
Noname manuscript No.
(will be inserted by the editor)

Finite element analysis of no–tension structures as a
topology optimization problem

Matteo Bruggi

Received: date / Accepted: date

Abstract An alternative numerical approach is pre-
sented for the analysis of no–tension masonry–like solids.

Whereas most of the strategies available in the litera-

ture resort to non–linear finite element techniques, the

proposed approach re–formulates the problem within
the framework of topology optimization. The equilib-

rium of a two–dimensional no–tension body is found

searching for the distribution of an equivalent ortho-

tropic material, in which tensile principal stresses are

not allowed by prescribing negligible stiffness in the
relevant direction, such that the potential energy of

the solid is minimized. Unlike many conventional ap-

proaches that deal with the tough non–linearity of the

problem through step–wise incremental analyses, the
proposed method efficiently solves the effect of com-

patible loads through a one–shot energy–based opti-

mization. Analytical and numerical benchmarks from

the literature are investigated to assess the effectiveness

of the proposed procedure and to discuss convergence
features and possible applications inspired by the limit

analysis of masonry–like structures.

Keywords topology optimization · orthotropic

materials · no–tension materials · masonry–like solids

1 Introduction

Among the methods for the analysis of masonry–like

solids, the no–tension model allows for a preliminary

description of the mechanical behavior of a structure
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based on the assumption that the stress tensor is neg-
ative semidefinite and depends linearly upon the elas-

tic part of the strain. A positive semidefinite inelastic

strain accounts for scattered cracking, see e.g. Del Piero

(1989). This approach follows the well–known rationale
that considers masonry as a material with a negligible

strength in tension, see e.g. the successful application

of the methods of limit analysis to arches and vaults in

Heyman (1966).

Notwithstanding the apparent simplicity of the no–

tension model, its numerical treatment is not trivial
even dealing with the analysis of elementary cases. A

solution exists depending on the compatibility of the ex-

ternal loads with respect to the no–tension assumption

and often involves discontinuous stress and displace-
ment fields. Additionally, the displacement field may

be indeterminate even in cases where a unique equili-

brated solution is found, see e.g. Lucchesi et al. (2000).

As reviewed in Alfano et al. (2000), the rate of conver-

gence of the analysis of no–tension materials is, in gen-
eral, rather poor and the tolerance adopted to stop the

iterative process is much lower than that commonly em-

ployed in plasticity computations. The work by Cuomo

and Ventura (2000) reports an exhaustive overview of
the robust numerical approaches that have been pro-

posed in the literature to cope with the inherent non–

linearity of the considered problem and to overcome the

particular issues related to the no–tension constraint,

see also Baratta and Corbi (2010b). Total displace-
ment formulations and displacement rate approaches

(Romano and Sacco 1984; Genna 1994; Lucchesi et al.

1995; Alfano et al. 2000) have been implemented dur-

ing the last decades, as well as complementary formu-
lations written in terms of stresses (Maier and Nappi

1990; Cuomo and Ventura 2000). In general, these ap-

proaches require step–wise analyses to cope with the
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(non–smooth) rate constitutive equations peculiar to

the no–tension assumption, which are suitably regular-

ized by means of ad hoc numerical strategies.

Alternatively, one may deal with the analysis of a

no–tension solid resorting to the minimization of the
elastic strain energy, whose derivation under the plane

stress assumption was originally provided in Del Piero

(1989). Following this approach, Angelillo et al. (2010)

implements a numerical strategy that solves the equi-
librium of two–dimensional no–tension bodies through

the minimization of the potential energy with respect

to the unknown displacement field. A descent method is

adopted to minimize the arising unconstrained energy

functional, thus overcoming the numerical difficulties
related to the enforcement of the no–tension behavior.

The approach proposed in the present contribution

moves from the mainstream of energy–based methods

to re–formulate the analysis of no–tension solids as a

topology optimization problem.

Some conventional formulations of topology opti-

mization distribute a prescribed amount of isotropic

material in such a way that the strain energy is mini-

mized. This has the aim of providing the stiffest design
among all possible layouts, see e.g. Bendsøe and Kiku-

chi (1988). The distribution of material is governed by

the adoption of suitable interpolations that are ideally

conceived to penalize the elastic constants depending on

the minimization unknown, as in the element–wise con-
stant approximation implemented e.g. by Bendsøe and

Sigmund (1999) or in the pointwise density–based in-

terpolation adopted by Kang and Wang (2011) and Luo

et al. (2013). In the case of bodies made of anisotropic
materials the design variables include the material ori-

entation, see e.g. Eschenauer and Olhoff (2001) and

Foldager et al. (1998). Three different approaches were

originally developed to cope with this problem: the strain–

based method (Pedersen 1989, 1990; Cheng and Ped-
ersen 1997), the stress–based method (Suzuki and Ki-

kuchi 1991; Diaz and Bendsøe 1992; Cheng and Kiku-

chi 1994) and the energy–based method (Luo and Gea

1998). These approaches take into account the effect
of the change in strain and stress due to the variation

in the material orientation, thus providing effective for-

mulations for the optimal design of structures made of

orthotropic materials. A general optimality condition

that arises when the structural compliance has to be
minimized under given static and kinematic boundary

conditions, is that the stress and strain tensors have

to locally share the same principal directions. This re-

sult was first obtained by Pedersen (1989), for two–
dimensional orthotropic solids, and later extended by

Rovati and Taliercio (2003) to three–dimensional or-

thotropic bodies.

Alternative approaches have been developed in the

literature of topology optimization to take into account

enforcements on the effective material strength, mainly

based on extensions of the SIMP law to cope with stress

constraints, see in particular Rozvany et al. (1992),
Duysinx and Bendsøe (1998), Le et al. (2010). Stress–

based design has also been investigated dealing with

structural composites, as in the case of the pioneering

contribution by Swan and Arora (1997). Drawbacks of
the pure compliance–based optimization have been re-

cently documented in the case of isotropic materials

exhibiting a non–symmetric behavior in tension and

compression, see e.g. Luo and Kang (2012), Bruggi and

Duysinx (2012), Querin et al. (2010). Ad hoc proce-
dures can be implemented to cope with the optimal

design of truss–like structures made of isotropic mate-

rial even for an extreme unequal behavior in tension

and compression, see e.g. Cai (2011), Ananiev (2005)
and Bruggi and Duysinx (2013).

Within the above framework, this contribution aims

at solving the equilibrium of a two–dimensional no–

tension body searching for the distribution of an equiva-

lent orthotropic material, exhibiting negligible stiffness
for any direction along which a tensile principal stress

must be prevented, such that the potential energy of the

solid is minimized. Indeed, as shown e.g. in Bendsøe and

Sigmund (2003), a compliance–based optimization may
be employed as an energy–based analysis tool by sim-

ply removing the constraint on the available amount of

material. Two sets of density unknowns are defined in

order to control the stiffness of the equivalent compos-

ite along its symmetry axes, which should be oriented
along the principal stress directions of the no–tension

body. A suitable material interpolation law is proposed

to recover the conventional isotropic model under bi-

axial compression, while discarding the stiffness contri-
butions that are relevant to any principal tensile stress

direction. An ad hoc penalization of the energy contri-

butions involving tensile stresses is adopted to build the

objective function of the discrete formulation. This is

solved through mathematical programming (Svanberg
1987).

