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1015 Lausanne, Switzerland

�Dipartimento di Ingegneria Civile, Edile ed Ambientale, Università di Padova,
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Many regions of the world, including inland lakes, present with sub-optimal condi-
tions for the remotely-sensed retrieval of optical signals, thus challenging the limits of
available satellite data processing tools, such as atmospheric correction models (ACM)
and water-constituent retrieval (WCR) algorithms. Working in such regions, however,
can improve our understanding of remote-sensing tools and their applicability in new
contexts in addition to potentially offering useful information about aquatic ecology.
Here, we assess and compare 32 combinations of two ACMs, two WCRs and three
binary categories of data quality standards to optimize a remotely-sensed proxy of
plankton biomass in Lake Kivu. Each parameter set is compared against the available
ground-truth match-ups using Spearman’s right-tailed ρ. Focusing on the best sets
from each ACM-WCR combination, their performances are discussed with regard to
data distributions, sample sizes, spatial completeness and seasonality. The results of
this study may be of interest both for ecological studies on Lake Kivu and for epi-
demiological studies of disease, such as for cholera, whose dynamics in other regions
of the world are often associated with plankton biomass.

1. Introduction

1.1 Context

Proxies of plankton biomass, such as chlorophyll-a (chl-a) concentrations or plank-
ton absorption coefficients, can be important indicators of aquatic ecological pro-
cesses. They can also be useful in the context of disease dynamics, as is the case
for cholera, a devastating diarrheal disease. This is because the causative agent
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of cholera, Vibrio cholerae, lives as a member of the bacterioplankton commu-
nity. Indeed, cholera outbreaks have been linked to plankton blooms in the Bay of
Bengal where the pathogen is endemic. This cholera-plankton link is often found
using remotely-sensed chl-a as a proxy for plankton biomass (Lobitz et al. 2000;
De Magny et al. 2008; Ford et al. 2009; Jutla, Akanda, and Islam 2010; Jutla et al.
2013). The correlation between plankton blooms and cholera outbreaks may, how-
ever, depend on the local assemblages of plankton (Tamplin et al. 1990; Asplund
et al. 2011).

This raised the question as to whether such a relationship exists for endemic
cholera in the African Great Lakes (AGL) region, where the AGL may serve
as cholera reservoirs (Olago, Marchall, and Wandiga 2007; Bompangue et al.
2008, 2009). As of this writing, the only publication to investigate the plankton-
cholera relationship in the AGL region found the correlation indistinguishable from
rainfall-mediated seasonality in the number of cholera cases, at least for Lake Tan-
ganyika (Bompangue et al. 2011). Plankton also responds to seasonal shifts in
the rainfall regime, with lower biomass during the rainy season (generally Oct.-
May), than in the dry season (June-Sept. and around January); compositional
shifts occur in January, May and September, including the presence of two differ-
ent blooming species May-Sept. and Sept-Dec. (Sarmento, Isumbisho, and Descy
2006). To further our understanding of plankton dynamics in Lake Kivu (Figure 1),
we assess and attempt to optimize a remotely-sensed proxy for plankton biomass.
This could possibly have implications for the mathematical modeling of cholera
dynamics around Lake Kivu, described in Finger et al. (2014).

Figure 1

For this study, in situ chl-a measurements at 7 locations (see Figure 1) were made
available by Sarmento, Descy, and Darchambeau (2012), to be described further
in section 2.3. Alhough these in situ measurements are of high quality, they are of
insufficient spatial and temporal coverage to be used alone in a study of cholera
epidemiology, thus necessitating a remotely-sensed database.

1.2 Tools

Basically, the retrieval of water constituents by remote sensing consists of:

1. Signal processing
• the application of an ACM that removes atmospheric effects from

the calibrated and geolocated top-of-atmosphere radiance, yielding the
water-leaving radiance (Lw) at each wavelength, which is then normal-
ized to nLw (Chavula et al. 2009);
• the use of a WCR algorithm to retrieve biological values like chl-a from

the nLw (Gurlin, Gitelson, and Moses 2011; Ocean Color Biology Group
2012);

2. Post-processing
• the application of data quality standards;
• an optional binning step, not used here, which consists of temporal

and/or spatial interpolations.

The specific methods used to generate the remotely-sensed chl-a estimates for
the Bompangue et al. (2011) cholera study on Lake Tanganyika are given in Horion
et al. (2010). Briefly, they tested eight combinations of four ACM with two WCR,
namely the over-ocean SeaDAS standard ACM and three ACM designed for coastal
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regions, each with a different relative humidity, combined with one of two chl-
a algorithms, the Clark algorithm or the MODIS OC3 algorithm. According to
Horion et al. (2010), the most promising combination for Lake Tanganyika was the
coastal ACM with 90% relative humidity coupled to the OC3 algorithm (R2 = .64
and N = 12). In preliminary studies, we confirmed that this conclusion was also
valid for Lake Kivu when the same ACM-WCR combinations were tested (Knox
2012). Thus, the coastal ACM with 90% relative humidity and the OC3 bio-optical
algorithm are used here. Also of interest in this study are a short-wave infrared
(SWIR) ACM and a WCR for retrieving the plankton absorption coefficient at
a given wavelength, the quasi-analytic algorithm (QAA) (Lee et al. 1996; Lee,
Carder, and Arnone 2002; Lyon et al. 2004). To our knowledge, neither has been
applied for the retrieval of plankton information in the AGL region.

Both ACM tested in this study are specifically designed for coastal regions, but
not specifically for inland lakes. Both account for multiple scattering aerosol calcu-
lations. The coastal ACM with 90% humidity consists of a fixed aerosol type and
represents a significant improvement over its predecessors when applied to optically
complex waters because it does not rely on the black pixel assumption (Ahmad
et al. 2010; Bailey, Franz, and Werdell 2010). The SWIR model uses a 2-band cor-
rection in the short-wave infrared spectrum (1240 and 2130 nm bands) to calibrate
radiances in the visible spectrum. However, although promising for turbid waters,
it does not perform well in clear waters (Wang and Shi 2007; Wang, Son, and Shi
2009; Wang, Shi, and Tang 2011). Other drawbacks of the SWIR approach can
include a large number of invalid output pixels and a high error rate due to the
low signal-to-noise ratio in the SWIR correction bands (Werdell, Franz, and Bailey
2010).

