 0.040 � eTC1

h;data � 0.073 Method validation, base case
20.078 � eTC1

Y � 0.15 0.041 � eTC1
h � 0.062

TC2 20 15 5 5 20.63 � eTC2
Y;data � 0.18 0.040 � eTC2

h;data � 0.073 Method validation
20.078 � eTC2

Y � 0.15 0.041 � eTC2
h � 0.062

TC3 20 15 5 5 20.63 � eTC3
Y;data � 0.18 0.040 � eTC3

h;data � 0.073 Alternative sampling
scheme for additional data0.020 � eTC3

Y � 0.083 0.039 � eTC3
h � 0.042

TC4 20 15 5 0 20.63 � eTC4
Y;data � 0.18 0.040 � eTC4

h;data � 0.073 Influence of additional data type
20.078 � eTC4

Y � 0.15 -
TC5 20 15 0 5 20.63 � eTC5

Y;data � 0.18 0.040 � eTC5
h;data � 0.073 Influence of additional data type

- 0.041 � eTC5
h � 0.062

TC6 5 0 5 5 0.020� eTC6
Y;data � 0.11 - Effect of prior data content

20.078 � eTC6
Y � 0.15 0.041 � eTC6

h � 0.062
TC7 10 5 5 5 20.63� eTC7

Y;data � 0.11 0.041 � eTC7
h;data � 0.073 Effect of prior data content

20.078 � eTC7
Y � 0.15 0.041 � eTC7

h � 0.062
TC8 15 10 5 5 20.63� eTC8

Y;data � 0.18 0.040 � eTC8
h;data � 0.073 Effect of prior data content

20.078 � eTC8
Y � 0.15 0.041 � eTC8

h � 0.062
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3.1. Results and Discussions
3.1.1. Variogram Analysis
In test cases TC1 and TC2, parameters of alter-
native variogram models selected to describe
the spatial covariance structure of Y are ini-
tially estimated by least squares on the basis
of prior Y data, collected at locations identi-
fied in Figure 2b. Figure 3 depicts sample var-
iograms of Y together with the number of
data pairs associated with each separation
distance (lag). Exponential, spherical, and
TpvG variogram models fitted to the sample
variograms by least squares, together with
their associated 95% confidence intervals and
the generating TpvG model, are also shown.
Confidence intervals were constructed
through Monte Carlo generation of 500 nor-
mally distributed parameter sets around their
least squares estimates, considering the asso-

ciated estimation covariance matrices. Parameter estimates and their standard estimation errors are listed
in Table 3. The estimated TpvG variogram model does not differ significantly from the estimated exponen-
tial variogram model, the two being virtually indistinguishable from each other at lags greater than 2. The
TpvG model, however, has a much wider 95% confidence interval than do the other variogram models due
in part to its larger number of parameters (3 versus 2). The similarity we observe between exponential and
TpvG variogram models is consistent with that noted by Neuman et al. [2008]. It reinforces the conclusion of
these authors that fitting standard exponential models to hierarchical data may mask the multiscale nature
of the underlying random field. As there is nothing in these results to support, a priori, preference for one
variogram model over the rest, we retain all of them for further consideration. Though for simplicity we
ignore variogram parameter uncertainty in all subsequent test cases, one could account for it in principle as
described by Neuman et al. [2012]. Augmenting the prior Y data with five additional measurements, either
generated at the preposterior stage or measured at the posterior stage, has virtually no effect on variogram
parameter estimates and we therefore continue relying on the prior estimates in Table 3 throughout our
preposterior and posterior analyses.

3.1.2. Data Worth Assessment Excluding Generating Models (Test Case TC1)
We start with test case TC1 that excludes from consideration variogram and flow models used to generate
our synthetic data. Each of the remaining models is assigned equal prior probability and is calibrated
against the conditioning data set within the Maximum Likelihood framework summarized in Appendix B.