The layout of the paper is as follows. Section 2 re-

ports fundamentals of governing equations for any lin-

ear elastic masonry–like material, focusing on the rel-

evant strain–energy function and introducing a SIMP–
based equivalent orthotropic material to model the no–

tension behavior. Section 3 introduces the topology op-

timization formulation that distributes phases of the

equivalent composite according to the stress field found
in the no–tension solid. Details on the implemented al-

gorithm are given in Section 3.3. Section 4 presents

benchmark examples to assess the effectiveness of the
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proposed method with respect to some established an-

alytical and numerical results found in the literature,

while discussing features and performances of the adop-

ted optimization–based procedure. Section 5 concludes

the paper, outlining directions of the ongoing research.

2 Governing equations

2.1 Linear elastic masonry–like materials

A material that does not support tension is considered,

meaning that the stress tensor σij has to be negative–
semidefinite, i.e.:

σij ∈ Sym−, (1)

where Sym− is the closed cone of negative semi–definite

symmetric second order tensors. This constraint is equiv-

alent to restricting the principal stresses to be non–
positive.

As usual, the infinitesimal strain tensor is defined as

εij = 1

2
(ui,j + uj,i), where u is the displacement field.

The tensor εij is assumed as the sum of an elastic part

εeij and a latent one εcij , which account for “cracking
strains”, that means:

εij = εeij + εcij . (2)

The elastic part of the strain tensor is related to the

stress through the linear relationship:

σij = Cijhkε
e
hk, (3)

where Cijhk is the fourth order positive definite elastic-

ity tensor. The latent part of the strain tensor εcij fol-

lows the so–called hypothesis of normality, that reads:

σijε
c
ij = 0, and εcij ∈ Sym+ (4)

where Sym+ is the closed cone of positive semi–definite
symmetric second order tensors. Eqns. (1–4) state that

the total strain consists of an elastic part related to

negative semi–definite stress σij through the usual lin-

ear operator Cijhk, along with a positive semi–definite

latent contribution that is orthogonal to σij to account
for “cracking” behavior. The above equations define

the so–called linear elastic masonry–like material, see,

among the others, Del Piero (1989).

A straightforward example to describe the behavior

of structures made of this kind of constrained mate-
rial is provided by the one–dimensional case of a bar of

Young modulus E, subject to the axial strain ε. If the

bar is shortened, i.e. the total strain ε < 0, a negative

stress σ = Eεe arises and no cracking is found, that is
εc = 0. Stretching the bar for ε > 0, no tensile stress

is allowed in the structure, that is σ = 0, and the total

strain totally turns into “cracking strains”, i.e. εc = ε

along with εe = 0. Moving to the two–dimensional fra-

mework, one has additionally to take into account that

Eqn. (4) calls for “cracks” (i.e. a non–negative defined

strain) that can only open orthogonally to the non–

positive stress σij , similarly to classically associated
plasticity.

As derived in Del Piero (1989), a linear elastic ma-

sonry–like material with symmetric elastic tensor Cijhk

is hyperelastic and therefore admits a strain–energy
density function φ(εe) that may be defined as:

φ(εe) =
1

2
σij(ε

e)εeij . (5)

As for classical non–constrained materials, this function

plays the role of a potential for the stress field, i.e.:

σij =
∂φ(εe)

∂εeij
. (6)

A two–dimensional domain Ω made of this kind of
no–tension material is considered. The boundary of the

domain, Γ = Γt ∪ Γu, consists of two different parts:

the former is acted upon by tractions t0, whereas the

latter is subjected to prescribed displacements u0. No

body force is supposed to act in the domain from here
onwards.

A weak formulation for the elastic equilibrium of

the solid may be straightforwardly derived in view of

the adoption of a displacement–based finite element me-
thod to cope with the discrete form of the problem con-

sidered herein. According to Eqns. (5–6), the total po-

tential energy for the linear elastic masonry–like body

is defined as:

Π(v) =
1

2

∫

Ω

∂φ(εe(v))

∂εeij(v)
εeij(v) dΩ −

∫

Γt

t0 · v dΓ, (7)

where v ∈ H1 is any kinematically admissible vector-
field such that v |Γu

= u0. The stationarity condition of

the primal variational principle, which is nothing but

the usual principle of minimal potential energy, reads:

find u ∈ H1 such that u |Γu
= u0 and

∫

Ω

∂φ(εe(u))

∂εeij(u)
εeij(v) dΩ =

∫

Γt

t0 · v dΓ, (8)

∀v ∈ H1 such that v |Γu
= u0.

Reference is made, among others, to Del Piero (1989),

Angelillo (1993), Baratta and Corbi (2005), Baratta

and Corbi (2010a), Baratta and Corbi (2010b) and Luc-
chesi et al. (2000), for extended comments on the fea-

tures of the above statement and the relevant solutions.

It is herein recalled that not all the tractions or displace-

ment boundary conditions correspond to a statically
admissible solution of Eqn. (8), i.e. displacements re-

lated to an equilibrated stress field that is feasible with

respect to the condition of Eqn. (1). For this reason
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only the so–called compatible loads can be investigated

to achieve existence of the solution. Additionally, non–

uniqueness due to the latent part of the strain has been

demonstrated for an extended class of problems, see e.g.

Angelillo et al. (2010) and Lucchesi et al. (2000).

2.2 A strain–energy function for two–dimensional

no–tension elastic problems

The case of isotropic linear elastic masonry–like ma-

terials whose elastic behavior is fully described by the

Young modulus E and the Poisson’s ratio ν is herein

dealt with under plane stress conditions. Let σI and σII

be the eigenvalues of the stress tensor σij(χ) computed
at any point χ ∈ Ω, with σI ≤ σII .

The behavior of the no–tension solid may be con-

veniently investigated by dividing Ω into three sub–
regions such that Ω = Ω1 ∪Ω2 ∪Ω3 and:

Ω1 = χ ∈ Ω : σI < 0, σII < 0,

Ω2 = χ ∈ Ω : σI < 0, σII = 0,

Ω3 = χ ∈ Ω : σI = 0.

(9)

In sub–region Ω1 the material is subjected to biaxial

compression and behaves like a conventional uncon-

strained isotropic material. In fact, due to Eqns. (2–4)

no latent strain is allowed, that is εc = 0, and the total

strain fully turns into the elastic strain ε = εe.

In Ω2 the material is subjected to uniaxial compres-

sion and behaves like an orthotropic material. Accord-

ing to Eqn. (4) some “cracking strain” εc ≥ 0 is allowed
in the direction orthogonal to the tensile isostatic line,

whereas a fully elastic behavior is found along the direc-

tion of the principal compressive strain. It is worth men-

tioning that one could alternatively define Ω2 as the lo-
cus where the trace of the stress tensor is non–positive,

i.e. σ11 + σ22 < 0, and its determinant is null, that is

σ11σ22−σ12σ21 = 0. The latter condition suggests that

the sub–region Ω2 is statically determinate, meaning

that the equilibrium equations σij,i = 0 are enough to
compute stresses. In general, the elastic strain descend-

ing from Eqn. (3) is not kinematically admissible and

“cracking strain” arises to restore compatibility, see e.g.

Angelillo et al. (2010).

Finally, in sub–region Ω3 neither stress nor elastic

strain is found and the material behaves like a “void

phase”, allowing for any positive semidefinite “cracking
strain”.

Exploiting Eqn. (3) and specializing the plane stress

constitutive relations in terms of the principal direc-
tions, one may easily turn the conditions enforced on

the principal stresses σI and σII in Eqn. (9) into con-

straints for the eigenvalues of the strain tensor εI ≤ εII .