One drawback of the OC3 algorithm, as well as similar band-arithmetic algo-
rithms relying on the blue-green part of the visible spectrum, is its underlying
assumption of a strong correlation between chl-a and colored dissolved organic
matter, which is valid in the open ocean but not in coastal and inland regions.
The quasi-analytic algorithm (QAA), on the other hand, is appropriate for these
complex waters because it uses a spectral inversion algorithm based on radiative
transfer theory to obtain estimates of phytoplankton absorption (Lee, Carder, and
Arnone 2002; Lee et al. 2009; Shang et al. 2011; Odermatt et al. 2012). Although
chl-a is more commonly used, the plankton absorption coefficient may provide a
more reliable measure of primary production (Lee et al. 1996; Lee, Carder, and
Arnone 2002; Lyon et al. 2004). Together, its potential robustness in retrieving
relative plankton biomass values in inland or other complex waters and its utility
as a measure of primary production make it an especially interesting algorithm to
test in an inland lake.

1.3 Challenges

The optimization of a remotely-sensed plankton database for Lake Kivu requires
an assessment of the applicability of remote sensing techniques to the specific con-
ditions of an inland lake. Indeed, as ACMs and WCRs are typically designed for
oceans, their applicability to Lake Kivu is not guaranteed.

Extensive cloud cover and haze diffusion over Lake Kivu, especially during
the rainy season, cause turbid and heterogeneous atmospheric conditions. Conse-
quently, the ratio of water-leaving to atmospherically scattered signals (including
adjacency effects) decreases to critical levels, potentially decreasing the quantity
and quality of plankton biomass estimates and thereby reducing their utility. Unfor-
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tunately, the automatic identification or correction of such conditions is currently
not solved; therefore greater random variability in the dataset is inevitable (Ocean
Color Biology Group 2012). Finally, the aerosols over southern Africa are unlike
other aerosol types in that, relative to other regions, there is both a strong nega-
tive correlation between the single scattering albedo and the wavelength and also
a considerably higher aerosol absorption (Russell et al. 2010). The latter is typi-
cally assumed to be negligable for the maritime aerosols for which most ACM were
developed.

The surface area of Lake Kivu is also smaller than that of two AGL neighbors,
Lakes Tanganyika and Malawi, whose plankton dynamics have been previously
studied using satellite-based remote sensing techniques (Chavula et al. 2009; Horion
et al. 2010). Unlike these neighbors, Lake Kivu also features a prominent island,
which consequently increases the ratio of shoreline to surface area and thus, the
impact of land proximity on retrieved data. Together, cloud cover, atypical aerosol
absorption characteristics and land proximity reduce the quantity and quality of
retrieved data, therefore necessitating thorough data assessment and optimization.

2. Methods

2.1 Data Treatment

All available MODIS-Aqua L1A images over Lake Kivu from June 2002 to June
2009 were obtained and processed to geolocated L1B data. After downloading the
necessary data from the Ocean Color Biology Group, the ACM and bio-optical
algorithms were applied using SeaDAS versions 6.2 to 6.4 (Ocean Color Biology
Group 2012). The retrieved products and the associated reflectance (albedo) and
flags were exported as ASCII files. Post-processing was performed in MATLAB.

Prior to post-processing, the QAA plankton absorption estimate had some nega-
tive values, which are physically impossible. However, because plankton absorbtion
is calculated algebraically by subtracting absorption by water and by detritus from
total absorption at a given wavelength (Lee et al. 2009; Naik et al. 2009), nega-
tive values may occur under conditions for which the algorithm is inapplicable.
Negative values were therefore excluded from analysis.

2.2 Experimental Setup

Each processing and post-processing step was treated as a binary parameter in-
fluencing the quality of the retrieved data (Table 1). The two possible values for
each parameter were coded as (+) and (-). With five such parameters, there are
32 possible parameter sets, all of which were tested.

Table 1

As illustrated in Table 1, parameters are as follows:
X1: The two ACM tested in this study are the coastal ACM with 90% relative

humidity and the SWIR ACM.
X2: The first bio-optical algorithm tested is the MODIS standard empirical blue-

green band-ratio algorithm known as OC3, using spectral bands at 443-555 nm. The
second is QAA, which decomposes reflectance into apparent and inherent optical
properties based on a sequence of algebraic expressions. Here we use the plankton
absorption coefficient at a single wavelength (490 nm).
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X3: Images yielding fewer than 5% or 15% of possible data-yielding pixels were
excluded from analysis. Note that, here, in the post-processing phase, the total
number of data-yielding pixels was set individually for each ACM-WCR combina-
tion to avoid a priori biasing in the parameter set selection process. The rationale
is that low pixel yield is indicative of extensive cloud cover, where cloud-covered
pixels yield no data and the feasible retrieval of nearby pixels is compromised by in-
creased atmospheric turbidity. Removing the most affected images (i.e. those with
lowest pixel yields) can help improve data reliability (Horion et al. 2010).
X4: Heterogeneity in the atmosphere and water can diminish the reliability of

retrieved data in a given pixel (Hu, Lee, and Franz 2012; Ocean Color Biology
Group 2012). Since the standard set of confidence flags results in the exclusion
of all available data, only selected flags were applied, based on preliminary analy-
ses (Knox 2012); see Table 2 for more details on the less permissive (-) and more
permissive (+) flag combinations applied.
X5: The maximum albedo threshold was tested at double (.054) and triple (.081)

the default value designed for clear over-ocean atmospheres (Ocean Color Biology
Group 2012). This is because all pixels have values exceeding that of the default
threshold, due to the high atmospheric turbidity over Lake Kivu.

Table 2

2.3 Ground-Truthing

Surface in situ measurements of plankton biomass (chl-a) were made available from
7 pelagic sites on Lake Kivu (Figures 1 and 2). These 255 in situ measurements,
both published and unpublished, span the years 2002-2009. They were collected
and analyzed according to methods described in Sarmento, Isumbisho, and Descy
(2006). The Ishungu and Kibuye sites provide, respectively, 62% and 22% of the in
situ chl-a measurements, with the Bukavu Bay site yielding 8% and the remaining
8% coming from the other 4 sites. These in situ values are log-normally distributed,
as is expected for chl-a. A timeline and frequency histogram of the in situ data for
all sites can be found in Figure 2.