At the prior stage of the analysis, the prior data vector, D, consists of 20 and 15 noisy Y and h measure-
ments, respectively. Geostatistical inversion of the groundwater flow moment equations yields negative log
likelihoods NLL (B4), Kashyap discrimination critera KIC (B7), and posterior model weights p Mkð jDÞ listed in
the upper part of Table 4. KIC is seen to prefer the Exp_rchall variogram and flow model combination over
all other combinations, assigning to it a posterior weight of 39.95%. This is likely due to similarity between
the fitted exponential and TpvG variogram models noted earlier, and greater similarity between the uniform

and no recharge cases than between the lat-
ter and the case of localized recharge. The
scalar measure of prior predictive head uncer-
tainty, Tr Cov hjDð ÞD

� �
, is 3.24. Figure 4a

depicts the spatial distribution of prior predic-
tive head variance, Var hjDð ÞD. The latter tends
to be largest in the central part of the domain
farthest from the deterministically prescribed
head boundaries and slightly elevated near
the localized recharge zone. Heads in the
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Figure 3. Generating, sample, and estimated variograms. Dashed curves
indicate 95% estimation confidence intervals. The sample variogram is
calculated on the basis of the available Y data in TC1. The number of
pairs associated with each lag is reported.

Table 3. Variogram Parameter Estimates and Associated Standard
Deviations

Model Parameter Estimated Value Standard Deviation

Exponential Sill 0.60 0.047
Integral scale 3.45 0.87

Spherical Sill 0.58 0.034
Range 8.37 1.25

TpvG A 0.10 0.014
H 0.33 0.23
ku 8.15 5.44
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vicinity of this zone are sufficiently differ-
ent from those under uniform recharge
to cause head predictive uncertainty
near this zone to increase.

At the preposterior stage, the vector C’,
consisting of five as yet unsampled
potential new Y and h values at locations
shown in Figure 2b, is estimated on the
basis of prior data D. Random estimates
C of C’ were generated by means of (3);
200 such estimates were found sufficient
to yield stable mean and variance values.
Figure 5 compares mean values and
95% confidence intervals of these pre-
posterior estimates with corresponding

posterior (reference) Y and h values at these locations. The figure shows that mean values are close to the
reference values, all of which lie within 95% confidence intervals of the estimates. The scalar measure of
preposterior predictive head uncertainty, Tr Cov hjDð ÞDC

� �
53:14, is remarkably close to its prior value,

Tr Cov hjDð ÞD
� �

53:24. Likewise, the spatial distribution of preposterior predictive head variance Var hjDð ÞDC

Table 4. Values of NLL, KIC, Posterior Weights and Model Rank in Prior and
Posterior Analyses of TC1

Prior

Model NLL KIC p Mkð jDÞ Rank

Exp_rchall 294.83 204.62 39.95% 1
Exp_rchstp 294.27 205.25 29.04% 2
Sph_rchall 2103.84 207.19 11.00% 4
Sph_rchstp 2105.12 206.00 20.01% 3

Posterior

Model NLL KIC p Mkð jD;C’Þ Rank

Exp_rchall 2128.50 226.22 48.11% 1
Exp_rchstp 2125.92 228.79 13.29% 3
Sph_rchall 2139.24 227.42 26.41% 2
Sph_rchstp 2137.73 228.96 12.19% 4
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Figure 4. Spatial distributions of predictive head variances and data worth for TC1. (a) prior predictive head variance, (b) preposterior predictive head variance, (c) posterior predictive
head variance, (d) expected posterior predictive head variance, (e) reference posterior data worth, and (f) expected preposterior data worth.
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in Figure 4b closely resembles that of the prior var-
iance, Var hjDð ÞD, in Figure 4a. The scalar measure Tr

ECjDCov hjD;Cð Þ
� �

of expected posterior predictive
head uncertainty is 2.70, the corresponding spatial
distribution of expected posterior predictive head
variance, ECjDVar hjD;Cð Þ, being depicted in Figure
4d. Augmenting the original data base is seen to
have reduced the expected posterior head variance
across much of the flow domain. The scalar measure
Tr CovCjDE hjD;Cð Þ
� �

of expected preposterior data
worth is 0.44, the corresponding spatial distribution
of expected preposterior data worth,
VarCjDE hjD;Cð Þ, being depicted in Figure 4f.

