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Abstract We derive analytical relationships between the spatial covariance of the (natural) logarithm of
hydraulic conductivity (K) and that of representative soil particle sizes and porosity. The latter quantities can
be directly measured during routine sedimentological analyses of soil samples and provide a way of incor-
porating K estimates into groundwater flow models at a relatively modest experimental cost. Here we rely
on widely used empirical formulations requiring measurements of representative particle diameters and, in
some cases, of medium porosity. We derive exact formulations relating the spatial covariance of these quan-
tities and K and present workable approximations on the basis of perturbation methods. Our formulations
provide a direct link between key geostatistical descriptors of sedimentological and hydraulic parameters of
heterogeneous aquifers which can be employed in classical estimation and simulation procedures. The
approach and theoretical results are tested on an extensive data set comprising 411 particle size curves col-
lected at 12 boreholes in a small-scale alluvial aquifer.

1. Introduction

The potential of a groundwater flow model to represent reality is highly dependent on our ability to prop-
erly map the heterogeneous distribution of hydraulic conductivity, K, at the model grid scale. Mapping local
values of K is a complex task since it is routinely based on a limited set of directly measured values, which
are often obtained at diverse scales, or on interpreted quantities associated with hydraulic tests that are
linked to an often ill-defined measurement scale.

Most of the methods employed to estimate spatial distributions of K are grounded, in one way or another,
on geostatistical approaches. For example, these approaches include techniques based on (i) an initial clas-
sification of geomaterials deduced from descriptive analysis of sedimentological data collected along a
borehole, followed by the application of facies delineation techniques, then complemented by assigning K
values to each of the mapped facies [e.g., Ritzi et al., 1994; Guadagnini et al., 2004; Wohlberg et al., 2006; Tar-
takovsky et al., 2007]; (ii) the use of geophysical data which are then employed mostly in coherent soils to
reconstruct the spatial field of K through some (mostly empirical) correlations between the primary variable
(K) and secondary data types [e.g., McGrath et al., 2002; Mariethoz et al., 2009; Niwas and Celik, 2012]; (iii) the
generation of collections of K fields on the basis of structural geology patterns driven by sedimentological
processes including uncertainty [e.g., Koltermann and Gorelick, 1996; Michael et al., 2010; Maurer et al., 2013];
(iv) two-point, multiple-point, or nonparametric geostatistics (including indicator or transitional probability
simulation techniques) with or without the use of training images [e.g., Comunian et al., 2011; Huysmans
and Dassargues, 2012; Blouin et al., 2013].

Particle size data coupled with empirical correlations relating them to local K values are still widely
employed to obtain inexpensive Darcy-scale estimates of hydraulic conductivity in diverse field settings.
Due to simplicity of implementation, a large body of literature is available on the development and testing
of such empirical equations, a comprehensive review being provided by Vuković and Soro [1992]. Underly-
ing the approach is the idea that conductivity is related to the size and internal distribution of pore spaces,
which is linked to particle size distribution. This concept is also supported by theoretical studies based on,
e.g., volume-averaging techniques [Whitaker, 1999]. The theoretical elements underpinning such formula-
tions are explored nowadays through detailed flow simulations at the pore scale in explicit pore spaces
[e.g., Hyman et al., 2013, and references therein].
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Pore size distributions are difficult to obtain. They can be inferred from mercury injection curves [e.g., Paz Ferre-
iro et al., 2009, and references therein] or directly measured from detailed X-ray images of millimeter-scale soil
and/or rock samples [e.g., Latief et al., 2010; Bijeljic et al., 2013; Guadagnini et al., 2014, and references therein].
On the other hand, particle size curves, PSCs, are routinely measured from soil samples in geotechnical laborato-
ries. The procedure for particle size analysis is simple, inexpensive and typically involves the successive use of a
series of sieves of decreasing grid size, which are regulated by appropriate international standards. The PSCs
enable one to characterize a number of effective grain diameters, de, defined as the representative particle size
diameter in terms of percent in mass, corresponding to the eth percentile of a measured PSC. It should be noted
that several types of methods are available to extract PSCs from soil samples (e.g., sedigraph; laser diffraction;
dry and wet sieving) and they do not always render mutually consistent and compatible results.