Figure 2

Ground-truth match-ups were assigned by matching the geographic coordinates
of the in situ sites and the cooresponding remotely-sensed geo-located 1 km2 pixels.
A same-day satellite image was matched to the in situ sampling date whenever
possible; however, in the absence of a valid pixel value, the match-up was made
using a temporal interpolation from two images, one dating to just before and one
to just after the in situ sampling date, provided that they were within 3 days of
each other and only 1-2 days of the sampling date. The geographic coordinates
were the same. For both the same-day and the temporally-interpolated match-ups,
the satellite overpass was within 3 hours of the time of day of the in situ sampling,
thus minimizing the impact of diurnal fluctuations in plankton biomass.

2.4 Data Analysis

Although chl-a is usually log-normally distributed, this rule does not always hold
true for smaller data subsets, which is the case for the ground-truth match-ups
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in our study (data not shown). Because normality of log-transformed data cannot
be assumed, Pearson’s r was deemed inappropriate for this study, and the un-
transformed, true-value data were therefore analyzed using a right-tailed pairwise
Spearman’s ρ. Despite our best efforts to minimize the impact of data distortions
on the results, the representativeness of small samples is always a concern in data-
limited settings.

Several additional analyses were performed. Representative frequency histograms
are shown of the processed raw values (including negative values, hence the use of
raw data values rather than log-transformed values) as well as the log-transformed
post-processed values. Sample sizes and ρ were plotted in a regression; spatial
completeness statistics, timelines and selected images are shown, and parameter
set-specific variations in the availability of match-ups are displayed with a highlight
on seasonality.

Note that although data analysis was performed using the untransformed true
values, frequency histograms are presented using log-transformed data whenever a
log-normal distribution is expected. Additionally, graphical representations of the
ground-truthing results and lake-wide images of the plankton biomass estimations
use center-reduced data, or z-scores. While still imperfect, this technique facilitates
the visual comparison of the different parameter sets by homogenizing the scale
for the plankton absorption coefficients and chl-a estimates. Furthermore, as our
ultimate purpose is the correlation of plankton biomass dynamics and their pos-
sible epidemiological implications, we are more interested in the relative plankton
biomass, not in the absolute values. The z-scores of each data set are equal to the
individual values minus the mean of the full data set (including but not limited
to the ground-truth match-ups), and divided by the standard deviation. A z-score
of 0 is equal to the mean, and a z-score of 1 is equal to one standard deviation
above the mean. A high-performing data set would be expected to vary, relative to
itself, to the same extent as the in situ data do relative to themselves, thus yielding
similar z-scores.

3. Results & Discussion

3.1 Parameter Set Performances

Looking at Table 3, the best parameter sets from each ACM-WCR group (in bold)
all share the more restrictive confidence flag setting (X4). The minimum pixel
yield (X3) is more exclusive (-) with the Coastal ACMs but less exclusive (+)
with SWIR-OC3 and of no consequence with SWIR-QAA. The albedo threshold,
at the tested values, was of no importance. Overall, the average ρ of 0.49 leaves
something to be desired. However, it is not immediately clear from the tabularized
results which ACM-WCR combination is best.

Table 3

Sample sizes varied between 6 and 39 (mean N = 19) across parameter sets,
with the SWIR ACM generally having smaller sample sizes (mean N = 13 vs 26)
and poorer coverage (mean coverage = .12 vs .23) but higher ρ (mean ρ = .57 vs
.40) than the Coastal ACM. Indeed, a negative trend between sample size and ρ
emerges, which is discussed further in Section 3.2.2.

As for the comparison between QAA and OC3, the differences in coverage and
in ρ are minimal, but QAA is more robust in attaining statistically signifcant p-
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values, possibly due to larger sample sizes (N = 23 vs 16). This bias toward QAA
may have resulted from the exclusion of negative values if their exclusion acted as
an additional targeted filter not applied to the OC3 parameter sets. In fact, despite
its below-average ρ the Coastal-QAA group appears to be the most robust to noisy
data, with significant p-values across all post-processing options (parameter sets
17-24).

Finally, the best-performing Coastal-OC3 parameter set is not characteristic of
its group in terms of sample size (lower) or ρ (higher); however, as the most re-
strictive in terms of data quality (confidence flags and minimum pixel threshold),
it may simply be a sign that the Coastal-OC3 combination is susceptible to noisy
data and that removing the noise improves performance. This parameter set is also
unique in its high rate of same-day match-ups (89% of match-ups), and while the
potential impact of this difference remains elusive, it could be non-trivial.

The selected best sets from each ACM-WCR combination all, in their standard-
ized forms (z-scores), follow roughly the same pattern as the in situ data. This can
be seen in Figure 3 in the timelines and regressions of the z-scores.

Figure 3

Across all sets, greater deviations from the regression lines are found in the high
chl-a waters, which, incidentally, are only captured at the Ishungu site. However,
while heterogeneities in site location cannot be excluded as a possible explanation
for the greater unexplained variability, the most likely explanation is that spatially
limited and often heterogeneous bloom conditions cannot be captured in the same
way when using different methods (in situ biological sampling and remote sensing)
at different spatial scales (point-source vs 1 km2 average).

If the distributions were all log-normal and the data noise-free, then the z-scores
of the remotely-sensed and in situ data would match perfectly, i.e. y = x. By that
standard, the Coastal-QAA set performs best, despite having one outlier (visible
in Figure 3(e)), where it reproduces but overshoots a peak in the corresponding in
situ z-score.

3.2 Interpretation Biases

In the context of data limitation and quality concerns, ρ and ground-truth regres-
sions, alone, are insufficient to fully compare the different parameter sets. Hence,
the need for further analyses of possibly hidden biases.

3.2.1 Data Distribution

Figure 4 shows representative frequency histograms before and after post-
processing, demonstrating not only the importance of post-processing but also
the fidelity of the final data distributions to the expected log-normal distributions.
While all distributions prior to post-processing show evidence of significant noise,
there is an important distinction between the post-processed SWIR distributions,
in panels b and d, and the post-processed Coastal distributions, in panels f and h.

Figure 4

Namely, the retention of a long right tail for both post-processed SWIR dis-
tributions shows evidence of a susceptibility to noise in the form of high values.
This may reveal a susceptibility of SWIR to adjacency effects from bright objects
(e.g. land) which saturate the signal and distort the retrieved values, or it may
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simply reflect the relatively high proportion of invalid output pixels known to be
problematic with SWIR (Werdell, Franz, and Bailey 2010). The post-processed
distributions produced using the Coastal ACM, on the other hand, are log-normal,
as would be expected of plankton biomass estimates. These results suggest greater
applicability of the Coastal ACM in the study location, despite the high ρ of a few
SWIR parameter sets.