After C’ becomes available at the posterior stage, cal-
ibrating the flow moment equations against the
augmented data set D;C’f g yields NLL, KIC, and pos-
terior model weights listed in the bottom part of

Table 4. For reasons noted earlier, KIC again prefers model combination Exp_rchall with an even larger poste-
rior weight of 48.11%. The reference posterior predictive uncertainty, Tr Cov hjD;C’ð Þ½ �52:78, corresponds
closely to the expected posterior predictive head uncertainty of 2.70. Spatial distribution of the posterior pre-
dictive head variance Var hjD;C’ð Þ in Figure 4c resembles closely that of its expected posterior counterpart in
Figure 4d. The scalar measure Tr Cov hjDð ÞD

� �
2Tr Cov hjD;C’ð Þ½ �50:46 of posterior data worth is very close to

its preposterior estimate Tr CovCjDE hjD;Cð Þ
� �

5 0.44 (see summary of scalar measures for all test cases in Table
6). The spatial distribution of posterior data worth in Figure 4e resembles closely its preposterior estimate in
Figure 4f.

3.1.3. Effect of Including Generating Models (Test Case TC2)
Prior and posterior values of NLL, KIC, and posterior model weights obtained in test case TC2, which differs
from TC1 in its inclusion of the generating models, are listed in Table 5. Here the generating model combi-
nation TpvG_rchno is ranked best at both stages, with weights equal, respectively, to 28.09% and 27.75%. In
other words, our methodology consistently identifies the generating model as best when this combination
is included in the postulated model set. The combination Exp_rchno is consistently ranked second best with

posterior probabilities between 16 and 17 percent,
most likely due to the similarity noted earlier
between exponential and TpvG variogram models.
Once again we see how difficult it is to diagnose
the multiscale (hierarchical) structure of a random
field on the basis of its variogram alone, without
resorting to more advanced methods of geostatisti-
cal analysis such as that employed by, e.g., Guadag-
nini et al. [2014].

Figure 6 compares the spatial distributions of
expected preposterior and reference posterior data
worth in case TC2. Table 6 shows that the scalar
measure of preposterior predictive head uncer-
tainty, Tr Cov hjDð ÞDC

� �
53:53, is again close to its

prior value, Tr Cov hjDð ÞD
� �

53:47, and the scalar
measure Tr ECjDCov hjD;Cð Þ

� �
52:98 of expected

posterior predictive head uncertainty is slightly
smaller than the reference posterior predictive
uncertainty, Tr Cov hjD;C’ð Þ½ �53:08. All four meas-
ures are slightly larger than their values in test case
TC1 due to the wider range of models included in
TC2. On the other hand, the scalar measure Tr
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Figure 5. Reference and MLBMA-generated additional Y and h
values in TC1. The solid and empty triangles, respectively, repre-
sent reference and mean values; bars indicating the width of the
95% confidence interval around mean values are reported.

Table 5. Values of NLL, KIC, Posterior Weights and Model Rank
in Prior and Posterior Analyses of TC2

Prior

Model NLL KIC p Mkð jDÞ Rank

Exp_rchall 2103.33 196.08 9.06% 5
Exp_rchno 2104.77 194.93 16.11% 2
Exp_rchstp 2103.18 196.32 8.04% 6
Sph_rchall 2110.88 200.13 1.20% 9
Sph_rchno 2114.48 196.87 6.11% 7
Sph_rchstp 2112.65 198.45 2.76% 8
Tpvg_rchall 2100.56 194.96 15.89% 3
Tpvg_rchno 2101.96 193.82 28.09% 1
Tpvg_rchstp 2100.19 195.40 12.74% 4