A suite of empirical models are available to correlate K values with (one or more) representative grain sizes
as summarized by Vuković and Soro [1992], the resulting K values being considered as associated with some
support volume which is equivalent to that of the soil samples analyzed. Vienken and Dietrich [2011] and
Rosas et al. [2014] presented field evaluations of the most widely used empirical models. Some most recent
studies analyze the potential to base estimates of K on the full PSC. In this context, e.g., Rogiers et al. [2012]
use a site-specific model derived from linear and nonlinear data-driven modeling techniques.

The first empirical models were developed by Seelheim [1880] and Hazen [1893] who suggested a correla-
tion between K and the representative diameters d50 and d10. Since then, diverse empirical formulations
have been developed involving different combination of particle diameters and including the dependence
of K on additional variables such as porosity or soil type or texture. Amongst these, we focus here on the
two widely used formulations of Carman [1937] and Beyer [1964]. Despite some differences in the values of
the constants of proportionality and in the particular relationships adopted, these models can be consid-
ered as representative of several empirical formulations. Both models consider d10 as representative diame-
ter. While Carman [1937] included directly the effect of the total porosity on estimates of K, Beyer [1964]
enclosed the coefficient of uniformity, defined as U 5 d60/d10, in his model. Alternative formulations can be
embedded within the theoretical framework illustrated in section 3.

Our work is motivated by the observation that a combination of direct K measurements and representative
grain size data is typically available in field applications. As the number of samples related to direct K observa-
tion is usually much lower than that associated with PSC data, the calibration of a variogram model relying on
hard K data is particularly problematic. A possible way to cope with this problem would entail the use of
empirical or semiempirical formulations to obtain estimates of local K values to complement the available
data set. However, this would lead to mixing hard data and empirically based estimates in a unique database
the overall quality of which would be questionable, also considering that these two types of information dis-
play only a partial degree of correlation [Barahona-Palomo et al., 2011; Vienken and Dietrich, 2011].

As an alternative, we propose here to base the estimate of low-order statistics, i.e., mean and variogram, of
the random spatial field of conductivity on existing PSC data. We do so by deriving analytical relationships
between the spatial covariance of (natural) log conductivity and that of representative soil particle sizes and
porosity or coefficient of uniformity, as embedded in the Kozeny-Carman [Carman, 1937] and Beyer [Beyer,
1964] formulations. These geostatistical descriptors can then be employed in classical estimation and simu-
lation procedures which can then be conditioned on available hard data.

The paper is structured as follows. Section 2 summarizes the empirical formulations analyzed; section 3 presents
the theoretical derivations conducive to the evaluation of the mean and covariance of log conductivity relying
on the Beyer and Kozeny-Carman expressions; section 4 illustrates an application of our theoretical results in a
field setting comprising a small-scale alluvial aquifer located in the Neckar river valley, Germany, where an
extensive data set comprising 411 PSCs collected at various boreholes and previously employed for the geostat-
istical characterization of the site is available [Riva et al., 2006, 2008].

2. Empirical Formulations Relating Grain-Size Composition to Hydraulic
Conductivity

The Kozeny-Carman equation [Carman, 1937] and Beyer’s model [Beyer, 1964], which we consider in this
work, can be embedded in the general framework provided by Vuković and Soro [1992]. In their
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comprehensive work, these authors proposed a class of empirical formulations to obtain estimates of K
from a representative particle size diameter, de, and total porosity, /. All such formulations can be
expressed as

K5
g
m
bh /ð Þd2

e (1)

where g is the gravitational constant, m is fluid kinematic viscosity, b is a proportionality constant, and h is a
function of /.

From a physical standpoint all models described by (1) are constrained by the following set of limitations: (i)
no electrochemical reactions between the soil particles and the water are considered; this implies that (1) is
not appropriate in the presence of a large textural component associated with the fine fraction, as in the
case of clayey soils, although it provides acceptable results for nonplastic silts; (ii) as Darcy’s law assumes
laminar flow and a low pore water velocity, the conditions underlying applicability of Darcy’s law embedded
in (1) might be violated in the presence of coarse particle diameters, such as in the case of gravels; and (iii)
(1) does not explicitly account for anisotropy.

2.1. Beyer’s Equation
The formulation proposed by Beyer [1964] is a direct extension of the work of Hazen [1893] to account for
additional information embedded in the particle size distribution. Hazen [1893] suggested a direct propor-
tionality between hydraulic conductivity K and d2

10. Beyer [1964] postulated that intermediate grain sizes
should also provide information regarding K, and incorporated the coefficient of uniformity, U 5 d60/d10

into Hazen’s formulation.