Stresses and total strains share the same principal direc-

tions due to the linear elastic behavior in compression

and the normality condition. Recalling that:

σI =
E

1− ν2
(εeI + νεeII), σII =

E

1− ν2
(εeII + νεeI),(10)

Eqn. (9) may be straightforwardly re–written as:

Ω1 = χ ∈ Ω : εI < 0, εII < −νεI ,

Ω2 = χ ∈ Ω : εI < 0, εII ≥ −νεI ,

Ω3 = χ ∈ Ω : εI ≥ 0.

(11)

According to Angelillo et al. (2010), the strain–energy

function for a linear elastic masonry–like material un-

dergoing plane stress conditions may be straightforward

written in terms of the total strain ε as:

φ(ε) =





E

2(1− ν2)
(ε2I + ε2II + 2νεIεII) in Ω1,

1

2
Eε2I in Ω2,

0 in Ω3.

(12)

In the sub–region Ω1, where the material behaves like a

linear elastic isotropic material and no “cracking strain”

arises, Eqn. (12.1) provides the conventional contribu-

tion 1/2 (σIεI+σIIεII), where εI = εeI and εII = εeII . In
Ω2, some strain–energy is stored along the compressive

direction for 1/2 σIεI with εI = εeI , while no contri-

bution is due to the orthogonal latent strain, see Eqn.

(12.2). The “fully cracked” sub–region Ω3 provides null

energy in Eqn. (12.3) since no stress does work over the
latent strain.

The above rationale may be easily updated to ac-

commodate plane strain conditions: slight modifications

of Eqns. (11) and (12) are required.

It is finally remarked that the approach proposed
in Angelillo et al. (2010) solves the equilibrium of lin-

ear elastic masonry–like solids seeking for the displace-

ment field u that minimizes the potential energy Π(u)

in Eqn. (1) according to Eqn. (12). Alternatively, this

contribution aims at re–formulating the problem of the
elastic equilibrium of masonry–like solids as a topology

optimization statement, i.e. finding the distribution of

a material with suitable stiffness properties that mini-

mizes the strain energy of Eqn. (12). Brief remarks on
this topic are given below.

2.3 A material interpolation law for no–tension solids

The problem of distributing some linear elastic mate-

rial over an assigned domain calls for the definition of
a suitable interpolation law for the stiffness properties

of the material, depending on a minimization unknown

that is, in general, its point–wise density (Kang and
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Fig. 1 The adopted material model represented in the general
reference of axes z1 and z2 in Ω: an orthotropic material phase
with symmetry axes z̃1 and z̃2 is oriented along the principal
stress directions zI and zII to model the characteristic behavior
of a no–tension solid in the three sub–regions Ω1, Ω2 and Ω3.
Lines stand for directions where stiffness of the composite is not
negligible.

Wang 2011; Luo et al. 2013). In conventional formula-

tions for the topology optimization of structures made
of isotropic material, this is usually done through the

adoption of a penalization of the Young modulus in

terms of the material density, see e.g. the well–known

Solid Isotropic Material with Penalization (SIMP) dis-

cussed in Bendsøe and Kikuchi (1988).

Within the framework considered herein, an ad hoc

interpolation is needed to model the material behavior

of the masonry–like solid through the same analytical

form at any point χ ∈ Ω. This may be done introduc-
ing a suitable set of density unknowns that allow the

material behavior to be specialized in each of the sub–

regions Ω1, Ω2 and Ω3 defined by Eqn. (9) according

to the definition of the strain–energy function φ(ε) in
Eqn. (12).

An orthotropic material whose symmetry axes z̃1
and z̃2 are rotated by the angle θ with respect to the

adopted reference frame in Ω, i.e. z1 and z2, is consid-

ered. θ provides alignment of the symmetry axes of the
orthotropic material with respect to the principal direc-

tion of stress (and strain) of the masonry–like material

zI and zII , see Figure 1. Ẽ1, Ẽ2 are the Young moduli

of the material (along z̃1 and z̃2, respectively), G̃12 is
the shear modulus and ν̃12, ν̃21 are the Poisson’s ratios

with respect to z̃1 and z̃2. The equality ν̃12Ẽ1 = ν̃21Ẽ2

holds.

Let ρ1(χ) and ρ2(χ) be two bounded functions in

Ω, such that ρmin ≤ ρ1 ≤ 1 and ρmin ≤ ρ2 ≤ 1,

respectively, where 0 < ρmin << 1. The variables ρ1
and ρ2 are assumed to govern the elastic properties of

the orthotropic material along its symmetry axes (i.e.
the isostatic stress lines of the masonry–like material)

through a generalization of the SIMP model such that:

Ẽ1 = ρp
1
E, Ẽ2 = ρp

2
E, G̃12 = ρp

1
ρp
2

E

2(1 + ν)
,

ν̃12 = ρp2ν, ν̃21 = ρp1ν,
(13)

where E and ν are the Young modulus and Poisson’s

ratio of the isotropic masonry–like solid, respectively,

while p > 1 is a penalization parameter that is usually
taken equal to 3, see e.g. Bendsøe and Sigmund (1999).

As further detailed, the above interpolation is es-

pecially conceived to provide vanishing stiffness along

any direction along which a variable gets its minimum
value. The constitutive law for the orthotropic phase

may be written in general form as:

σij = Ĉijhk (ρ1(χ), ρ2(χ), θ(χ)) εhk, (14)

where Ĉijhk is the fourth order stiffness tensor of the

equivalent orthotropic material.

Dealing with a plane problem, Eqn. (14) may be de-
tailed in a more compact form. To this purpose using

Voigt notation the cartesian components of the strain

tensor εij are re–gathered in the array ε = [ε11 ε22 2ε12]

and, analogously, one has σ = [σ11 σ22 σ12] for the com-

ponents of the stress tensor σij . In general, the sym-
metry axes of the orthotropic material, z̃1 and z̃2, are

not the same of the adopted reference z1 and z2 in Ω.

A transformation matrix T(θ) is needed to write the

constitutive law of the material in the global reference
frame Oz1z2. One has:

σ = T(θ)−1C(ρ1, ρ2)T(θ)−tε, with

C =
1

1− ν̃12ν̃21




Ẽ1 ν̃12Ẽ1 0

ν̃21Ẽ2 Ẽ2 0

0 0 G̃12(1− ν̃12ν̃21)


 ,

T =




c2 s2 2cs

s2 c2 −2cs

−cs cs c2 − s2


 ,

(15)

where c = cosθ and s = sinθ.

To illustrate the behavior of the orthotropic mate-

rial introduced in Eqns. (13) to (15) with respect to
the no–tension solid referred to in the previous section,

a brief discussion is herein reported. Specializing C in

terms of the extremal values of the variables ρ1 and ρ2,

the behavior found in each one of the three sub–regions
Ω1, Ω2 and Ω3 of Eqn. (9) is shown to be recovered

by Eqn. (15). For the sake of simplicity, it is assumed

that θ = 0 and that the cartesian axes are principal
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for the stress and strain fields, i.e. z1 = z̃1 = zI and

z2 = z̃2 = zII .

First the case ρ1 = ρ2 = 1 is considered. The matrix
C in Eqn. (15) is simply:

C(ρ1 = ρ2 = 1) =
1

1− ν2




E νE 0

νE E 0

0 0
E(1− ν)

2


 , (16)

i.e. the stiffness matrix for an isotropic material under-

going plane stress conditions. According to the above

assumption, the strain energy related to Eqn. (16) is

the same found in Ω1, see Eqn. (12.1).