Posterior

Model NLL KIC p Mkð jD;C’Þ Rank

Exp_rchall 2139.35 216.66 7.72% 7
Exp_rchno 2141.16 215.10 16.85% 2
Exp_rchstp 2139.43 216.56 8.11% 6
Sph_rchall 2148.29 219.71 1.69% 9
Sph_rchno 2151.90 216.42 8.70% 5
Sph_rchstp 2150.41 217.61 4.81% 8
Tpvg_rchall 2135.91 215.59 13.17% 3
Tpvg_rchno 2137.63 214.10 27.75% 1
Tpvg_rchstp 2135.56 215.92 11.20% 4
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Cov hjDð ÞD
� �

2Tr Cov hjD;C’ð Þ½ �50:45 of
posterior data worth is very close to its
TC1 value of 0.46 and to its preposterior
estimate Tr CovCjDE hjD;Cð Þ

� �
5 0.48 as

well as the latter’s TC1 value of 0.44. The
spatial distribution of preposterior data
worth in Figure 6a resembles closely its
posterior counterpart in Figure 6b as well
as their TC1 counterparts in Figures 4f
and 4e, respectively.

Considering that inclusion of the generat-
ing models in TC2 led to results similar to
those obtained upon excluding these
models from TC1, and that in nature gen-
erating models are usually unknown, we
exclude these models from all subse-
quent test cases.

3.1.4. Effect of Altering Sampling
Locations (Test Case TC3)
Test case TC3 is identical to TC1 except
that additional sampling is performed
not at locations indicated in Figure 2b
but at new random locations identified in
Figure 7. Also shown are spatial distribu-

tions of corresponding expected preposterior and reference posterior data worth. Comparison with correspond-
ing distributions in Figures 4 and 6 reveals a shift of elevated values to the left due to a similar shift in new
sampling locations. Expected preposterior data worth patterns in Figure 7a anticipate quite closely their refer-
ence posterior patterns in Figure 7b. Scalar measures of predictive head uncertainty in the first four rows of
Table 6 do not differ markedly from those corresponding to test cases TC1 and TC2. On the other hand, scalar
measures of data worth in the last two rows of Table 6 are now significantly smaller due, we believe, to (a)
greater proximity of the new sampling locations to the leftmost deterministic head boundary and (b) their more
pronounced clustering relative to each other and to original sampling locations. Effect (b) is in line with recent
observations [Hendricks Franssen et al., 2009; Riva et al., 2010] according to which the quality of inverse ground-
water flow modeling results depends on the density of available measurement location relative to the correla-
tion scale of the underlying log-conductivity field. The new additional sampling locations in Figure 7 are thus
revealed to be less advantageous those in Figures 2 and 6. We therefore consider the latter in all remaining test
cases.

3.1.5. Effect of Altering Type of Sampled Data (Test Cases TC4 and TC5)
Test case TC4 differs from TC1 in that no additional h values are sampled, and TC5 differs from TC1 in that
no additional Y values are made available. Figure 8 depicts spatial patterns of expected preposterior and ref-
erence posterior data worth for TC4 and TC5. The former pattern approximates the latter quite closely in
both cases. Scalar measures of data worth in the last two rows of Table 6 are, in both cases, smaller than
those in test case TC1. The fact that these measures are significantly smaller in TC5 than in TC4 implies that,
in our steady state flow example, sampling additional Y data provides a greater benefit than measuring an