3.2.2 Sample Size

Returning to the question of sample size, we also find great differences between
the SWIR and Coastal ACMs, not only in the average sample size, discussed earlier
in section 3.1, but also in the strength of the relationship between sample size and
ρ, shown in Figure 5.

Figure 5

For the SWIR ACM, the slope (b) between N and ρ is different from zero (b =
−.0219, 90%, CI = -.0404 to -.0034, p = 0.1). Despite the visible trend, however,
this is not the case for the Coastal ACM, for which the impact of sample size on ρ
is less clear (b = −.0058, 90%, CI = -.0122 to .0064, p = 0.1.)

Focusing on the seven parameter sets above their regression lines (grey line for
Coastal-WCR sets and black line for SWIR-WCR sets), nearly all apply the more
rigorous confidence flag settings, with the exception of two from the Coastal-QAA
group. In fact, when controling for the possibly-significant impact of sample size,
four of the seven above-average sets are from the Coastal-QAA group. incidentally,
these four also have the largest sample sizes N of the seven sets.

Figure 5 thus offers further evidence of the increased applicability of this ACM-
WCR combination in the study region. Evidence presented elsewhere (Table 3 and
Figures 3 and 4) already casted doubts about the applicability of SWIR ACM in the
study location, at least compared to the Coastal ACM; however, the single high-
performing Coastal-OC3 set still cannot be discarded, as the available evidence
simply suggests that it is more sensitive than Coastal-QAA to the relaxation of
data inclusion criteria (Horion et al. 2010; Knox 2012).

3.2.3 Spatial Completeness

Just over two-thirds of the images provided data, with an average pixel yield that
is 18% of all possible post-processed data-yielding pixels (1845 pixels). Indeed, lack
of data and of spatial coverage overall is a limitation of this study. This can be seen
clearly in Figure 6, where the grey background represents possible data-yielding
pixels for which data could not be retrieved on that day.

Figure 6

The first four columns show retrievals from the four ground-truthing match-ups
common to all paramater sets (see Table 4), whereas the last column shows one of
the best retrieval days. Note that three of the displayed images (both SWIR sets in
the 4th column and Coastal-QAA in the 3rd column) failed to provide the needed
ground-truth match-up data, which were obtained using temporal interpolation.

In the fifth column of Figure 6, the importance of land proximity also becomes
clear, especially for Bukavu and Kabuno Bays. Together with the limited number
of in situ data points from these two sites, the lack of pixel retrievals helps explain
the lack of ground-truth match-ups for either site. Distinct differences between the
SWIR and Coastal ACMs are evident in the coloring of Figure 6. Importantly,
while not perfect, the Coastal ACM is better able to retrieve coastal pixels and
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to minimize the impact of land proximity on the resulting water-leaving radiance
than is the SWIR ACM, which suffers from improbably high z-scores for all pixels
located closest to the coast. Indeed, the SWIR ACM’s apparent susceptibility to
adjacency effects due to land proximity is a likely explanation for the long right
tail seen in the frequency histograms (see Figure 4, panels b and d). One strength
of the Coastal ACM is precisely that it was designed specifically to account for
land proximity. In pelagic waters, however, it is difficult to assess the Coastal
ACM’s apparently greater variability, since Figure 6 shows internally standardized
z-scores rather than absolute values. One plausible explanation is that the Coastal
ACM’s greater robustness to adjacency effects and fewer extreme values amplify
the visibility (in z-scores) of biologically relevant differences in true values.

While the lake images in Figure 6 provide visual snapshots, the seasonal com-
ponent of spatial completeness is shown quantitatively in Figure 7. With values
normalized to the maximum number of retrieved pixels for any given day and any
parameter set, this figure complements Table 3, showing that the total number of
retrieved pixels using the SWIR ACM is indeed half as much as with the coastal
ACM. This may be due to limitations in the applicability of the SWIR correction
bands over inland waters, including its inability to adequately retrieve the coastal
pixels.

Figure 7

Figure 7 clearly shows a temporal pattern in spatial completeness of the images,
especially using the SWIR ACM. While the SWIR sets yield less than half of the
average pixels-per-image retrieved by the Coastal sets (see Table 3), the difference
per-day is less drastic, at least outside the months of February and JJA season.
Lastly, although the two Coastal sets have comparable average completeness per-
image (see Table 3), the Coastal-QAA set has the greatest completeness per day
across all months.

Here, it becomes clear that no ACM-WCR combination retrieves well in the
middle of the rainy season (DJF), despite drier weather around January. Only the
Coastal-WCRs retrieve well during the long dry season (JJA), with the Coastal-
QAA doing particularly well. Fortunately, the DJF season is unlikely to be the most
important for plankton dynamics because blooms are less likely to occur (Sarmento,
Isumbisho, and Descy 2006). Furthermore, from an epidemiological perspective,
the cholera case load and human-to-human transmission are increased at this time
of year, consequently decreasing the relative impact of environmental factors like
plankton dynamics is minimized.

3.2.4 Seasonality and more

Figure 7 already provides a first appreciation of seasonality in spatial complete-
ness, but few final comments can be made about the role of seasonality - and other
differences - in the ground-truth match-ups. Such information, found in Table 4,
complements and strengthens results discussed earlier.

Table 4

First, as can be seen in Table 4, there are many differences among sets in the
exact dates of their ground-truth match-ups, including the question of whether the
match-up was obtained using a same-day pixel or a temporally-interpolated pixel.
Additional differences are introduced by the season and location of the match-ups.
All of this increases uncertainties of parameter set comparisons.
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Namely, although very minor seasonality exists in the number and location of in
situ measurements, the seasonality in ground-truth match-ups is consistent with
the seasonality in remote-sensing data retrieval, shown in Figure 7. Namely, the
Coastal ACM, which retrieves best in JJA, has an increased number of match-
ups from this season while the SWIR ACM has none, and match-ups are nearly
absent from the DJF season. Further, seasonality in the ground-truth match-ups
also interacts with site location and no ACM-WCR combination retrieves well in
the DJF season. Indeed, the low, but seasonally variable, numbers of ground-truth
match-ups can be almost entirely attributed to the seasonality in retrievals for any
given ACM-WCR combination.