It is now assumed that ρ1 = 1 and ρ2 = ρmin. In

Eqn. (15), the term C11 turns out to be E, whereas

the other entries are negligible. In this case, a principal

stress is recovered along the direction z1 = z̃1 that does
work over the relevant strain and provides the same

strain energy function previously found in Eqn. (12.2),

i.e. the contribution of sub–regionΩ2 which experiences

“cracking strain” along z2 = z̃2. The same applies if
ρ1 = ρmin and ρ2 = 1, meaning that the active principal

direction is z2 = z̃2 whereas the axis related to some

latent strain is z1 = z̃1.

Finally, for ρ1 = ρ2 = ρmin one finds a “void phase”

where all the entries of C are nearly vanishing. A negli-

gible amount of strain energy is stored, see Eqn. (12.2)

referring to the “fully cracked” sub–region Ω3.

The above discussion leads to the conclusion that

the constitutive law in Eqns. (13) to (15) are able to

capture the behavior of linear elastic masonry–like solids
described by Eqn. (12), provided that the symmetry

axes of the composite phase z̃1, z̃2 matches the princi-

pal stress (and strain) directions zI , zII , i.e.:

z̃1 = zI , z̃2 = zII (17)

and that the variables ρ1 and ρ2 obey the following

conditions:

ρ1 = ρ2 = 1, ∀χ ∈ Ω1,

ρ1 = 1, ρ2 = ρmin, or ρ1 = ρmin, ρ2 = 1 ∀χ ∈ Ω2,

ρ1 = ρ2 = ρmin ∀χ ∈ Ω3.

(18)

The above set of equations simply means that the be-
havior of the equivalent orthotropic material matches

that of the masonry–like solid if the variables ρ1 or ρ2
attain unitary values in case of any compressive stress

arising along the relevant principal direction and van-
ishing values elsewhere. In other words, a penalization

of the stiffness constants of the material is required

along the direction of any potential tensile stress, see

also Eqns. (9).

It is worth remarking that the adoption of a lower

bound ρmin > 0 allows the energy of the orthotropic

material defined in Eqn. (15) to remain positive definite

independently of the values of ρ1, ρ2 and θ.

A similar discussion holds in case of plane strain

conditions.

3 The topology optimization problem

3.1 Introductory remarks

A formulation of topology optimization for maximum
stiffness design finds the distribution of elastic mate-

rial that minimizes the work of the external load at

equilibrium, see e.g. Bendsøe and Kikuchi (1988). Due

to Clapeyron theorem, this is equivalent to minimizing

the so–called structural compliance C, which is twice
the value of the elastic strain energy at equilibrium, i.e.

C = 2 φ(ε(u)). Denoting by ρ the optimization variable

that is sought within a suitable set ρad of the admissi-

ble material densities, this problem may be framed into
the following classical statement:




min
ρ∈ρad

C

s.t.
∂Π(v)

∂v
= 0, v ∈ vad∫

Ω

ρ dΩ = Vf ,

(19)

where Eqn. (19.2) enforces the elastic equilibrium through

the principle of stationary potential energy within the
class of the kinematically admissible displacements vad,

see Eqn. (8), whereas Eqn. (19.3) prescribes the volume

fraction 0 < Vf ≤
∫
Ω
dΩ as the limited amount of ma-

terial that is available for the optimal design.
According e.g. to Eschenauer and Olhoff (2001), it

is straightforward to show that Π(u) = −C/2, mean-

ing that Eqn. (19) may be re–written as the following

alternative statement:



max
ρ∈ρad

min
v∈v

ad

Π(v)

s.t.

∫

Ω

ρ dΩ = Vf .
(20)

It is worth remarking that, for Vf =
∫
Ω
dΩ, the above

form reduces to the minimization of the potential en-

ergy that is fully equivalent to the unconstrained ver-

sion of the compliance minimization problem of Eqn.

(19). This suggests that the equilibrium of linear elastic

masonry–like solids may be alternatively solved through
a formulation of topology optimization that properly

distributes the orthotropic material defined in Section

2.3 in each one of the sub–regions Ω1, Ω2 and Ω3 in-

troduced in Section 2.2, in order to minimize the com-
pliance.

Using Eqns. (14) and (15), the weak formulation of

the equilibrium of linear elastic masonry–like solids in
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Eqn. (8) may be re–written as follows: find u ∈ H1 such

that u |Γu
= u0 and

∫

Ω

(
T(θ)−1C(ρ1, ρ2)T(θ)−t

)
ε(u) ε(v) dΩ

=

∫

Γt

t0 · v dΓ,
(21)

∀v ∈ H1, provided that Eqns. (17) and (18) are satis-

fied. The above form allows dealing with a no–tension
solid as a suitable orthotropic material that exhibits

negligible stiffness along principal direction where any

potential tensile stress may arise. Contributions to the

strain energy are provided along compressive directions
where no inelastic strain occurs, see the isotropic sub–

region Ω1 and the orthotropic sub–region Ω2 along the

axis of full density. “Cracking strain” is captured by

Eqn. (21) as the latent strain arising along tensile di-

rections to restore kinematics, see the “void phase” Ω3

and the orthotropic sub–region Ω2 along the axis of

minimum density.

The discretization of the primal problem of Eqn.

(21) may be straightforwardly accomplished through
the introduction of the approximated solution field uh

and test field vh that both descend from the adoption

of quadrangular isoparametric elements with bi–linear

displacement shape functions. A piecewise constant ap-

proximation is adopted for ρ1, ρ2 and θ, see e.g. Bendsøe
and Sigmund (2003) and Bruggi and Taliercio (2013).

Eqn. (21) reduces to the following matrix form:

K(x1,x2, t) U =

N∑

e=1

Ke(x1e, x2e, te) U = F, (22)

where K is the global stiffness matrix of the equivalent

orthotropic material, depending on the two arrays of el-

ement densities x1, x2 and on the array containing the

orientation of the symmetry axes of the material in each
finite element t. U stands for the generalized displace-

ment vector, while F is the load vector. Because of the

adopted piecewise constant discretization of ρ1, ρ2 and

θ, the global stiffness matrix may be straightforwardly
assembled from the N element–wise contributions Ke,

where N is the number of finite elements in the mesh.

x1e, x2e and te are the e–th component of the density

vectors x1, x2 and the orientation vector t, respectively.

After the solution of Eqn. (22) the discrete form of the
compliance is generally recovered through:

C =

N∑

e=1

UT
e Ke(x1e, x2e, te) Ue, (23)

where Ue is the displacement vector of the e–th ele-

ment.
In view of the detection of the three sub–regions

Ω1, Ω2 and Ω3 depending on the value of the princi-

pal stresses in Ω, see Eqn. (9), some post–processing

is needed on the displacement vector Ue to implement

Eqn. (15). At any selected point of the e–th finite ele-

ment, e.g. the centroid, one may introduce the vectorial

form σe = Me(x1e, x2e, te) Ue, being σe the array of

stress components in the e–th element written in Voigt
notation, while Me is its “stress matrix”. Eventually,

one can compute the principal stresses in the e–th fi-

nite element, that will be denoted as σe,I and σe,II .

The proposed approach is based on the adoption

of conventional four–node displacement–based finite el-

ements but it could be straightforwardly extended to

any enhanced discretization to improve the evaluation
of the stress regime, see e.g. mixed and truly–mixed

finite elements implemented in Bruggi (2008).