Considering (1), Beyer’s formulation can be written in consistent units as

K5631024 g
m

log
500

U
d2

10 (2)

Note that (2) is recommended only when 1< U< 20 and 0:06 < d10½mm� < 0:6 [e.g., Beyer, 1964].

2.2. The Kozeny-Carman Equation
The Kozeny-Carman model (hereafter indicated as K-C) is expressed in the form

K5CCK
g
m

/3

12/ð Þ2
d2

10 (3)

where a nonlinear dependence of K on porosity is included. The coefficient of proportionality, CCK , depends
on several factors such as grains shape and distribution. For flow in capillary tubes or beds of spheres
CCK 51=180.

3. Theoretical Developments

3.1. Perturbation Analysis of the Beyer Model
Equation (2) can be rewritten as

K5A B2ln U½ �d2
10 (4)

where A5
g
m

631024

2:303

h i
and B 5 ln 500. Taking the natural logarithm of (4) leads to

ln K5ln A12ln d101ln B1ln 12
ln U

B

� �
(5)

The last term in (5) can be further expanded as
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ln 12
ln U

B

� �
52

ln U
B

2
1
2

ln U
B

� �2

1 � � � (6)

Considering the limits of applicability of Beyer’s formula, the truncation of (6) after two terms results in a rel-
ative error in the evaluation of ln K that does not exceed 1%. Substituting (6) into (5) leads to

ln K5ln A1ln B12ln d102
1
B

ln U2
1

2B2
ln 2U (7)

To simplify the notation, we introduce Y 5 ln K, Z 5 lnd10 and

b5ln A1ln B; V5ln U5ln d602ln d10 (8)

so that (7) can be rewritten as

Y xð Þ5b12Z xð Þ2 1
B

V xð Þ2 1
2B2

V 2 xð Þ (9)

x being the vector of space coordinates of a point in the domain.

The (ensemble) mean value of Y, hYi, can be derived by applying the expected value operator (denoted by
h i) to (9)

hY xð Þi5b12hZ xð Þi2 1
B
hV xð Þi2 1

2B2
hV xð Þi22

1
2B2

r2
V xð Þ (10)

where r2
V is the variance of V. In this work, we assume that all random fields involved in the analysis are

second-order stationary, so that the expected value is independent of location and the covariance between
two points is solely a function of separation distance (or lag). Applying the classical Reynolds’ decomposi-
tion to (9) and subtracting (10) from the resulting equation leads to the following equation satisfied by the
perturbation Y’ 5 Y 2 hYi

Y
0

xð Þ52Z
0

xð Þ2 1
B

V
0

xð Þ2 1
2B2

V 2 xð Þ1 1
2B2
hV 2 xð Þi (11)

The covariance of Y between points x and y can then be expressed as

CY x; yð Þ5hY 0 xð ÞY 0 yð Þi54CZ x; yð Þ1 1
B2

CV x; yð Þ2 4
B

CZV x; yð Þ2 2
B2
hZ 0 xð ÞV 2 yð Þi

1
1

B3
hV 0 xð ÞV 2 yð Þi1 1

4B4
hV 2 xð ÞV 2 yð Þi2hV 2i2
� � (12)

Here CZ x; yð Þ5hZ 0 xð ÞZ 0 yð Þi and CV x; yð Þ5hV 0 xð ÞV 0 yð Þi, respectively, are the covariance of Z and V while
CZV x; yð Þ5hZ 0 xð ÞV 0 yð Þi is the cross covariance between Z and V. Neglecting terms of order higher than 2 in
(12) leads to the following second-order approximation for CY x; yð Þ (see Appendix A for details)

CY x; yð Þ54CZ x; yð Þ1 1
B2 112

hVi
B

1
hVi2

B2

 !
CV x; yð Þ2 4

B
11
hVi

B

� �
CZV x; yð Þ (13)

Introducing D 5 lnd60, one can write V5ln U5ln d60=d10ð Þ5D2Z and then obtain the following second-
order expression for CY in terms of the low-order statistics of lnd10 and lnd60
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CY x; yð Þ54CZ x; yð Þ1

1
1

B2
CD x; yð Þ1CZ x; yð Þ22CZD x; yð Þ½ � 11

hDi2hZi
B

21
hDi2hZi

B

� �� �

2
4
B

CZD x; yð Þ2CZ x; yð Þ½ � 11
hDi2hZi

B

� � (14)

In some cases, the random fields D and Z can be considered as uncorrelated, as in the field application we
present in section 4. Under these conditions, (14) simplifies into

CY x; yð Þ5 CZ x; yð Þ
B2

114B14B21
hDi2hZi

B
214B1

hDi2hZi
B

� �� 	

1
CD x; yð Þ

B2
11
hDi2hZi

B
21
hDi2hZi

B

� �� � (15)

The corresponding (stationary) variance, r2
Y , is evaluated upon setting x5y in (15) and considering that

r2
Z5CZ x; xð Þ and r2

D5CD x; xð Þ, respectively, are the variance of Z and D.