Table 6. Scalar Measures in Prior, Preposterior, and Posterior Analyses

Scalar Measures TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

Prior predictive uncertainty 3.24 3.53 3.24 3.24 3.24 15.29 6.60 4.29
Preposterior predictive uncertainty 3.14 3.47 3.24 3.27 3.18 16.76 6.55 4.19
Reference Posterior predictive uncertainty 2.78 3.08 2.94 2.92 2.99 5.02 4.04 3.16
Expected posterior predictive uncertainty 2.70 2.98 2.90 2.87 2.97 4.97 4.18 3.27
Reference posterior data worth 0.46 0.45 0.30 0.32 0.25 10.27 2.56 1.14
Expected preposterior data worth 0.44 0.48 0.34 0.40 0.21 11.79 2.36 0.92
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Figure 6. Spatial distributions of the (a) expected preposterior and (b) refer-
ence posterior data worth for TC2.
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equal number of corresponding addi-
tional h values; the same may not nec-
essarily be true under other, say
transient, flow regimes. For example,
Panzeri et al. [2013] and others, refer-
enced by them, found that increasing
the number of early head observations
improves parameter estimates of tran-
sient stochastic flow models to a
greater degree than does observing
additional heads under pseudo-steady
state conditions at later time.

3.1.6. Effect of Reduced Prior Data
Sets (Test Cases TC6, TC7, TC8)
We end our analysis by altering the
number and type of prior data entering
into test case TC1. Test case TC6
includes 5 instead of 20 prior Y meas-
urements and 0 instead of 15 prior
head measurements. The number of
prior Y and h data, respectively, enter-
ing into TC7 is 10 and 5 and into TC8 is
15 and 10. Figure 9 shows spatial pat-
terns of expected preposterior and ref-
erence posterior data worth for TC6,
TC7, and TC8. Expected preposterior

patterns approximate the posterior patterns reasonably well in all three cases, though not as well as in pre-
vious cases. Scalar measures of data worth in the last two rows of Table 6 are, in all three cases, much larger
than those in previous test cases. The smaller is the number of prior data, the greater is the benefit of
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Figure 7. Spatial distributions of (a) expected preposterior and (b) reference pos-
terior data worth for TC3. Y and h, respectively, represent locations where log-
conductivities and hydraulic heads are originally available; empty triangles and
squares, respectively, indicate locations of 5 additional Y and h samples.
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Figure 8. Spatial distributions of (a, c) expected preposterior and (b, d) reference posterior data worth for (a, b) TC4 and (c, d) TC5 (symbols are illustrated in Figure 7).
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collecting additional data. The scalar
worth of additional data is much greater
in case TC6 than in any other case, drop-
ping sharply as the number of prior data
increases from TC6 through TC7 and TC8
to TC1 (Figure 10).

4. Conclusions

Our analysis leads to the following major
conclusions:

1. The multimodel Maximum Likelihood
Bayesian method of assessing data
worth proposed by Neuman et al.
[2012] and tested by them on geostat-
istical models has been shown here to
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Figure 9. Spatial distributions of the (a, c, e) expected preposterior and (b, d, f) reference posterior data worth for (a, b) TC6, (c, d) TC7, and (e, f) TC8 (symbols are illustrated in
Figure 7).
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worth with the size of the prior data in our tests.
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work well on synthetic data generated by a combination of geostatistical and steady state groundwater
flow models in two spatial dimensions. Embedding the moment equations (ME) of groundwater flow in
MLBMA in the context of the geostatistical inverse modeling method of Hernandez et al. [2003, 2006] and
Riva et al. [2011] allows circumventing the need for computationally expensive numerical Monte Carlo
simulations.

2. We have demonstrated by means of examples based on such synthetic data that our methodology is
able to identify the models that have generated the data when these models are included in the set of
potential alternatives. In real-world situations, the generating models are seldom if ever known. For this
reason, all but one of eight test cases we present excludes them from consideration in our multimodel
assessment of data worth.

3. Our synthetic log hydraulic conductivity data were generated randomly on the basis of a truncated power
variogram (TPV) characteristic of truncated fractional Brownian motion. Correspondingly, the underlying
random field has a hierarchical structure. When TPV is excluded from the set of models entering into our
analysis, the latter favors an exponential variogram model over a spherical model. This is so because, as
shown by Neuman et al. [2008], TPV and exponential variogram models may appear to be quite similar.
Our finding reinforces a conclusion by these authors that fitting standard exponential models to hierarch-
ical data may mask the multiscale nature of the underlying random field.