3.2 Problem formulation

According to the rationale developed above, the equilib-
rium of linear elastic masonry–like solids may be formu-

lated as the following problem of topology optimization

involving orthotropic materials:




min
x1e,x2e

C =
∑N

e=1
UT

e Ke(x1e, x2e, te) Ue

s.t.
∑N

e=1
Ke(x1e, x2e, te) U = F,

te | z̃1 = zI and z̃2 = zII ,

x1e, x2e | σe,I ≤ 0 and σe,II ≤ 0,

ρmin ≤ x1e, x2e ≤ 1.

(24)

In the above statement, the objective function is the

structural compliance in Eqn. (23) that is computed

over theN elements into which the body was discretized,
while x1e and x2e represent the material density along

the symmetry axes of the composite, i.e. z̃1 and z̃2 re-

spectively, in the e–th finite element. As detailed in Sec-

tion 2.3, each one of the minimization variables has the

same range of variation that is defined by Eqn. (24.5).

Eqn. (24.2) enforces the elastic equilibrium stated

by Eqn. (21) in discrete form, see Eqn. (22). Eqn. (24.3)
prescribes the alignment of the symmetry axes of the

composite z̃1 and z̃2 with respect to the principal stress

directions zI and zII . This is performed all over the fi-

nite element mesh through the orientation array with
entries te. Eqns. (24.4) enforce a no–tension stress regime

in each finite element, combining Eqns. (9) and (18) to

achieve a full match between the behavior of the or-

thotropic material of Section 2.3 and the target masonry–

like solid of Section 2.2 within each of the sub–regions
Ω1, Ω2 and Ω3.

Eqn. (24) formulates the elastic equilibrium of ma-
sonry–like solids as a topology optimization problem,

thus providing an alternative approach to the non–linear

finite element analysis of structures made of no–tension
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material, see Section 1. Whereas many conventional ap-

proaches deal with the inherent non–linearity of the

problem through step–wise incremental analysis that

move from an initial compressive–only stress state, the

proposed energy–based method is able to solve the ef-
fect of compatible loads within a single optimization

run. Unlike the approach in Angelillo et al. (2010),

where the displacement field is set as minimization un-

known, Eqn. (24) is a topology optimization problem
that will be solved through the algorithm presented

next.

3.3 Problem implementation

As discussed in Section 2.3, a key issue of the procedure

is the penalization of the stiffness constants of the ma-

terial along the direction of any potential tensile stress.

A similar issue arises when dealing with the optimal

design of truss–like structures exhibiting unilateral be-
havior in tension or compression. In the approach pro-

posed in Bruggi and Duysinx (2013), a set of stress con-

straints is embedded within an energy–based optimiza-

tion procedure to avoid ties in the optimal layout, while
sequential convex programming is adopted to solve the

multi–constrained problem. The stiffness penalization

is induced through enforcements that control the stress

field all over the domain, while an isotropic modeling of

the domain is retained to cope with a two–dimensional
discretization of truss–like structures.

An alternative method has been proposed in Ananiev

(2005) based on a standard minimum compliance for-

mulation for isotropic materials that implements an ef-
ficient modification of the projected gradient method

to cope with tension–only structures. At each iteration,

the density variables are updated according to a modi-

fied sensitivity that penalizes the energy contributions

deriving from any compressive stress found in the anal-
ysis of the isotropic medium. This is shown to provide

fast and efficient convergence towards optimal truss–

like structures that are fully feasible with respect to

the assumed unilateral behavior of the material. A sim-
ilar approach is implemented in Cai (2011), where a

so–called effective strain–energy density is introduced

as a modified objective function for the minimum com-

pliance problem. This approach adopts the sign of the

principal stress as a penalization coefficient to be ap-
plied to any energy contribution that is computed along

the relevant principal stress direction. Reference is also

made to Querin et al. (2010) for the adoption of stiffness

replacement techniques and optimality criteria based
on modified stress fields to perform the topology opti-

mization of truss–like continua with different material

properties in tension and compression.

The above referenced approaches suggest the adop-

tion of penalization techniques to get rid of tensile stres-

ses by means of limited modifications with respect to

the conventional and efficient implementation of the

minimum compliance problem, see e.g. Andreassen et
al. (2011). The formulation in Eqn. (24) is solved through

the adoption of mathematical programming, herein the

well-known Method of Moving Asymptotes by Svan-

berg (1987), that is endowed with objective function
and sensitivities computed through penalization tech-

niques extended to the orthotropic framework. Opti-

mality criteria may be alternatively adopted, see e.g.

Bendsøe and Sigmund (2003).

The initial guess x1e = x2e = 0.5 is chosen to start
the optimization procedure and the orientations te are

assumed to be such that the symmetry axes of the

equivalent orthotropic medium z̃1 and z̃2 are aligned

with the principal stress directions of the isotropic ma-
terial zI and zII . At each iteration of the minimizer,

the following procedure is implemented:

Step 1. A structural analysis is performed according to

Eqn. (22) for the current values of the minimiza-
tion unknowns x1e and x2e, along with the orienta-

tions te. The principal stress directions zI and zII
are computed and each parameter te is updated in

order to provide alignment of the symmetry axes

of the composite z̃1 and z̃2 with respect to zI and
zII , see Eqn. (24.3). The full step is repeated un-

til negligible changes are found for te, in general no

more than twice. One ends with σ̃e,1 = σe,I and

σ̃e,2 = σe,II , where σ̃e,1 and σ̃e,2 are the normal
stresses computed along each one of the symmetry

axes of the composite.

Step 2. The densities x̂1e and x̂2e are introduced for a

straightforward computation of a reduced compli-

ance Ĉ where the terms related to principal tensile
stresses are penalized, along with its sensitivity in-

formation. For i = 1, 2 one has:
{
x̂ie = xie, if σ̃e,i ≤ 0,

x̂ie = kxie, otherwise,
(25)

where k ∈]0, 1[ is a penalization parameter that is

herein assumed equal to 0.5, see Ananiev (2005).

According to Eqn. (23) the reduced compliance may

be computed without any additional computation

as:

Ĉ =

N∑

e=1

UT
e Ke(x̂1e, x̂2e, te) Ue. (26)

The sensitivity of the objective function C with re-
spect to the density unknowns of the j–th element

may be evaluated through the adjoint method, see

e.g. Bendsøe and Sigmund (2003) and Bendsøe et
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al. (1985). For the reduced objective function Ĉ one

has:

∂Ĉ

∂xij

= UT
j

∂

∂x̂ij

Kj(x̂1j , x̂2j , te) Uj , (27)

where i = 1, 2. Except for the density replacement
operated in Eqn. (25), the above equations are noth-

ing but an extension to orthotropic media of con-

ventional computations that can be efficiently im-

plemented in codes for topology optimization.

Step 3. The reduced compliance and its related sensi-
tivities are passed to the minimizer that searches for

a new updated set of variables x1e and x2e, moving

from the values x̂1e and x̂2e.

Step 1 to 3 are repeated until convergence is found, i.e.

any change in the values of the minimization unknowns
between two subsequent iteration is less than a given

tolerance (e.g. 10−3).

It is worth remarking that the algorithm presented

above, with a few modifications, is able to deal with
the topology optimization of no–tension bodies for a

prescribed amount of material Vf ≤
∫
Ω
dΩ, see Eqn.