4. Conclusion

This is the first study to employ the SWIR atmospheric correction algorithm and
the QAA water-constituents retrieval algorithm in an African Great Lake. That
said, although SWIR produced the highest ρ values, its spatial completeness does
not afford adequate large-scale spatiotemporal information about plankton dy-
namics in Lake Kivu. Indeed, its utility may be limited to specific times and places
where its retrieval capacity is maximized, such as during the March-April-May or
September-October-November seasons. Ultimately, the coastal atmospheric correc-
tion model with 90% relative humidity appears to be more appropriate for Lake
Kivu.

It is more difficult to decide between Coastal-QAA and Coastal-OC3. This study
highlights the robustness and potential utility of the QAA algorithm for inland
lake settings. Indeed, the QAA algorithm is an interesting alternative to chl-a and
should be considered for studies of limnologic primary productivity or plankton
biomass as it may, in some cases, be more appropriate, especially for tropical in-
land lakes. Moreover, since QAA decomposes reflectance into apparent and inher-
ent optical properties, it distinguishes between plankton, detritus and other water
constituents, and it does so at each wavelength. QAA thus offers much more than
what we could investigate here, having only incorporated plankton absorption at
one wavelength. Its use in applications of inland water components retrieval de-
serves further exploration. However, when appropriate data quality standards can
be applied, the OC3 algorithm may actually be higher-performing. Therefore, any
study planning to use these data should consider both the best-performing Coastal-
QAA and the best-performing Coastal-OC3 parameter sets and weigh the pros and
cons prior to selection.

In spite of the difficult remote sensing conditions on Lake Kivu, notably the
missing data and the adjacency effects from land and cloud cover, our study may
serve as a reference for others attempting similar study in difficult conditions.
Furthermore, our results may still prove useful in future studies due to the absence
of other continuous data sources. Our study may not be directly comparable to
those using R2 as the measure of ground-truthing performance, but for reference,
Chavula et al. (2009), working on Lake Malawi, obtained R2 = .6 (N = 5) using a
band ratio of normalized reflectances, while Horion et al. (2010), working on Lake
Tanganyika, obtained R2 = .64 (N = 12) using the Coastal-OC3 combination and,
notably, a minimum pixel threshold of 20% which would have been prohibitive
in our study. As might be imagined, these other AGL studies also encountered
significant challenges in retrieving sufficient high-quality data.

When attempting to optimize a remotely-sensed proxy in conditions of limited
data quantity and quality, a balance must be found, simultaneously excluding the
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maximum amount of low-quality data while still allowing for sufficient data quan-
tity to perform ground-truth analyses. Estimating plankton biomass concentrations
in Lake Kivu can potentially have important implications for spatially-explicit
cholera models(Gatto et al. 2012; Mari et al. 2012; Rinaldo et al. 2012; Bertuzzo
et al. 2014) that rely on the description of pathogen dynamics in environmental
waters to characterize the force of the infection of the disease(Codeco 2001). A
remotely sensed clue regarding pathogen concentrations, along with other climatic
and environmental drivers(Finger et al. 2014), would crucially improve our ability
to predict and, to some extent, control cholera dynamics in the endemic Lake Kivu
region.

The authors of this paper declare no conflict of interest.

Acknowledgements

We thank colleagues for their support, especially B. Schaefli, D. Tuia and G. Moser, as well as the experts

on the SeaDAS forum. We also thank J-P Descy, F. Darchambeau, M. Isumbisho, and H. Sarmento for
graciously providing the in situ data, which they produced thanks to financial support from several Belgian

institutions: Commission Universitaire pour le Développement, Fonds Léopold III pour l’Exploration et

Conservation de la Nature, Fondation pour Favoriser les Recherches Scientifiques en Afrique, Coopération
Technique Belge, and the International Foundation for Science and the International Society of Limnology.

11



June 17, 2014 International Journal of Remote Sensing Knoxetal

References

Ahmad, Z., B.A. Franz, C.R. Mcclain, E.J. Kwiatkowska, J. Werdell, E.P. Schettle, and
B.N. Holben. 2010. “New aerosol models for the retrieval of aerosol optical thickness and
normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal
regions and open oceans.” Applied Optics 49 (29): 5545–5560.

Asplund, M.E., A-S. Rehnstam-Holm, V. Atnur, P. Raghunath, V. Saravanan,
K. Härnström, B. Collin, I. Karunasagar, and A. Godhe. 2011. “Water column dynam-
ics of Vibrio in relation to phytoplankton community composition and environmental
conditions in a tropical coastal area.” Environmental Microbiology (13): 27382751.

Bailey, S.W., B.A. Franz, and P.J. Werdell. 2010. “Estimation of near-infrared water-leving
reflectance for satellite ocean color data processing.” Optics Express 18 (7): 7521–7527.

Bertuzzo, E., F. Finger, L. Mari, M. Gatto, and A. Rinaldo. 2014. “On the probability of
extinction of the Haiti cholera epidemic.” Stochastic Environmental Research and Risk
Assessment (online).

Bompangue, D., P. Giraudoux, P. Handschumacher, M. Piarroux, B. Sudre, M. Ekwanzala,
I. Kebela, and R. Piarroux. 2008. “Lakes as sources of cholera outbreaks, Democratic
Republic of Congo.” Emerging Infectious Diseases 14 (5): 798–800.

Bompangue, D., P. Giraudoux, M. Piarroux, G. Mutombo, R. Shamavu, B. Sudre, A. Mu-
tombo, V. Mondonge, and R. Piarroux. 2009. “Cholera epidemics, war and disasters
around Goma and Lake Kivu: an eight-year study.” PLOS Neglected Tropical Diseases
3 (5): 3436.

Bompangue, D., P. Giraudoux, P-D. Plisnier, A.M Tinda, M. Piarroux, B. Sudre, S. Horion,
J.M. Tamfum, B.K. Llunga, and R. Piarroux. 2011. “Dynamics of cholera outbreaks in
Great Lakes region of Africa, 1978-2008.” Emerging Infectious Diseases 17 (11): 2026–
2036.

Chavula, G., P. Brezonik, P. Thenkabail, T. Johnson, and M. Bauer. 2009. “Estimating
chlorophyll concentration in Lake Malawi from MODIS satellite imagery.” Physics and
Chemistry of the Earth 34: 756–760.

Codeco, C. 2001. “Endemic And Epidemic Dynamics Of Cholera: The Role Of The Aquatic
Reservoir.” Bmc Infectious Diseases 1.

