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Abstract
We present the results of an extensive characterization of physical and electrostatic effects influencing the dynamical behavior of a

micro-electromechanical (MEMS) accelerometer based on commercial technology. A similar device has been utilized recently to

demonstrate the effect of Casimir and other nano-scale interactions on the pull-in distance [Ardito et. al., Microelectron. Reliab.,

52 (2012) 271]. In the present work, we focus on the influence of pressure, plate separation, and electric surface potentials on

the spectral mechanical response. We finally find evidence for the presence of non-viscous damping due to compressibility of the

ambient gas, and demonstrate a strong dependence of the sensitivity on the parameters of the operating point.

c© 2014 The Authors. Published by Elsevier Ltd.

Peer-review under responsibility of the scientific committee of Eurosensors 2014

Keywords: MEMS accelerometer, dynamics, parasitic electrostatics, hydrodynamic damping, frequency shift

1. Introduction

Micro-electromechanical systems (MEMS) are employed in a wide variety of industrial applications. At the

present technological level, typical surface separations in these devices are of the order of 1 μm. For these dimen-

sions, it has already been demonstrated that hydrodynamic forces[1] and even Casimir [2, 3] interactions can influence

the dynamical behavior of mechanical elements. The ongoing trend for miniaturization will necessitate the assessment

and understanding of the prevalent interactions in the distance regime below the micrometer level. In this domain, due

to the limitation of a maximum possible electric field strength, Casimir forces are necessarily of the same order as elec-

trostatic ones. Therefore, one must either find ways to effectively reduce quantum-mechanical surface interactions [4],

or to employ them in a controlled way to actuate devices [5]. Another aspect, which gains importance at small sepa-

rations, is the presence of electrostatic ‘patch’ potentials caused by local variations in the Fermi surfaces. In the same

way as Casimir forces, patch interactions create a pervasive force background which may cause stiction. Finally, even

at low gas pressures, elastic hydrodynamic effects and slippage on surfaces have to be taken into account [6].

It is the purpose of the present work to investigate the aforementioned effects in a MEMS accelerometer based

on commercial technology. We extend a previous characterization [3] of a similar device by an assessment of the

influence of hydrodynamics and surface potentials onto the dynamic mechanical response.
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Fig. 1: Sensor and setup: a) SEM image of the entire accelerometer, where the frame indicates the area optically imaged in b). Schematic views of

the setup for c) DC and d) AC measurements of the sensor response.

2. Device and setup

The investigated device has been designed and fabricated by ST Microelectronics using their ThELMA [7] process

to create structures of 22 μm depth in heavily doped poly-silicon. As shown schematically in Fig. 1a, the mechanical

structure consists of a movable shuttle (rotor, R) which is supported by four folded springs. Interleaved comb structures

extending laterally from the shuttle form parallel plate capacitors with similar structures on the fixed frame (stator, S).

Relative displacements [constant Δd ≡ ΔdDC and/or modulated Δd ≡ Δd(t)] between R and S, resulting in changes of

the plate separation d = d0 − Δd can be sensed by monitoring the capacitance CS R,

CS R = εA
(

1
d +

1
s−w−d

)
, (1)

where A is the total sensing area, while s and w are the spacing between two S-lamellae and the width of an R-lamella,

respectively. The device contains 4 linear bi-directional electrostatic comb drives (D), realized in two different geome-

tries, one of which is shown enlarged in Fig. 1b). Application of a voltage VD to D results in a force FD on the shuttle

in longitudinal direction x, and hence a displacement Δd according to,

Δd ≈ FD
k , with k ≡ lim

ω→0
T−1
ΔdF , where T−1

ΔdF = m
[
ω2

r − ω2 + 2iξωωr

]
, and d0 = lim

F→0
d . (2)

Here, m is the rotor mass, ωr = 2π fr =
√

k/m stands for the cyclic mechanical eigenfrequency, ξ is the viscous damp-

ing coefficient, and the elastic constant k represents the limiting value of the inverse mechanical transfer function T−1
ΔdF

relating general (driver and external) forces F to displacements Δd of the shuttle.

In order to measure the static and dynamic responses of the device, we utilize two different setups shown in Figs. 1c

and 1d, respectively. Investigations of the pull-in distance and surface potentials are performed using a constant VD

to set ΔdDC, and an LCR meter with optional DC bias VBDC applied between R and S. For dynamic measurements

the system is excited by adding a modulation VDAC at frequency ωD/2π to VD effecting a small vibration amplitude

Δd(t) � d. This modulation together with the constant supply VS results in a current iR = VS ∂CS R/∂t, which can be

converted to a voltage via a transimpedence amplifier. Finally, demodulation by a lock-in amplifier synchronized to

ωD gives a signal which is proportional to Δd(t). For the investigation of hydrodynamic effects, the setup is placed in

a vacuum chamber allowing to control the pressure pa.
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Fig. 2: Capacitance change versus applied driving voltage VD (which

alters d), as obtained in static measurements with the setup in Fig. 1c.