(19). In this case the optimizer is additionally endowed

with information on the volume constraint and its sen-

sitivities.
Since the statement in Eqn. (24) is equivalent to an

analysis problem, no numerical instability that is usu-

ally encountered in volume-constrained minimum com-

pliance problems is expected, e.g. mesh dependence or
checkerboard effects described e.g. in Sigmund and Pe-

tersson (1998). These numerical instabilities may arise

if Vf <
∫
Ω
dΩ, calling for suitable remedies such the

adoption of filtering techniques, see among the others

Bourdin (2001), Bruns and Tortorelli (2001), Sigmund
(2007), Guest et al. (2004), Guest (2009).

4 Numerical simulations

Numerical investigations are presented to assess the me-

thod proposed in Sections 3.2 and 3.3. Examples 1 and

2 show the main features of the proposed computational
approach when dealing with the approximation of dis-

continuous stress and displacement fields. Results are

compared with exact analytical solutions available in

the literature. Examples 3 and 4 investigate the adop-

tion of the proposed algorithm to cope with the eval-
uation of the limit load of benchmark structures pre-

viously addressed in the numerical literature on no–

tension solids.

It must be remarked that the adopted computa-
tional tool descends from an optimization formulation

that is conceived to solve the structure for any compat-

ible load. As shown hereafter, no incremental analysis

Fig. 2 Geometry and boundary conditions for the annulus of
example 1. Dimensions in m, unitary thickness.

Fig. 3 Example 1. “Optimal distribution of material” for the
analysis of the annulus: black stands for linear isotropic mate-
rial; white stands for non–linear orthotropic material (mesh with
16x16 elements).

neither enforcement of compression–only starting guess

are needed to achieve the expected solution.

4.1 Example 1. Annulus subject to internal-external

pressure

The portion of the annulus represented in Figure 2 is

firstly analyzed, as originally investigated by Cuomo

and Ventura (2000). Elastic properties of the material
are as follows: E = 10, 000 MPa, ν = 0.1. The domain

is loaded by an external pressure pe = 1.00 MPa and an

internal one pi = 0.22 MPa. Three different meshes are

considered, see e.g. Figure 3. All of them share 16 ele-
ments in the hoop direction and 8, 16 or 32 in the radial

direction. Symmetry conditions have been exploited to

avoid the modeling of the whole annulus.
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Fig. 4 Example 1. Principal compressive stress in the annulus
(mesh with 16x16 elements).

0.2 0.4 0.6 0.8 1
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

r (m)

R
ad

ia
l d

is
pl

ac
em

en
t (

m
m

)

 

 

Analytical
16x8 elements
16x16 elements
16x32 elements

Fig. 5 Example 1. Radial displacement in the annulus: numerical
results vs. analytical solution.

Analytical solutions for this problem are available in

Bennati and Padovani (1992), both in the case of linear
elastic material and as no–tension material. According

to the exact solution found for masonry–like materials,

a circle with radius r0 = 641.7 mm divides the linear

region (where the material is isotropic) from the non–
linear one (where the solid behaves as an orthotropic

composite). It must be remarked that the radius re-

ferred above differs from that divides the compressive

zone from the tensile region under the conventional as-

sumption of linear elastic material.

Figure 3 presents the “optimal distribution of mate-

rial” achieved by the proposed numerical procedure for
this benchmark. As detailed in Section 3.2, the adopted

numerical scheme is an optimization method that dis-

tributes a phase of orthotropic material through the
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Fig. 6 Example 1. Radial (a) and hoop (b) stress in the annulus:
numerical results vs. analytical solution.

search for the optimal sets of the discrete density vari-
ables x1e and x2e. Black elements stand for linear iso-

tropic material, i.e. x1e = x2e = 1, whereas white zones

detect regions exhibiting a non–linear orthotropic be-

havior, herein for x1e = 1 along with x2e = ρmin. The

topological plot of Figure 3 is an “optimal design” in
the sense that it is the result of a problem of topol-

ogy optimization; indeed, it represents the distribution

of linear/non–linear material that minimizes the strain–

energy of the no–tension body i.e. solves the equilibrium
of the structure.

At each step of the optimization procedure a finite
element analysis is required to compute the displacement–

based solution of the state equation for the current dis-

tribution of density variables, see Section 3.3. At con-
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Fig. 7 Example 1. Convergence plots for different discretizations
and assumptions on the material behavior.

vergence, i.e. for the “optimal distribution of material”

shown in Figure 3, the analysis provides the sought so-

lution for the no–tension structure.

Figure 4 shows the principal stresses computed in

the annulus at convergence, at the centroid of each fi-

nite element of the mesh, i.e. at the points where the

stress field is controlled by the proposed procedure.
As expected, compressive principal stresses arise along

any radius of the domain and along any hoop direc-

tion falling within the linear isotropic region. No hoop

stress is found within the non–linear orthotropic zone,

meaning that some latent strain arises to account for
scattered cracking. Figures 5 to 6 compare the achie-

ved numerical results with the available analytical so-

lution, plotting relevant displacement and stress profiles

along the radius of the annulus. Displacements are com-
puted at the finite element nodes, whereas stresses refer

to the centroid of each element. The three discretiza-

tions adopted in this numerical investigation provide

approximately the same results, which are in full agree-

ment with the exact analytical solution. In particular,
it may be noticed that the discontinuous profile of the

hoop stress is captured by the achieved numerical solu-

tions, irrespective of the refinement of the mesh. In fact,

all the points plotted in Figure 6(b) lie over the non–
smooth line representing the analytical solution. The

adoption of finer meshes allows increasing the accuracy

in the approximation of r0.

Finally, Figure 7 provides information about the

convergence of the implemented optimization procedure.
The curves in the diagram represent history plots of

the non–dimensional objective function, i.e. the ratio

of the structural compliance to the strain energy com-

puted for the initial guess, i.e. x1e = x2e = 0.5 along

with z̃1 = zI and z̃2 = zII (see Section 3.3). Two curves

are reported concerning the analysis of the annulus un-

der the assumption of a no–tension behavior, which are

the convergence plots for the coarsest and the finest
meshes adopted in the simulations. Both optimization

procedures find convergence at the same energy thresh-

old, in agreement with the mesh independence observed

in the results of Figures 5 to 6. A very limited number
of iterations is needed to meet the prescribed stopping

criterion. It is much lower than that required in con-

ventional formulations for the optimal design of stiff

structures where an additional volume constraint is ac-

tive.

The convergence plot for the coarsest mesh that is

analyzed under the assumption of linear elastic material

is represented in Figure 7 as well. In this case the opti-
mizer moves from the starting guess adopted for the no–

tension behavior to achieve a trivial solution consisting

in full material density all over the domain. Compar-

ing the three curves plotted in the figure one may easily
conclude that accounting for the no–tension assumption

through the penalization approach presented in Section

3.3 is an efficient choice from the computational point

of view. Re–formulating the problem of the analysis

of no–tension materials within a topology optimization
framework leads to a discrete setting that may be ro-

bustly tackled by the proposed algorithm at low compu-

tational cost. Additionally, the number of unknowns in-

volved in the considered analysis problem is much lower
than that found in conventional approaches of optimal

design. This means that minimization algorithms that

are especially conceived for large scale optimization are

able to solve the herein proposed formulation in a very

short time.

4.2 Example 2. Panels subject to vertical loads

The rectangular masonry–like panels represented in Fig-

ure 8 are acted upon by an external distributed verti-

cal load, i.e. p = 0.1 MPa. This investigation has been

inspired by that originally performed in Cuomo and
Ventura (2000) to assess the capability of the numeri-

cal approach proposed therein in capturing the solution

for the no–tension plain panel in Figure 8(a). Similarly

to Cuomo and Ventura (2000), the Young modulus E is
assumed to be equal to 5000MPa, whereas the Poisson

ratio vanishes. Plane stress conditions are dealt with.