4. In all eight test cases we consider, our Bayesian method of analysis discriminates quite sharply between
the worth of alternative sampling schemes and the relative worth of various data types (in our case log
hydraulic conductivities and hydraulic heads).

5. In our steady state flow examples, log hydraulic conductivity data are found to be worth more than an
equal number of corresponding head measurements. We do not expect this to be necessarily the case
under different, e.g. transient, flow regimes.

6. Our examples confirm that the smaller is the set of prior data, the greater is the value of supplementing
them with additional measurements. When prior data are scarce, the scalar worth of a few additional
measurements may be very large but decreases sharply as the number of additional measurements grows.

Appendix A

In the standard BMA framework, the posterior model weight is given, according to Bayes’ rule, by

pðMk jDÞ5
pðDjMkÞpðMkÞXK

l51
pðDjMlÞpðMlÞ

(A1)

where

pðDjMkÞ5
ð

pðDjMk ; hkÞpðhk jMkÞdhk (A2)

is the marginal likelihood of model Mk , pðDjMk ; hkÞ is the joint likelihood of model Mk and its parameter vec-
tor hk , pðhk jMkÞ is the prior probability of parameters associated with model Mk , and pðMkÞ is the prior
model probability. All probabilities in equation (A1) are implicitly conditional on the choice of models
included in the setM.

In MLBMA, the parameter probability is made conditional on prior data D through maximization of the likeli-
hood pðDjMk ; hkÞ. In accord with Draper [1995], pðDjMk ; hkÞ in (A2) is approximated by its maximum likeli-
hood value pðDjMk ; ĥ

D
kÞ where hk has been replaced by its maximum likelihood estimate ĥ

D
k . Neuman

[2003] proposed evaluating the posterior model weights pðMk jDÞ based on Kashyap’s [1982] information cri-
terion KIC (for further details on KIC, refer to Ye et al. [2008]) according to

pðMk jDÞ � pðMk jDÞML5
exp 2 1

2 DKICD
k

� �
p Mkð ÞXK

l51

exp 2
1
2

DKICD
l

� �
p Mlð Þ

(A3)

where
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DKICD
k 5KICD

k 2KICD
min (A4)

KICD
k 522 ln pðDjMk ; ĥ

D
k ÞML22 ln pðĥD

k jMkÞML

1Nk ln
ND

2p

� �
1ln jFD

k j
(A5)

KICD
k being the Kashyap model selection criterion for model Mk based on data vector D of dimension ND,

KICD
min is the smallest KIC value among all K models, 22 ln pðDjMk ; ĥ

D
k ÞML22 ln pðĥD

k jMkÞML is negative log
likelihood incorporating prior probability of the parameters evaluated at ĥ

D
k , Nk is the dimension of ĥ

D
k , and

FD
k is a normalized (by ND) observed (as opposed to ensemble mean) Fisher information matrix having

components

FD
k;nm52

1
ND

@2ln p DjMk; hkð Þ
@hkn@hkm

� 	
hk 5ĥ

D
k

(A6)

KIC is chosen due to its unique discriminatory power in the context of our inverse approach [Riva et al.,
2011] and consistently reliable indication of model quality [Lu et al., 2011].

Appendix B

In a manner similar to Hernandez et al. [2003, 2006], we parameterize hY xð Þic as

hY xð Þic5
XNM

i51

xi xð ÞYMi1
XNP

j51

xj xð ÞYPj5
XNY

k51

xk xð ÞYLk (B1)

Here, YMi and YPj , respectively, are log hydraulic conductivities at NM measurement points and at NP pilot
points xp [De Marsily et al., 1984], YL5 YM;YPð ÞT , NY 5NM1NP is the dimension of YL, and xi , xj and xk are
kriging weights. We characterize the spatial structure of Y xð Þ by a variogram model c s;#ð Þ in which s is sep-
aration distance vector or lag and # is a vector of variogram parameters such as nugget effect (being
ignored in this study), sill and integral scale. In this work, we estimate # a priori on the basis of available log
hydraulic measurements, YM. Though we do not do so here, it is possible to improve these estimates by
conditioning them additionally on measured head values as proposed by Riva et al. [2011].