Lower Inset: Change of CS R at fixed positions d (set via ΔdDC by

VD) in dependence on the voltage VS . The parasitic surface potential

V0 can be obtained from fits of the measured CS R(VS ) to Eqn. (1)

with Δd ∝ (VS −V0)2, resulting in the data shown in the upper inset.
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Fig. 3: Effects of lamellæ deformation. a) Numerical results for the deflec-

tion of R-lamellæ under the influence of VS for various initial settings of d
(solid curves, left scale pm). Assumed device tolerances may result for some

lamellæ in a reduction of d = 0.75→ 0.35 μm, where the maximum appli-

cable VS above which pull-in of the lamella occurs is 420 mV (dashed line,

left scale nm), which is to be compared to the values of V0 + VS in Fig. 2. b)

Electrostatic softening of the lamellæ at the same d and VS (setup Fig. 1d).

3. Characterization of the device

Analytic modeling of driver characteristics is hampered by the strong influence of fringe effects [3, 8]. For this

reason we resort to the simple model FD = fDV2
D and determine the geometrical factor fD from a fit to DC measure-

ments of CS R shown in Fig. 2. The effective global V0 can be determined either dynamically [10] or from the minima

of the curves CS R(VBDC) shown in the inset of Fig. 2). A minimization of the pull-in distance dpi is possible by the

application of a compensating voltage VBDC = −V0. At small surface separations, non-linear effects become visible.

These are caused by distance-dependent forces F(d) (mainly electrostatic due to VBAC and parasitic surface potentials

V0) and change the dynamics according to k → ke f f = k − ∂F(d)/∂d and Eqn. (2), finally leading to instability and

the infamous pull-in. However, apart from these well known effects, our device is also plagued by the softness of the

lamellæ at small d. The latter deform under the influence of surface potentials VS as shown in Fig. 3a, which leads to

premature pull-in and further non-linear effects at d � 0.8 μm. In this domain, force gradients lead to a reduction of

the lamella resonance frequency f0L [9] seen in Fig. 3b. Fabrication tolerances may explain the occurrence of multiple

pull-in points observed in Fig. 2, at which supposedly (groups of) lamellæ snap to contact, thereby increasing ke f f .

The dynamical response of the mechanics depends on the precise parameters at the operating point. For sufficiently

low damping ξ at pressures pa � 100 μbar, the amplitude reaches the bi-stability threshold as shown in Figs. 4a and

b – an effect being strongly influenced by the modulation amplitude VDAC. We determine the resonance frequency f0
either from measurements of the oscillation [11] seen in step responses in Fig. 6, or from the minimum of the phase

measured by the lock-in amplifier. While both measurements yield identical results (as demonstrated in Figs. 5a,

c, and d), we believe that this method may be prone to uncertainties due to parasitic effects in the device requiring
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Fig. 4: Mechanical response at large distance (d = 1.55 μm) obtained with the setup in Fig. 1d. a) Variation with the pressure pa. Below

pa ≈ 100 μbar the amplitude increases sufficiently to trigger a nonlinear (bi-stable) response. b) The width of the bi-stability region depends on the

oscillation amplitude given by the driver via VDAC.
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Fig. 5: Dynamic resposes (setup in Fig. 1d) at a) VDDC = 10 V ,

d = 1.55 μm, and b) VDDC = 24 V , d = 0.83 μm for various set-

tings of VS . While at large d an increase in the electrostatic force

leads to a reduction in ke f f and the sensor resonance frequency f0,

the effect is eliminated at smaller distance, where to σ > 10 and elas-

tic hydrodynamic effects compensate the effect of force gradients on

ke f f . Measurements of f0 from c) the phase minimum and d) the step

response yield equal results.
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Fig. 6: Change of the mechanical response in dependence on the distance

d. At large d, σ � 10 and the damping is mainly viscous [12], resulting in

an unaltered f0 and large ξ. When d is reduced, the elastic damping kh in-

creases with the gradually changing σ while the viscous component drops.

Contrary, below d ≈ 1 μm, σ increases sharply, reasoning strongly aug-

mented amplitudes of both ξ and f0 until the first pull-in point (c.f. Fig. 2).

The continued increase of ξ until the second pull-in may indicate that not

all lamellæ are in contact.

additional modeling [11]. For this reason fr and f0 may differ. On the basis of preliminary model calculations, however,

we consider the results in Fig. 6 to be qualitatively correct. It has been predicted (review: [6]) and measured [1]

that at high squeeze numbers σ = 12ηω	2/(pad2) � 10, with the dynamic viscosity η of the ambient gas and 	
being a typical device size for which we choose the depth of the lamellæ, the prevalent nature of fluid-interactions

changes from viscous to elastic. Thereby, the softening effect of distance-dependent forces is countered according

to ke f f → k − ∂F(d)/∂d + kh. The coefficient kh can be estimated from linearized Reynolds theory [12]. We find

indications for such an increased k at small d (σ > 10) close to the pull-in, which are reflected by an increase in the

measured resonance frequency seen in Fig. 6. More dedicated measurements could be performed using a MEMS-

design with stiffer lamellæ, which would allow us to reduce d below 300 nm, thereby mimicking the hypothetical

situation in future NEMS devices.
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