Dealing with the no–tension assumption, the half
of the panel that is loaded by the external load be-

haves independently of the remaining part of the struc-

ture. In fact, neglecting strength in tension prevents
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Fig. 8 Geometry and boundary conditions for panels (a) and
(b) of example 2. Grey stands for “rigid” elements. Dimensions
in m, unitary thickness.

(a) (b)

Fig. 9 Example 2. Principal compressive stress in the panels (a)
and (b) of Figure 8 (mesh with 8x12 elements).

any spread of the uniformly distributed pressure be-

yond the loaded region. Figure 9(a) shows a plot of the

principal compressive stresses found in the panel by the
proposed optimization procedure for a discretization of

8 elements along the base and 12 along the height. A

pressure diagram as that represented by the solid line in

Figure 10(a) is expected along any horizontal section,
showing that a discontinuity arises in the stress field

for z1 = 1m. Two levels of refinement are investigated

to assess mesh independence of the proposed procedure

when capturing the outlined pressure profile. As already

commented when addressing the results in Figure 6(b),
a finer discretization allows for more accuracy in the

definition of the stress field next to the discontinuity

region, but no remarkable effect is found elsewhere. If

an accurate modeling of the stress jump is needed (e.g.
to evaluate the size of the linear elastic region), a richer

discretization may be implemented within the proposed

approach at a slightly increased computational effort.
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Fig. 10 Example 2. Vertical stress in the panels (a) and (b) of
Figure 8: numerical results vs. analytical solutions.

Well–known concepts applied in the retrofitting of
existing masonry–like structures inspire the adoption of

tensile–resistant stiff elements, such as reinforced con-

crete curbs or steel beams, to facilitate the spread of

the external pressure beyond the loaded region and to

involve a larger portion of the no–tension structural ele-
ment in the load transfer path. Figure 8(b) shows a vari-

ation of the original example investigated in Cuomo and

Ventura (2000), where the upper third of the masonry–

like panel is replaced by a nearly rigid tensile–resistant
structural element whose Young modulus Er = 10000E.

As captured by the proposed numerical procedure,

a spread of the uniformly distributed load is achieved

and the inactive part of the panel significantly reduces

with respect to the unreinforced case analyzed above,
see Figure 9(b). The “curb” acts as a rigid link that is

able to enforce a linear profile to the normal strain along

any horizontal section of the masonry–like panel, mean-

ing that linear stresses are expected in the compressive
region. The equilibrium of the panel allows computing

the vertical stress at any horizontal section: straightfor-

wardly

σz2 =
4pe

z1
2
(z1 − z1) for z1 ≤ z1

σz2 = 0, for z1 ≥ z1
(28)
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Fig. 11 Geometry and boundary conditions for the panel of ex-
ample 3. Dimensions in m, thickness 0.01m.
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Fig. 12 Example 3. Top right horizontal displacement of the
panel vs. load multiplier α.

where e is the eccentricity of the load resultant with

respect to the axis z2, herein e = 0.5m, whereas z1 =

3e = 1.5m is the abscissa dividing the linear part of

the panel from the non–linear one. The solid line in
Figure 10(b) shows the analytical solution in Eqn. (28)

along with the vertical stress computed by the proposed

numerical procedure at the centroid of the elements for

two different refinements of the adopted mesh. Both
discretizations are able to capture the expected stress

profile. Again, a finer mesh allows the exact abscissa

that separates the linear region of the panel from the

non–linear one to be determined with more accuracy.

4.3 Example 3. Square panel subject to lateral loads

As outlined in Section 1, finite element approaches for

no–tension materials have been successfully adopted in
the last decades as numerical tools to evaluate collapse

multipliers for structural elements that are usually han-

dled through methods of limit analysis. Although the

Fig. 13 Example 3. Principal compressive stresses at incipient
collapse (α = 2.025).

compressive behavior is different, the same no–tension
requirement is implemented within both approaches.

Computational methods for no–tension materials allow

preliminary investigations to be performed accounting

for the lack in tensile strength that may be observed

in a large class of masonry–like structures, thus pro-
viding a valuable tool to assess the safety of historical

buildings against collapse under vertical and horizon-

tal loads, see e.g. Maier and Nappi (1990); Cuomo and

Ventura (2000); Alfano et al. (2000); Baratta and Corbi
(2010a,b).

The square panel sketched in Figure 11 is analyzed,
as originally presented in Maier and Nappi (1990) and

also investigated, among the others, in Fuschi et al.

(1995). The Young modulus is taken equal to 1000MPa,

while the Poisson ratio ν = 0.2. A vertical dead load p
of 18kN/m is applied along the top edge of the square

wall, whereas a horizontal live load αq acts upon its left

edge, where q = 10kN/m and α is the load multiplier.

A mesh of 8x8 = 64 elements is herein adopted with

the aim of testing the proposed approach for a num-

ber of stress evaluation points similar to that employed

in Maier and Nappi (1990) and Fuschi et al. (1995).
Figure 12 shows curves representing the top right hori-

zontal displacement of the no–tension block versus the

horizonal load multiplier, comparing results achieved by

the proposed numerical procedure (dots) with the nu-
merical simulation originally performed in Maier and

Nappi (1990) (solid line).

Unlike most of the available computational tools

that cope with no–tension materials implementing in-

cremental approaches, the proposed method does not

call for any step–by–step analysis that is generally re-
quired to handle the load history. Indeed, for each pre-

scribed value of the load multiplier, the optimization

setting in Eqn. (24) allows computing the relevant dis-



14

(a) (b) (c) (d)

Fig. 14 Example 3. “Optimal distribution of material” for different values of the load multiplier: α = 1.00 (a), α = 1.50 (b), α = 1.80
(c), α = 1.95 (d). Black stands for linear isotropic material. White stands for non–linear orthotropic material.

placement of the control point independently of the pre-
vious history.

The dotted curve in Figure 12 connects the results

achieved by a set of converged optimization runs that

have been performed for increasing values of the pa-
rameter α to assess the proposed method with respect

to the referenced numerical results. A lack of conver-

gence of the proposed algorithm states that no feasi-

ble equilibrium solution can be found according to the
no–tension assumption, meaning that a collapse of the

structure is expected for the considered value of the

load multiplier. Figure 13 shows a plot of the principal

stresses computed at the last converged simulation, for

α = 2.025. Except for the region next to the ground
hinge, the direction of the compressive stresses at the

base of the panel is nearly horizontal, meaning that a

global collapse of the structure is incipient, see Maier

and Nappi (1990).

To have an insight on the non–linear behavior of the

panel under increasing lateral loads, Figure 14 collects

plots representing the “optimal distribution of mate-
rial”, i.e. the distribution of the minimization unknowns

governing the stiffness of the equivalent orthotropic ma-

terial, for some values of the multiplier α. As usual,

black regions detect the isotropic fully linear material

whereas white elements spot out the sources of non–
linearity that affect the overall stiffness of the panel.

In the layouts of Figure 14(a–b), the very few elements

exhibiting a non–linear behavior have a minor effect on

the compliance of the structure, see Figure 12. Con-
versely, a dramatic loss in stiffness is found when larger

regions become non–linear and the reacting length along

the base of the panel reduces to a single element next

to the ground hinge, see Figure 14(c–d). It is worth re-

marking that each one of the analysis represented in
Figure 14 is independent of the others.