Let Y�Mi represents measured values of YMi and Y�Pp prior kriged estimates of YPp obtained through

Y�Pp5
XNM

i51

-i xp
� �

Y�Mi p51; 2; � � � ;Np (B2)

where -i xp
� �

are kriging weights. If one uses ordinary kriging, then the covariance of the corresponding
estimation (kriging) errors e�Yp5Y�Pp2YPp is given by

he�Ype
�
Yqi52c xp2xq

� �
1
XNM

i51

-i xp
� �

c xi2xq
� �

1l xp
� �

p; q51; 2; � � � ;NP (B3)

where l xp
� �

are Lagrange multipliers.

Obtaining ML estimates of hY xð Þic is thus equivalent to obtaining the estimates of model parameter YL in
the ML estimation process. We do so by minimizing the negative log likelihood (NLL) criterion [Carrera and
Neuman, 1986]

NLL5
Fh

r2
hE

1
FY

r2
hE

1ln jVY j1ln jVhj

1Nhln r2
hE1NY ln r2

YE1NZ ln 2p

(B4)

with respect to model parameters such as log conductivities at measurement and pilot point locations and
hydraulic heads at measurement locations, in equation (B4) Fh5 h�2hhiMcð ÞT V21

h h�2hhiMcð Þ is a weighted
sum of squared head residuals, h� representing measured head values and hhiMc conditional mean heads
at corresponding measurement locations, Ch5r2

hE Vh being the covariance matrix of head measurement
errors, r2

hE acting as a scaling factor; FY 5 Y�2YLð ÞT V21
Y Y�2YLð Þ is a penalty or regularization function
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consisting of the weighted sum of squared log conductivity residuals, the vector Y�5 Y�M;Y�P
� �

including log
conductivity measurements and prior log conductivity estimates at pilot points, CY 5r2

YE VY being the covari-
ance matrix of the corresponding measurement and estimation errors, r2

YE acting as a scaling factor; Nh is
the number of head measurements; and Nz5Nh1NY is the total number of head and hydraulic conductivity
measurements. In this paper, we treat measurement errors as being spatially uncorrelated, taking Ch5r2

hE Vh

and CYM5r2
YE VYM to be diagonal with known r2

hE and r2
YE values; it is possible to treat these matrices as non-

diagonal and the scaling factors as unknown parameters in the manner of Riva et al. [2011]. The covariance
matrix CY consists of two blocks

CY 5
CYM 0

0 CYP

" #
(B5)

The covariance CYP of pilot point estimates is generally nondiagonal, its components being given by (B3).
Specifying all components of Ch, CYM, and CYP as we do here reduces the ML problem of minimizing NLL in
(B4) to a relatively simple problem of minimizing a sum of squared residuals criterion r2

hE=r
2
hE

� �
Fh1FY .

At each iteration of the nonlinear optimization process, we compute a conditional covariance of Y across
the entire computational grid, according to

hY ’ xð ÞY ’ yð Þic5
D

Y xð Þ2Y xð Þc
� �

Y yð Þ2Y yð Þc
� �E

c

52c x2yð Þ2
XNY

k51

kk xð Þ
XNY

i51

ki yð Þ c xk2xið Þ2Qki½ �

1
XNY

i51

ki yð Þc x2xið Þ1
XNY

i51

ki yð Þc y2xið Þ

(B6)

where kk are kriging coefficients and Qki are components of the parameter estimation covariance matrix
Q 	 h Y2hYLicð Þ Y2hYLicð ÞT i. The Kashyap information criterion (A5) for model k then becomes

KIC5NLL1NY ln
1

2p

� �
2ln jQj (B7)
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