De Magny, G.C., R. Murtugudde, M. Sapiano, A. Nizam, C.W. Brown, A.J. Busalacchi,
M. Yunus, et al. 2008. “Environmental signatures associated with cholera epidemics.”
Proceedings of the National Academy of Sciences 105 (46): 17676–17681.

Finger, F., A. Knox, E. Bertuzzo, L. Mari, D. Bompangue, M. Gatto, I. Rodriguez-Iturbe,
and A. Rinaldo. 2014. “Cholera in the lake Kivu region (DRC): integrating remote sens-
ing and spatially-explicit epidemiological modeling.” Water Resources Research Forth-
coming.

Ford, T.E., R.R. Colwell, J.B. Rose, S.S. Morse, D.J. Rogers, and T.L. Yates. 2009. “Us-
ing satellite images of environmental changes to predict infectious disease outbreaks.”
Emerging Infectious Diseases 15 (9).

Gatto, M., L. Mari, E. Bertuzzo, R. Casagrandi, L. Righetto, I. Rodriguez-Iturbe, and
A. Rinaldo. 2012. “Generalized reproduction numbers and the prediction of patterns in
waterborne disease.” Proceedings of the National Academy of Sciences 109 (48): 19703–
19708.

Gurlin, D., A.A. Gitelson, and W.J. Moses. 2011. “Remote estimation of chl-a concentra-
tion in turbid productive waters return to a simple two-band NIR-red model?.” Remote
Sensing of Environment 115: 3479–3490.

Horion, S., N. Bergamino, Y. Cornet, J-P. Descy, and P-D. Plisnier. 2010. “Optimized
extraction of daily bio-optical time series derived from MODIS/Aqua imagery for Lake
Tanganyika, Africa.” Remote Sensing of Environment 114: 781–791.

Hu, C., Z. Lee, and B. Franz. 2012. “Chlorophyll a algorithms for oligotrophic oceans:
a novel approach based on three-band reflectance difference.” Journal of Geophysical
Research 117: C010111.

Jutla, A., A.S. Akanda, A. Huq, A. Syed, G. Faruque, R. Colwell, and S. Islam. 2013.
“A water marker monitored by satellites to predict seasonal endemic cholera.” Remote

12



June 17, 2014 International Journal of Remote Sensing Knoxetal

Sensing Letters 4: 822–831.
Jutla, A.S., A.S. Akanda, and S. Islam. 2010. “Tracking Cholera In Coastal Regions Using

Satellite Observations.” Journal of the American Water Resources Association 46 (4):
651–662.

Knox, A. 2012. “Endemic cholera in inlandAfrica: a study on Lake Kivu, DRC.” Master’s
thesis. University of Lausanne.

Lee, Z.P., K. L. Carder, and R.A. Arnone. 2002. “Deriving inherent optical properties from
water color: a multiband quasi-analytical algorithm for optically deep waters.” Applied
Optics 41: 57555772.

Lee, Z.P., K. L. Carder, J. Marra, R. G. Steward, and M.J. Perry. 1996. “Estimating
primary production at depth from remote sensing.” Applied Optics 35: 463–474.

Lee, Z.P., B. Lubac, J. Werdell, and R. Arnone. 2009. An update of the quasi-analytical
algorithm (QAA v5). Tech. rep.. Mississippi State University; Ocean Biology Processing
Group, GSFC, NASA; Stennis Space Center.

Lobitz, B., L. Beck, A. Huq, B. Wood, G. Fuchs, A.S.G. Faruque, and R.R. Colwell. 2000.
“Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae
by indirect measurement.” Proceedings of the National Academy of Sciences 97 (4):
1438–1443.

Lyon, P.E., F.E. Hoge, C.W. Wright, R.N. Swift, and J.K. Yungel. 2004. “Chlorophyll
biomass in the global oceans: satellite retrieval using inherent optical properties.” Aplied
Optics 43 (31): 5886–5892.

Mari, L., E. Bertuzzo, L. Righetto, R. Casagrandi, M. Gatto, I. Rodriguez-Iturbe, and
A. Rinaldo. 2012. “Modelling Cholera Epidemics: The Role Of Waterways, Human Mo-
bility And Sanitation.” Journal Of The Royal Society Interface 9: 376–388.

Naik, Puneeta, E.J. D’Sa, J.I. Goés, and H. do R. Gomes. 2009. “Particulate absorption
properties from MODIS ocean color and four in-situ transects in the southeastern Bering
Sea shelf during July, 2008.” Proceedings of SPIE 7473: 747302.

Ocean Color Biology Group. 2012. “OceanColor Homepage and Forum.”
http://oceancolor.gsfc.nasa.gov/.

Odermatt, D., A. Gitelson, V.E. Brando, and M. Schaepman. 2012. “Review of constituent
retrieval in optically deep and complex waters from satellite imagery.” Remote Sensing
of Environment 118: 116–126.

Olago, D., M. Marchall, and S.O. Wandiga. 2007. “Climatic, socio-economic, and health
factors affecting human vulnerability to cholera in the Lake Victoria Basin, East Africa.”
Ambio 36 (4): 350–358.

Rinaldo, A., E. Bertuzzo, L. Mari, L. Righetto, M. Blokesch, M. Gatto, R. Casagrandi,
M. Murray, S. Vesenbeckh, and I. Rodriguez-Iturbe. 2012. “Reassessment Of The 2010-
2011 Haiti Cholera Outbreak And Rainfall-Driven Multi-Season Projections.” Proceed-
ings Of The National Academy Of Sciences 109: 6602–6607.

Russell, P.B., R.W. Bergstrom, Y. Shinozuka, A.D. Clarke, P.F. DeCarlo, J.L. Jimenez,
J.M. Livingston, J. Redemann, O. Dubovik, and A. Strawa. 2010. “Absorption Angstrom
Exponent in AERONET and related data as an indicator of aerosol composition.” At-
mospheric Chemistry and Physics 10: 1155–1169.

Sarmento, H., J-P. Descy, and F. Darchambeau. 2012. “Phytoplankton.” In Lake Kivu
limnology and biogeochemistry of a tropical great lake, edited by J-P. Descy, F. Dar-
chambeau, and M. Schmid. Aquatic Ecology Series. chap. 5, 188. Springer.

Sarmento, H., M. Isumbisho, and J-P. Descy. 2006. “Phytoplankton ecology of Lake Kivu
(Eastern Africa).” Journal of Plankton Research 28 (9): 815–829.