In summary, the (second-order approximation of the) covariance function of Y based on Beyer’s formula is
given by either (14) or (15) depending on whether independence between d10 and d60 can be invoked or
not. If data support independence between these characteristic particle size diameters, then CY depends lin-
early on both CZ and CD. One can then interpret (15) as a nested covariance model, and the directional inte-

gral scale of Y, defined as IY 5 1
r2

Y

ð1
0

CYðhÞdh, with h5jx2yj, is a linear combination of the integral scales of Z

and D, respectively, denoted as IZ and ID. In case this independence cannot be invoked, an additional linear
dependence appears for CY in (14), in the form of the cross-covariance CZD. Note that any admissible model
choice for CZ, CD, and CZD yields an admissible covariance model for Y.

3.2. Perturbation Analysis of the Kozeny-Carman Model
Taking the natural logarithm of (3) leads to

ln K5ln CCK
g
m

� �
12ln d1013ln /22ln 12/ð Þ (16)

The term ln(12/) can be expanded as ln 12/ð Þ52/2 /2

2 1O /3
 �
. When considering a range of porosity

values typical of sedimentary aquifers (i.e., /� 40%) truncation to second order in / yields an approxima-
tion of ln 12/ð Þ which is associated with a relative error smaller than 6%. Introducing a5ln CCK g=mð Þ and
W 5 ln/, equation (16) becomes

Y xð Þ5a12Z xð Þ13W xð Þ12/ xð Þ1/2 xð Þ (17)

The (ensemble) mean value of Y can be derived by taking expectation of (17)

hY xð Þi5a12hZ xð Þi13hW xð Þi12h/ xð Þi1h/ xð Þi21r2
/ xð Þ (18)

r2
/ being porosity variance. As in section 3.1, we assume that all random fields are second-order stationary.

Subtracting (18) from (17) leads to the following expression for Y’

Y
0

xð Þ52Z
0

xð Þ13W
0

xð Þ12/
0

xð Þ1/2 xð Þ2h/2i (19)

The log conductivity covariance can then be derived from (19) as
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CY x; yð Þ54Cz x; yð Þ112CWZ x; yð Þ18C/Z x; yð Þ14h/2 yð ÞZ 0 xð Þi

19CW x; yð Þ112C/W x; yð Þ14C/ x; yð Þ16h/2 yð ÞW 0
xð Þi

14h/2 yð Þ/0 xð Þi1h/2 yð Þ/2 xð Þi2h/2i2
(20)

where CWZ , C/Z , and C/W are cross-covariance terms. Neglecting terms of order higher than 2 leads to (see
Appendix B for details)

CY x; yð Þ54CZ x; yð Þ1CW x; yð Þ 2518/G14/2
G1

12
/G

� �
14CZW x; yð Þ 312/G12/2

G

� 
(21)

/G being the geometric mean of /.

If the available data suggest that Z and W are uncorrelated, then (21) is further simplified as

CY x; yð Þ54CZ x; yð Þ1CW x; yð Þ 2518/G14/2
G1

12
/G

� �
(22)

These results show that, similarly to the formulation based on the Beyer’s model, CY can be expressed (at
second order) as a nested model of admissible covariance and cross-covariance functions. Equation (22)
relies on the assumption that Z and W be independent. In this context, we note that several empirical for-
mulations relating porosity to particle size diameters are available. In particular, a commonly used equation
is [e.g., Vuković and Soro, 1992]

/50:255 110:83U
� 

(23)

which shows a direct link between / and U, thus suggesting a correlation between these two quantities.
However, it is worth noting that the validity of purely empirical equations of the kind (23) is restricted to

materials that can be classified as clean
sands. Adoption of (23) should then be
questioned in the presence of diverse
geomaterials.