Some of the incremental approaches proposed in the

literature to cope with no–tension materials call for a
starting configuration of the external loads for which

only compressive stresses arise in the solution, meaning

that any non–linear behavior is forbidden at the be-
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Fig. 15 Example 3. Convergence plot for α = 1.00 (see Fig. 14a)
and α = 1.95 (see Fig. 14d).

ginning of the load history. Prestressing forces may be

added to applied compatible loads to meet this require-

ment, see e.g. discussions in Fuschi et al. (1995); Alfano

et al. (2000). The one–shot optimization procedure in
Eqn. (24) does not share this need.

Figure 15 investigates the effect of the amplitude of
the non–linear region found in the “optimal distribu-

tion of material” with respect to the convergence fea-

tures of the adopted solving algorithm. To this pur-

pose, the non–dimensional history plots of the struc-
tural compliance are compared for two values of the

load multiplier, i.e. α = 1.00 and α = 1.95. For the

former value very few non–linear elements arise in the

domain, whereas for the latter nearly half of the panel

is found to be non–linear, see Figures 14(a) and 14(d).
Smooth curves are reported in both cases. The solu-

tion of the more compliant structure requires only a

few additional iterations respect to the analysis of the

quasi–linear panel. This points out an attractive feature
of the implemented procedure, i.e. its very low sensitiv-

ity to the number of non–linear finite elements arising

in the optimal solution.
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Fig. 16 Geometry, boundary conditions and expected location of
hinges in the collapse mechanism for the circular arch of example
4. Dimensions in m, thickness 0.1m.
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Fig. 17 Example 4. Displacement of the loaded point vs. load
multiplier α.

4.4 Example 4. Circular arch subject to lateral force

The circular arch represented in Figure 16 is finally an-

alyzed. The elastic properties of the material are as fol-

lows: E = 10, 000 MPa, ν = 0.1. A pressure of 0.1 MPa
acts along the external perimeter of the arch, while a

lateral force αF with F = 1 kN is applied at approxi-

mately half of the height of the arch. This structure was

originally investigated in Cuomo and Ventura (2000)
with the aim of comparing the value of the collapse mul-

tiplier α computed through a no–tension complemen-

tary energy formulation solved through an augmented

Lagrangian iteration Cuomo and Ventura (1998) to the

result achieved by a conventional limit analysis. Figure
16 shows the location of the “hinges” that activate the

collapse mechanism assumed in the application of the

lower bound theorem for an ultimate load multiplier

αc = 0.272, see Cuomo and Ventura (2000).

The solid line in Figure 17 shows a diagram of the

horizontal displacement of the point loaded by the lat-

eral force versus the load multiplier α, as computed

Fig. 18 Example 4. Computed deformed geometry for α = 0.265
(magnification factor 400) vs. collapse mechanism from limit
analysis.

in Cuomo and Ventura (2000) through a discretization

adopting 4 elements along the thickness of the arch and

20 in the hoop direction. Following the discussion re-

ported in Alfano et al. (2000), a finer mesh is herein
implemented consisting of 48 elements along the hoop

direction with the main aim of capturing the behavior

of the arch at incipient collapse. A dramatic loss in the

overall stiffness should be observed in the diagram of

Figure 17, right before the activation of the collapse
mechanism.

The dotted line in Figure 17 connects (independent)
results achieved by the proposed optimization proce-

dure for increasing values of the parameter α, see Ex-

ample 3. A good agreement is found in the first part of

the diagram with respect to the numerical results ref-
erenced above. The last value of the load multiplier for

which the optimization algorithm finds convergence is

α = 0.265 that approximately matches the value found

by limit analysis αc. A noticeable decrease in slope of

the load–displacement curve is observed approaching
this value.

Figure 18 compares the deformed geometry com-
puted by the proposed procedure at incipient collapse

with the collapse mechanism assumed in the limit anal-

ysis performed in Cuomo and Ventura (2000). Figure 19

provides the map of the principal stresses for the same
extreme value of the load multiplier. Most of the struc-

ture is acted upon by compressive stresses, whereas a

stress relieve is found in a few limited regions of the
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Fig. 19 Example 4. Principal compressive stresses for α = 0.265.

domain where the arising of some “cracking strain”

is expected. These regions are approximately located
where the “hinges” of the collapse mechanism of Fig-

ure 16 are supposed to activate. Indeed, the theory of

no–tension materials allows for a finer description of the

stress field leading to the collapse mechanism with re-
spect to limit load analysis that assumes a much simpler

stress block in compression. Following e.g. Cuomo and

Ventura (2000); Alfano et al. (2000), the above results

encourage the adoption of efficient numerical methods

based on the no–tension assumption to provide inves-
tigations on the behavior of masonry–like structures at

incipient collapse.

5 Conclusions

A numerical approach has been presented to address the

analysis of isotropic no–tension masonry–like solids as a

problem of topology optimization. The equilibrium of a
two–dimensional no–tension body is found searching for

the distribution of an equivalent orthotropic material

such that the potential energy is minimized. Two sets

of density unknowns are introduced to define an ad hoc
interpolation law that controls the compliance of the

composite along its symmetry axes, which should be

oriented to match the principal stress directions of the

no–tension solid. The model recovers the conventional

isotropic behavior for biaxial compression, whereas it
is able to enforce negligible stiffness along a principal

direction where any potential tensile stress may arise.

A suitable penalization is adopted to weight the energy

contributions involving tensile stresses within the objec-
tive function, having the aim of providing an efficient

optimization scheme that is solved through mathemat-

ical programming.

Whereas most of the computational approaches con-

ceived for no–tension materials resort to incremental
analysis following any load history step–by–step, the

proposed energy–based method is able to cope with the

inherent non–linearity of the problem through a one–

shot optimization for any compatible load case. Nu-
merical simulations show that the proposed approach is

able to predict analytical and numerical solutions avail-

able in the literature for benchmark examples, exhibit-

ing good accuracy even when adopting coarse meshes.

The discrete optimization problems that arise when
tackling a single structural component are small–scale

(if compared with standard topology design settings)

and can be solved at a limited computational cost. Ad-

ditionally, smoothness of convergence is preserved irre-
spective of the amplitude of the non–linear region that

is expected to arise in the solution. This means that the

proposed method seems well–suited to the analysis and

assessment of real–world masonry–like continues, since

topology optimization can efficiently handle large–scale
problems involving very fine discretizations, see in par-

ticular Andreassen et al. (2011).

The above features suggest the adoption of the pro-

posed approach to provide preliminary investigations

on the behavior of masonry–like structures at incipient

collapse. Indeed, losses of equilibrium due to the ex-

treme non–linear behavior under collapse loads may be
efficiently tackled within the implemented optimization

setting. In full agreement with previous experiences of

the computational literature, limit loads based on the

no–tension assumption have been recovered through the
proposed numerical tool, discussing features of the ex-

pected collapse mechanisms as well. Indeed, the pro-

posed method seems well–suited also to the investiga-
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tion of local and global collapse mechanisms arising in

real–world masonry–like continues.

Extension to the three–dimensional framework is
currently under investigation, with the main aim of ad-

dressing structural elements and structures having com-

plex geometry, see e.g. vaults and historical buildings.

The ongoing research is also focused on the generaliza-
tion of the proposed approach to account for orthotropy

in the linear elastic behavior of masonry under biaxial

compression.
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