Shang, S., Q. Dong, Z. Lee, Y. Li, Y. Xie, and M. Behrenfeld. 2011. “MODIS observed
phytoplankton dynamics in the Taiwan Strait: an absorption-based analysis.” Biogeo-
sciences 8: 841–850.

Tamplin, M.L., A.L. Gauzens, A. Huq, D.A. Sack, and R.R. Colwell. 1990. “Attachment of
Vibrio cholerae serogroup 01 to zooplankton and phytoplankton of Bangladesh waters.”
Applied and Environmental Microbiology 56 (6): 1977–1980.

Wang, M., and W. Shi. 2007. “The NIR-SWIR combined atmospheric correction approach
for MODIS ocean color data processing.” Optics Express 15 (24): 15722.

13



June 17, 2014 International Journal of Remote Sensing Knoxetal

Wang, M., W. Shi, and J. Tang. 2011. “Water property monitoring and assessment for
China’s inland Lake Taihu from MODIS-Aqua measurements.” Remote Sensing of En-
vironment 115: 841–854.

Wang, M., SH. Son, and W. Shi. 2009. “Evaluation of MODIS SWIR and NIR-SWIR at-
mospheric correction algorithms using SeaBASS data.” Remote Sensing of Environment
113: 635–644.

Werdell, P.J., B.A. Franz, and S.W. Bailey. 2010. “Evaluation of shortwave infrared atmo-
spheric correction for ocean color remote sensing of Chesapeake Bay.” Remote Sensing
of Environment 114: 2238–2247.

14



June 17, 2014 International Journal of Remote Sensing Knoxetal

X 1 X 2 X 3 X 4 X 5

Parameters ACM WCR
Minimum 
pixel yield

Flag setting
Maximum 

albedo

Coded (+) Coastal OC3                         5%
Less 

exclusive
0.054

Coded (-) SWIR QAA                         15%
More 

exclusive
0.081

Table 1. Parameter Values. For each parameter set and each parameter Xi in that set (i being an
integer from 1 to 5), the two true values of the parameter are coded to (+) or (-) and entered into the
experimental matrix.
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(+) (-)

1. ATMFAIL Atmospheric correction failure � �
3. PRODWARN* One or more product warnings �
4. HIGLINT High sun glint � �
6. HISATZEN High sensor view zenith angle �
10. CLDICE Probable cloud or ice contamination �
11. COCCOLITH Coccolithofores detected �
12. TURBIDW* Turbid water detected �
13. HISOLZEN High solar zenith � �
15. LOWLW Very low nLw (cloud shadow) �
16. CHLFAIL Derived product algorithm failure � �
17. NAVWARN Navigation quality is reduced �
18. ABSAER* Possible absorbing aerosol �
20. MAXAERITER Aerosol iterations exceeded max �
22. CHLWARN Derived product quality is reduced � �
23. ATMWARN Atmospheric correction is suspect � �
*SeaDAS flags not applied by default in standard ocean color processing.

Coded ValueFlag Description

Table 2. Confidence Flags (X4). The flags incorporated into the more permissive (+) and more re-
strictive (-) parameter values are noted here. Whenever a flag is applied, it excludes data points obtained
under the circumstances defined by the flag. All flags except three (asterisked) are SeaDAS default flags
for ocean color processing (Ocean Color Biology Group 2012). Four additional default flags were omitted
from analysis: flags 5 (saturated radiance) and 9 (straylight) due to over-masking, and flags 2 (land mask)
and 26 (bad navigation) due to apparent flagging errors in the context of an inland lake. The two tested
flag combinations were chosen based on preliminary experiments (Knox 2012).
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X1 X2 X3 X4 X5 ƿ p-value N Ia Dayb Imagec

1-2 - - - - +/- 0.74 <.01 11 0.45 0.64 0.09
3-4 - - - + +/- 0.40 <.05 19 0.47 0.74 0.16
5-6 - - + - +/- 0.74 <.01 11 0.45 0.64 0.09
7-8 - - + + +/- 0.38 <.05 20 0.45 0.75 0.16

9-10 - + - - +/- 0.60 n.s 6 0.67 0.67 0.08
11-12 - + - + +/- 0.49 n.s 10 0.60 0.80 0.15
13-14 - + + - +/- 0.75 <.01 11 0.45 0.64 0.09
15-16 - + + + +/- 0.48 <.05 16 0.44 0.75 0.15
17-18 + - - - +/- 0.47 <.05 24 0.58 0.67 0.20
19-20 + - - + +/- 0.37 <.05 37 0.57 0.57 0.24
21-22 + - + - +/- 0.45 <.05 25 0.56 0.68 0.19
23-24 + - + + +/- 0.36 <.05 39 0.54 0.56 0.23
25-26 + + - - +/- 0.62 <.05 9 0.67 0.89 0.21
27-28 + + - + +/- 0.31 n.s 14 0.57 0.64 0.27
29-30 + + + - +/- 0.35 n.s 23 0.61 0.65 0.23
31-32 + + + + +/- 0.28 n.s 36 0.58 0.56 0.29

0.49 11/16 sig. 19 0.54 0.68 0.18

0.57 6/8 sig. 13 0.50 0.70 0.12

0.40 5/8 sig. 26 0.58 0.65 0.23
0.49 8/8 sig. 23 0.51 0.65 0.17
0.49 3/8 sig. 16 0.57 0.70 0.18

Main Results

QAA Only
OC3 Only

SWIR Only

Coastal Only

Averaged Results

Set
Parameters

Group

SWIR-
QAA

SWIR-
OC3

Coastal-
QAA

Coastal-
OC3

Table 3. Parameter Set Performances. The four parameter sets chosen to represent each ACM-
WCR group are in bold. aThe proportion of match-ups from Ishungu; bthe proportion generated as same-
day match-ups without temporal interpolation, and cthe proportion of data-yielding pixels, obtained by
dividing the number of data-yielding pixels by the number of possible data-yielding pixels.
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Date Site
Matched              
in situ b