4. Field-Scale Application

In this section, we apply our theoretical
development to the analysis of an extensive
data set collected at an experimental site
located near the city of Tuebingen,
Germany.

The aquifer is composed of alluvial material
overlain by stiff silty clay and underlain by
hard silty clay. Site characterization is based
on detailed information collected at a set of
monitoring and pumping wells. The aquifer

Table 1. Key Results of the Geostatistical Analyses Performed by Riva
et al. [2010] on Z 5 lnd10 and D 5 lnd60 (diG is the Geometric Mean di,
i 5 10, 60)

Cluster 1 Cluster 2

Percentage of samples 53% 44%
d10G (mm) 9.63 3 1021 3.67 3 1021

r2
Z 0.53 0.32

Variogram type Spherical Spherical
Nugget 0.05 0.05
Sill 0.48 0.27
Horizontal range (m) 28 25
Vertical range (m) 0.70 0.90
d60G (mm) 1.58 3 101 1.13 3 101

r2
D 0.027 0.051

Variogram type Spherical Spherical
Nugget 0.005 0.010
Sill 0.0226 0.041
Horizontal range (m) 15 12
Vertical range (m) 0.70 0.70

Figure 1. Soil sampling network at the Tuebingen experimental site.
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has a saturated thickness of about 5 m and all boreholes reach the bedrock which forms the impermeable
aquifer base. The extensive investigations performed at the site comprise field and laboratory-scale data
collection and analysis. Available data include particle size curves, pumping and tracer tests as well as
downhole impeller flowmeter measurements. A detailed description of the analyses performed at the site is
presented by Riva et al. [2006, 2008], to which we refer for additional details. Neuman et al. [2007, 2008]
applied a stochastic interpretation method to data obtained from cross-hole pumping tests and illustrated
the application of a multiscale geostatistical methodology for the characterization of the spatial variability
of hydraulic conductivity. Barahona-Palomo et al. [2011] analyzed the relationship between hydraulic con-
ductivity estimates obtained through particle size curves and impeller flowmeter measurements at this and
other sites and found that these two quantities are partially but not completely correlated.

Here we focus on the available 411 PSCs collected along 12 vertical boreholes at the site which were
employed by Riva et al. [2006, 2008, 2010] to analyze in a Monte Carlo framework, the data associated with
a tracer test and to provide a probabilistic delineation of well-related capture zones. These PSCs were meas-
ured on core samples associated with characteristic length ranging from 5 to 26.5 cm. They are recon-
structed through grain sieve analysis performed with a set of 12 discrete sieve diameters (i.e., 0.063, 0.125,
0.25, 0.50, 1.0, 2.0, 4.0, 8.0, 16.0, 31.5, 63.0, and 100.0 mm) and suggest the occurrence of heterogeneous
and highly conducive alluvial deposits. Figure 1 depicts the three-dimensional structure of the sampling
network at the site.

Riva et al. [2006] provide a classification of the spatial distribution of hydrofacies in the system by grouping
the available PSCs into three main clusters, i.e., (a) Cluster 1, comprising moderately sorted gravel with
about 14% sand and very few fines and representing 53% of the samples; (b) Cluster 2, characterized by
poorly sorted gravel with about 24% sand and few fines and representing 44% of the samples; and (c) Clus-
ter 3, characterized by well-sorted sand with very few fines and about 23% gravel and representing 3% of
the samples. Characteristic particle diameters estimated from the PSCs have then been employed by Riva
et al. [2006, 2008, 2010] to estimate hydraulic conductivities for each identified Cluster through Beyer’s for-
mula. A detailed variogram analysis of the resulting hydraulic conductivity estimates associated with Cluster
1 and 2 is presented by Riva et al. [2006], while the geostatistical analysis of d10 and d60 is presented by Riva
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Figure 2. Sample (a) vertical and (b) horizontal variograms of log conductivities associated with Cluster 1 together with the model fitted
by Riva et al. [2006] and the analytical variogram models derived from (15) and (22).

