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In the paper the authors examine the extension of the eddy viscosity modeling ap-
proach to compressible large eddy simulation. On the basis of formal algebraic
relations among the generalized central moments and the filtered Favre terms, a new
compressible eddy viscosity formulation is derived. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4871292]

One main problem in compressible LES, the Large Eddy Simulation of compressible or variable
density flows, is to model the filtered quantities �ui and �ui u j , where the overline stands for a generic
filtered average, � is the density and ui is the velocity field. In incompressible LES, the basic problem
is to model ui u j and the simplest modeling assumption is based on the so-called eddy viscosity
concept or gradient diffusion hypothesis

ui u j = ui u j + τ (ui , u j ),

τ (ui , u j ) = −νu
(
∂ j ui + ∂i u j

)
, (1)

where τ (ui, uj) and νu are, respectively, the subgrid generalized central moment and the subgrid eddy
viscosity associated with the turbulent transport of the velocity field. The usual transposition of this
modeling approximation to compressible flows is composed of two steps. The first is to introduce
the filtered Favre averages ũi and the Favre subgrid stress ϑ(ui, uj), defined as

�ui = �ũi

�ui u j = �ũi ũ j + �ϑ(ui , u j ) (2)

and the second is to write

ϑ(ui , u j ) = −νu
(
∂i ũ j + ∂ j ũi

)
. (3)

We remark that usually this modeling relation is only applied to the anisotropic part of the tensors
ui u j and �ui u j , but as regards the following discussion this is unessential.

The extension of relation (1) to relation (3) for compressible flows is obviously very reasonable,
and some theoretical arguments can be found in the seminal papers of Yoshizawa1 and of Speziale
et al.2 From a formal point of view, and in order to have more insight, we write explicitly the standard
mass unweighted filtered expansions of �ui and �ui u j

�ui = �ũi = � ui + τ (�, ui ),

�ui u j = �ũi ũ j + �ϑ(ui , u j ) = � ui u j + �τ (ui , u j ),

+ uiτ (�, u j ) + u jτ (�, ui ) + τ (�, ui , u j ), (4)
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where τ (�, ui) and τ (�, ui, uj) are the generalized subgrid moments associated to the turbulent
transport of the density. Very little work has been done to model directly all these terms in order to
develop a LES approach to compressible flows without density weighting. To our knowledge only
the papers3, 4 deal with this approach, and the modeling hypotheses made in these papers are mainly
in the framework of the eddy viscosity approach, and can be summarized as

τ (ui , u j ) = −νu
(
∂ j ui + ∂i u j

)
,

τ (�, u j ) = −ν�∂ j�,

τ (�, ui , u j ) = 0, (5)

where νu and ν� are the eddy viscosity associated with the transport of the velocity field and the
density, respectively.

In order to have an idea of the effect that these modeling hypotheses have on the Favre subgrid
stresses ϑ(ui, uj), we remark that we can easily derive from (4) the following basic relations among
the standard filtered quantities and the Favre filtered terms5

ũi = ui + τ (�, ui )

�
,

ϑ(ui , u j ) = τ (ui , u j ) − τ (�, ui )τ (�, u j )

�2 + τ (�, ui , u j )

�
. (6)

These relations are well known in the framework of the Reynolds and Favre averages, see, for
example, Eq. (5.33) of Ref. 6, and they are usually expressed in terms of the associated Reynolds
fluctuations �′, u′

i , and Favre fluctuations u′′
i as

ũi = ui + �′u′
i

�
,

ũ′′
i u′′

j = u′
i u

′
j − �′u′

i �′u′
j

�2 + �′u′
i u

′
j

�
. (7)

Less known is that if we introduce the generalized central moments,7 they can easily be extended to
a generic filtering operator not provided with the property ui = ui , and this remark is the starting
point of our investigation. Let us notice that from the first of the identities (6)

ũi = ui + τ (�, ui )

�

we have

∂ j ũi + ∂i ũ j = ∂ j ui + ∂i u j − τ (�, ui )∂ j� + τ (�, u j )∂i�

�2

+ ∂ jτ (�, ui ) + ∂iτ (�, u j )

�
, (8)

so that if we assume

τ (ui , u j ) = −νu
(
∂ j ui + ∂i u j

)
(9)

we can derive from the second of the identities (6)

ϑ(ui , u j ) = τ (ui , u j ) − τ (�, ui )τ (�, u j )

�2 + τ (�, ui , u j )

�

the following exact relation

ϑ(ui , u j ) = −νu
(
∂i ũ j + ∂ j ũi

)

− νu
τ (�, ui )∂ j� + τ (�, u j )∂i�

�2 − τ (�, ui )τ (�, u j )

�2
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+ νu
∂ jτ (�, ui ) + ∂iτ (�, u j )

�
+ τ (�, ui , u j )

�
. (10)

By consequence the standard extension of the eddy viscosity model to compressible flows in terms
of the Favre averages

ϑ(ui , u j ) = −νu
(
∂i ũ j + ∂ j ũi

)
(11)

can be derived on the basis of the following eddy viscosity modeling hypotheses

τ (ui , u j ) = −νu
(
∂ j ui + ∂i u j

)
,

τ (�, u j ) = −ν�∂ j�,

τ (�, ui , u j ) = −ν�u
(
∂ jτ (�, ui ) + ∂iτ (�, u j )

)
(12)

when we assume that the three eddy viscosities, related to the different transport mechanisms, are
exactly given by

ν�u = νu ; ν� = 2νu . (13)

Obviously these assumptions are unjustified. In particular, as regards the eddy viscosity ν� associated
to the transport of the density, it is easy to verify that if we remove this hypothesis and if we introduce
an eddy viscosity ν� different from 2νu we have

ϑ(ui , u j ) = −νu
(
∂i ũ j + ∂ j ũi

) − ν�(ν� − 2νu)

�2 ∂i� ∂ j�. (14)

Relation (14) is the newly derived eddy viscosity formulation. We remark that it contains an
additional new term depending upon the gradient of the filtered density. It becomes zero only if
the eddy viscosity ν�, associated to the transport of the density, is null or equal to two times the
eddy viscosity νu associated to the transport of the velocity field. It depends on the product of two
subgrid eddy viscosities that typically are scaled as �α , where � is the subgrid length and α is
two for the Smagorinsky model and one for the energy equation model. The dynamic approach
could be implemented to find numerically the appropriate constants for the different viscosities. It
is not immediately obvious when the new contribution will be important. Probably for very strong
gradients of the averaged densities its effects cannot be discarded, and it is the intention of the authors
to explore in more detail the importance and the effect of this new term with numerical computations.
It seems that in the framework of the eddy-viscosity modeling approach the theoretical result by
itself could be of some general interest in the field.

We thank finally one Referee for the detailed and useful examination of the paper.
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