SWIR-
QAA

SWIR-
OC3

Coastal-
QAA 

Coastal-
OC3 

2002-08-20 Ishungu 0.9201 0.0550

2002-10-15 Ishungu 1.1911 0.0573 0.9491 0.0304 0.3997

2003-01-27 Western 2.2641 0.6045 21.5564 0.0502

2003-04-01 Ishungu 4.5364 0.6858 14.9965 0.2418 3.4912

2003-08-05 Ishungu 3.8565 0.0660 1.0016

2003-09-02 Ishungu 3.5345 0.0564

2004-07-07 Ishungu 3.1844 0.0495 0.8035

2004-11-23 Ishungu 3.7171 1.5686 49.6493 0.0591

2005-06-21 Kibuye 3.2513 0.0414

2005-07-05 Ishungu 1.5689 0.0452

2005-07-05 Kibuye 2.3571 0.0386

2005-08-05 Ishungu 1.3236 0.0474

2005-10-25 Kibuye 2.1719 0.0703 1.8019 0.0482

2005-11-08 Kibuye 1.6296 0.1327 5.3299 0.0655 1.4060

2006-02-03 Kibuye 2.4725 0.0648 1.2598

2006-04-03 Ishungu 2.3848 1.2412 36.0386 0.0945

2006-04-27 Kibuye 1.7183 0.1187 3.1222 0.0876

2006-05-09 Ishungu 3.6007 1.1775 31.5146 0.1371 4.1648

2006-06-13 Kibuye 0.4962 0.0530

2006-06-20 Ishungu 1.9938 0.0678

2006-07-04 Kibuye 1.0696 0.0499 0.9314

2006-11-21 Kibuye 1.7366 0.2543 5.3961

2007-06-19 Ishungu 1.3200 0.0433

2008-06-03 Kibuye 0.7697 0.2574 4.1221 0.0405

2008-07-03 Ishungu 1.3428 0.0608 0.9738

Months

All Year 11 (.45) 11 (.45) 24 (.58) 9 (.67)

DJF 1 (0) 1 (0) 2 (0) 1 (0)

MAM 4 (.75) 4 (.75) 4 (.75) 2 (1.00)

JJA 1 (0) 1 (0) 13 (.62) 4 (.75)

SON 5 (.40) 5 (.40) 5 (.60) 2 (.50)

72 (.64)

54 (.57)

Ground-truth match-ups (I a)All in situ (I a)

255 (.62)

56 (.59)

73 (.67)

Table 4. Selected Ground-Truth Match-Ups. Details of the specific ground-truth match-ups are
shown with the true values (i.e. the absolute plankton absorption or Chl-A values) from the best rep-
resentative of each ACM-WCR group. Italicized values were obtained using the temporal interpolation
described in section 2.3. Distilling the raw information about match-ups into seasonal components, the
number and location of match-ups is also shown, where months are grouped so as to maximize seasonality.
aThe proportion of match-ups from Ishungu by season; bIn situ data were provided through the work of
Sarmento, Isumbisho, and Descy (2006) and Sarmento, Descy, and Darchambeau (2012).
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Figure 1. Study Location. (a) The African Great Lakes are found in East Africa, many along the
Albertine Rift (western branch) of the East African Rift System. (b) Lake Kivu is one of the smaller AGL,
located to the north of Lake Tanganyika and west of Lake Victoria. (c) Lake Kivu is situated on the border
of the Democratic Republic of Congo to the West and Rwanda to the East. Data from seven pelagic in
situ Chl-A sampling points were available for this study.
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Figure 2. In Situ Data. (a) Timeline of true chl-a values obtained in situ, where the three sites with the
most continuous data are drawn with a line to connect the dots while the others are plotted as unconnected
dots. (b) Frequency histogram the normally-distributed log in situ data.

20



June 17, 2014 International Journal of Remote Sensing Knoxetal

−2

0

2

4

 

 

−2

0

2

4

−2

0

2

4

 

 

−2

0

2

4

−2

0

2

4

 

 

−2

0

2

4

2002 2004 2006 2008
−2

0

2

4

 

 

−2 −1 0 1 2
−2

0

2

4

S
W

IR
−

Q
A

A
S

W
IR

−
O

C
3

C
o

a
s
ta

l−
Q

A
A

C
o

a
s
ta

l−
O

C
3

Years Normalized in situ data (z-score)

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

N
o

rm
a

liz
e

d
 r

e
m

o
te

ly
−

s
e

n
s
e

d
 d

a
ta

 (
z
-s

c
o

re
)  y = 0.88 x + 0.54

 y = 0.69 x + 0.37

 y = 0.94 x + 0.6

y = 0.81 x + 0.41

RS
IS

Ishungu
Kibuye
Western

Figure 3. Ground-Truthing Results. Results of the center-reduced (z-scores) matched data for each
of the four chosen ACM-WCR combinations. (a), (c), (e), and (g): Timelines of the z-scores of remotely-
sensed data in open circles and z-scores of in situ data in closed squares. Note that the line connecting
sequential ground-truth match-ups is included as a visual aid only. (b), (d), (f ), and (h): Regressions of
the z-scores of match-ups are colored according to their site location.
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Figure 4. Impact of Post-Processing. Frequency histograms of the four chosen ACM-WCR combi-
nations were, for computational reasons, generated using representative sub-samples of every fifth pixel
latitude, fourth longitude and fifth in time. (a), (c), (e), and (g) show the distribution of true values before
post-processing; these values would ideally be left-skewed with a positive maximum. Unsurprisingly, with
the possible exception of SWIR-OC3, none meet that criteria, signifying the necessity of post-processing.
(b), (d), (f ), and (h) show the log-transformed values after post-processing; plotted on a log-scale, these
values would ideally appear normally distributed, as is the case for the two Coastal sets in (f ) and (h).
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Figure 5. Impact of Sample Size. All parameter sets are plotted according to the sample size N and ρ,
with SWIR sets in black and Coastal sets in grey, where closed circles are used for QAA and open circles
for OC3. Since ACM is clearly an important determinant in the impact of N on ρ, two regression lines
have been drawn, one each for SWIR (black) and Coastal (grey) sets.
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imaging days, for which the in situ data was not available.
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Figure 7. Seasonality of Spatial Completeness. Daily spatial completeness averaged by month, nor-
malized to the product of the maximum unique data-yielding pixels and the number of days of a given
month across the assessed timespan (July 6, 2002 to July 5, 2009). Unlike in Table 1, which shows average
completeness per data-yielding image, the normalization used here enables a consideration for the total
actual monthly pixel yield (i.e. the number of pixels per image and images per month) divided by the
theoretical maximum monthly pixel yield (i.e. the maximum possible coverage multiplied by the number
of days per month). (a) SWIR-QAA, (b) Coastal-QAA, (c) SWIR-OC3 and (d) Coastal-OC3.
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