Table 2. Results From Our Theoretical Developments and Key Results of the Geostatistical Analyses Performed on Y 5 ln K Calculated
on the Basis of the Formulation of Beyer [1964], as Presented by Riva et al. [2006]

Cluster 1 Cluster 2

Riva et al. [2006] Current Analysis Riva et al. [2006] Current Analysis

KG (m/s) 5.9231023 6.44 3 1023 from (10) 0.83 3 1023 0.81 3 1023 from (10)
r2

Y 2.41 2.64 from (15) 1.35 1.62 from (15)
Variogram type Spherical Equation (15) Spherical Equation (15)
Nugget 0.05 0.25 0.05 0.25
Sill 2.36 2.39 1.30 1.37
Horizontal integral scale (m) 3.75 10.50 3.75 9.37
Vertical integral scale (m) 0.33 0.26 0.30 0.34
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et al. [2010]. These authors verified that lnd10 and lnd60 associated with each cluster are independent at the
site thus allowing us to rely on (15) for the purpose of our analyses. In these works the authors estimated
the parameters of the variograms of lnd10, lnd60 and lnK upon setting the total variogram sill to the sample
variance of the data and by relying on the standard least squares method.

Here we rely on these results to apply the theoretical developments presented in section 3.1. Table 1 lists
the main results of the variogram analyses performed by Riva et al. [2010] on lnd10, lnd60. These are used as
input data in (10) and (15) to analytically derive the key statistical parameters of Y 5 lnK together with its
variogram. These results are listed in Table 2. The latter also lists the corresponding results of Riva et al.
[2006] which were obtained by estimating K through (2) at measurement locations and then performing a
standard varigram analysis as mentioned above.

Figure 2 depicts graphically the sample vertical and horizontal variograms of the log conductivity field associ-
ated with Cluster 1 together with the model fitted by Riva et al. [2006]. The analytical variogram model
derived from (15) is juxtaposed to these results. Figure 3 shows the corresponding depiction for data associ-
ated with Cluster 2 at the site. Considering that (a) any empirical formulation yields estimates of K which are
associated with an estimation error which is not clearly quantifiable, (b) empirical variograms based on a finite
set of data are always prone to uncertainty, and (c) variogram calibration is always associated with parameter
estimation errors (with notable uncertainty in the estimation of horizontal ranges), we find the results listed in
Table 2 and encapsulated in Figures 2 and 3 to be of acceptable quality for the purpose of our demonstration.

On the basis of the type of information available, which does not include direct porosity measurements, the
analytical expression based on the Kozeny-Carman model, i.e., (21) or (22), are not directly applicable to this
site. For the sake of comparison and in the absence of / measurements, we assume that porosity is deter-
ministic, i.e., CW 5 0 and CzW 5 0. In this case, (21) and (22) reduce to CY x; yð Þ54CZ x; yð Þ and the variogram
of Y is fully defined by the variogram of lnd10. The results obtained with this model are also depicted in Fig-
ures 2 and 3, respectively, for Cluster 1 and 2. Obviously, since the variability in porosity is neglected the
computed variogram of Y display a smaller sill than the one based on the Beyer model where randomness
of / is somehow encapsulated through the spatial variability of U.

5. Conclusions

Our work leads to the following key conclusions.

1. We derive exact formulations relating low-order statistics, i.e., mean and spatial covariance, of (natural) log
conductivity and that of representative diameters associated with soil particle size curves (PSCs) and porosity.
We base our analytical developments on the widely used empirical formulations of Beyer [1964] and Kozeny-
Carman [Carman, 1937], which, respectively, require the availability of measurements of two representative
particle diameters and joint measurements of a representative particle size and system porosity.

2. We present workable approximations of these formulations upon relying on perturbation methods and
test our theoretical results on a unique data set comprising 411 particle size curves collected at 12 bore-
holes in a small-scale experimental alluvial aquifer close to the city of Tuebingen, Germany.
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Figure 3. Sample (a) vertical and (b) horizontal variograms of log conductivities associated with Cluster 2 together with the model fitted
by Riva et al. [2006] and the analytical variogram models derived from (15) and (22).
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3. Practical implications of our results stem from the ability of our formulation to provide a clear link
between the basic geostatistical descriptors of hydraulic conductivity and soil representative particle diame-
ters. This can then be employed in classical geostatistically based estimation and simulation procedures
which can then be conditioned on available direct measurements of K.

Appendix A: Derivation of Second-Order Approximation for CY Based on the Beyer
Model

Here we derive second-order (in rZ and rV) approximations for CY on the basis of the Beyer equation (2).
We start by considering the following terms appearing in (12)

hZ 0 xð ÞV 2 yð Þi5hZ 0 xð Þ hVi1V
0

yð Þ
h i2

i52hViCZV x; yð Þ1hZ 0 xð ÞV 0 2 yð Þi (A1)

hV 0 xð ÞV 2 yð Þi52hViCV x; yð Þ1hV 0 xð ÞV 0 2 yð Þi (A2)

hV 2 xð ÞV 2 yð Þi5hVi412hVi2r2
V 1hV 0 2 xð ÞV 0 2 yð Þi14hVihV 0 xð ÞV 0 2 yð Þi14hVi2CV x; yð Þ (A3)

hV 2i25hVi412hVi2r2
V 1r4

V (A4)

Replacing (A1)–(A4) into (12) yields:

CY x; yð Þ54CZ x; yð Þ1 1
B2 12

hVi
B3 1

hVi2

B4

 !
CV x; yð Þ2 4

B
1

4hVi
B2

� �
CZV x; yð Þ1

2
2

B2
hZ 0 xð ÞV 0 2 yð Þi1 1

B3
11
hVi

B

� �
hV 0 xð ÞV 0 2 yð Þi1

1
1

4B4
hV 0 2 xð ÞV 0 2 yð Þi2 1

4B4
r4

V

(A5)

Neglecting moments of order larger than two in (A5) leads directly to (13)

Appendix B: Derivation of Second-Order Approximation for CY Based on the
Kozeny-Carman Model

Here we derive second-order (in rZ and rW) approximations for CY on the basis of the Kozeny-Carman
model (3). We start by evaluating terms that include /2 in (20), i.e.,

hZ 0 xð Þ/2 yð Þi5
D

Z
0

xð Þ h/i1/
0

yð Þ
h i2E

5
D

Z
0

xð Þ h/i21/
0 2

yð Þ12h/i/0 yð Þ
h iE

5

52h/iCZ/ x; yð Þ1hZ 0 xð Þ/0 2 yð Þi
(B1)

hW 0
xð Þ/2 yð Þi52h/iCW/ x; yð Þ1hW 0

xð Þ/0 2 yð Þi (B2)

h/0 xð Þ/2 yð Þi52h/iC/ x; yð Þ1h/0 xð Þ/0 2 yð Þi (B3)

h/2 xð Þ/2 yð Þi5
D
h/i1/

0
xð Þ

h i2
h/i1/

0
yð Þ

h i2E
5

5h/i412h/i2r2
/14h/i2C/ x; yð Þ1h/0 2 xð Þ/0 2 yð Þi14h/ih/0 2 xð Þ/0 yð Þi

(B4)
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h/2i25
D
h/i1/

0
xð Þ

h i2E2
5 h/i21h/0 2i
h i2

5h/i412h/i2r2
/1r4

/ (B5)

Replacing (B1)–(B5) into (20), after some manipulations leads to

CY x; yð Þ54CZ x; yð Þ19CW x; yð Þ112CWZ x; yð Þ18CZ/ x; yð Þ h/i11½ �1
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(B6)

Recalling that W5ln /, allows expanding the cross-covariance CW/ as

CW/ x; yð Þ5h/0 xð ÞW 0
yð Þi5

D
/
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yð Þ
� �E
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5
D
/
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 !" #E
5
D
/
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/
0
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5

ffi
D
/
0

xð Þ /
0

yð Þ
h/i 2

1
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/
02

yð Þ
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1
1
3

/
0 3

yð Þ
h/i3

1:::::

" #E
5

ffi C/ x; yð Þ
h/i 2

1
2
h/0 2 yð Þ/0 xð Þi
h/i2
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(B7)

Replacing (B7) into (B6) and neglecting terms of order higher than two (in rZ and rW) leads to

CY x; yð Þ54CZ x; yð Þ19CW x; yð Þ112CWZ x; yð Þ18CZ/ x; yð Þ h/i11½ �1

14C/ x; yð Þ 2h/i141h/i21
3
h/i

� � (B8)

Recalling that h/i5/GheW’i, where /G5ehWi is the geometric mean of /, and

/’ xð Þ5/G eW’ðxÞ2heW’ðxÞi
h i

5/G W ’ðxÞ1 W ’2ðxÞ
2

1:::2
hW ’2ðxÞi

2
1::

� �
(B9)

at the second order, we obtain

C/ x; yð Þ5h/0 xð Þ/0 yð Þi5/2
GCW x; yð Þ; CZ/ x; yð Þ5hZ 0 xð Þ/0 yð Þi5/GCWZ x; yð Þ (B10)

Making use of (B9) and (B10), equation (B8) reduces to (21).
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