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Fast-scanning X-ray nanodiffraction microscopy is used to directly visualize the misfit dislocation

network in a SiGe film deposited on a pit-patterned Si substrate at the beginning of plastic

relaxation. X-ray real-space diffracted intensity maps are compared to topographic atomic force

microscopy images, in which crosshatch lines can be seen. The change in intensity distribution as a

function of the incidence angle shows localized variations in strain within the SiGe film. These

variations, which reflect the order imposed by the substrate pattern, are attributed to the presence of

both bunches of misfit dislocations and defect-free regions. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4862688]

The adoption of SiGe/Si structures by the information

and communications technology industries has been limited

to relatively thin layers, for example, within heterojunction

bipolar transistors,1 or as local stressors for strained Si chan-

nel transistors.2 The possibility of using thicker SiGe layers,

for example, in detectors is hindered by the nucleation of

misfit dislocations associated with the plastic relaxation of

the material. Misfit dislocations impact negatively on device

performance,3 and the random nature of the nucleation pro-

cess means that the device yield becomes unpredictable.

Methods of reducing or controlling the distribution of misfit

dislocations may, therefore, extend the applications of

SiGe/Si structures as well as offering new ways of studying

the mechanisms of dislocation formation.

It has been shown that epitaxial deposition of a low-

misfit Si1�xGex film on top of a Si (001) substrate patterned

with {111}-faceted pits oriented in a square network along

the h110i directions leads to the trapping of misfit disloca-

tions.4 The patterning strongly influences the nucleation and

the propagation of dislocations during the onset of plastic

relaxation, preferentially gettering misfit segments along pit

rows. This behavior has been explained in terms of an energy

minimization for 60� misfit dislocation segments located at

the (111) interface.5

To better understand this effect, thin Si-rich SiGe films

have been deposited on periodic and aperiodic templates fab-

ricated on Si (001) substrates. Both p-type and n-type Si sub-

strates used are in the same resistivity range (1–10 X cm), and

the doping did not show any impact on the dislocation engi-

neering processes. The aperiodic pattern is aimed to evaluate,

within a single sample, the influence of pit spacing on the

nucleation of misfit dislocations. All the samples have been

characterized by scanning electron microscopy (SEM) and

atomic force microscopy (AFM) to analyze the surface mor-

phology and to confirm that the pit pattern controls the propa-

gation of the misfit dislocations along the ½110� and ½1�10�
directions. Moreover, diffraction experiments were performed

using a nano-focused X-ray beam at the ID01 beamline of the

European Synchrotron Radiation Facility in Grenoble

(France). Using quicK continuous Mapping (K-Map),6,7 dif-

fraction intensity maps in real space have been obtained and

compared with surface topography maps realized by labora-

tory AFM. By simultaneously combining high-speed continu-

ous motion of the positioning system with high frequency

image recording, the K-Map method allows 2-dimensional

diffraction intensity maps to be obtained extremely quickly as

compared to the previously used method of step-wise scan-

ning, detector image acquisition, and reconstruction.8

Therefore, immediate identification and quick localization of

epitaxial nanostructures may be achieved in detail.

In this work, we show how the diffraction intensity

maps are sensitive to the bunches of dislocations, which

propagate between lithographically defined {111} pits, typi-

cally observed by AFM or transmission electron microscopy

(TEM). In order to control the formation and propagation of

misfit dislocations during the deposition of the SiGe film, the

Si (001) substrate, covered with a 100 nm of SiNx layer (Fig.

1(a)), is patterned with arrays of {111}-faceted pits aligned

along the h110i directions. The pits grid was defined by elec-

tron beam lithography (EBL), so that periodic and aperiodic

patterns could be defined. The periodic pattern featured a pit

pitch of 2.5 lm, while the aperiodic pattern was designed

with a pit pitch increasing from 2 to 5 lm in steps of 1 lm.

These patterns were transferred into the nitride layer by reac-

tive ion etching (RIE) to define a hard mask (Fig. 1(b)). Pits

with the shape of inverted {111}-faceted pyramids were then

formed by anisotropic wet etching of the Si substrate with

tetramethylammonium hydroxide (TMAH) at 80 �C for 6

min (Fig. 1(c)).9 For the samples reported in this work, the
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typical width of the pits after etching was 1 lm with a corre-

sponding depth of 600 nm. After the hard mask removal by

phosphoric acid at 180 �C (Fig. 1(d)), the patterned sub-

strates were cleaned by a standard RCA treatment. The SEM

image in Fig. 1(e) shows part of a patterned substrate, where

a typical matrix of fully etched inverted {111} pits on a Si

(001) substrate surface is achieved. Before each deposition,

the substrates were dipped in dilute hydrofluoric acid and

rinsed in water to remove the native oxide and create a

hydrogen terminated surface, before loading into the

low-energy plasma-enhanced chemical vapor deposition

(LEPECVD) growth system.10 Then, a 45 nm Si buffer and a

250 nm Si1�xGex alloy layer (with a Ge content x of

16%–20%) were deposited at 700 �C with a growth rate of

about 0.38 nm/s. In this way, a continuous SiGe film, which

follows the same topography as the patterned substrate, is

achieved, as shown in Fig. 1(f). During the deposition of a

SiGe film on Si, the relaxation of the SiGe alloy is limited by

the rates of dislocation nucleation and multiplication.11,12

For the samples studied in this work, although the film is

well above the equilibrium critical thickness for relaxation

(13–20 nm in this range of Ge content), the layers are

expected to relax only slightly since these conditions corre-

spond to only the beginning of dislocation nucleation.13 For

the aperiodic and periodic patterns studied in this work, the

Ge content x is �16% and �20%, while the degree of relaxa-

tion, b, is �3.5% and �12%, respectively, as found by labo-

ratory X-ray diffraction measurements around the (004) and

(224) Bragg peaks. Considering that the Burgers vector

length b ¼ aðxÞ=
ffiffiffi

2
p

is about 0.4 nm (where a(x) is the alloy

lattice parameter), and that the misfit f is approximately

0.04x, the average 60� misfit spacing can be estimated as

b=ð2bjf jÞ and corresponds to 60� misfit spacings of 0.9 and

0.2 lm, respectively, for 16% and 20% Ge content at the

degrees of relaxation given above.

Figure 1(f) shows a tapping mode AFM image of a peri-

odic pattern with 1 lm wide and 600 nm deep pits with a

pitch of 2.5 lm: The lines connecting the corners of the pits

are attributed to the bunches of misfit dislocations, which

propagate along pit rows.14 The pit pattern produces an inho-

mogeneous stress distribution in the SiGe film: The high

strain sites are the preferential sites for dislocation nucleation

in terms of energy minimization. This happens as long as the

degree of relaxation does not require the misfit network to be

much denser than the pit spacing.4 If this condition is ful-

filled, the misfit dislocations segments run between the pits

rather than randomly through the layer. This leads to

dislocation-free regions between pit rows, as shown in Fig.

1(f). Figure 2(a) shows an AFM tapping amplitude overview

of the aperiodic pattern. The distribution of surface cross-

hatch lines indicates the presence of bunches of dislocations

that propagate along the pit rows. The patterned area is about

60� 60 lm2, which fits within the 100� 100 lm2 range of

the x and y piezo scanning stage available at the ID01 beam-

line. In Fig. 2(b), a 20� 20 lm2 scan corresponding to the

area marked in Fig. 2(a) is shown.

TEM analyses would normally be required to verify the

correlation between surface crosshatch lines and misfit dislo-

cations at the SiGe/Si interface. However, TEM is a destruc-

tive technique, for which sample preparation is rather

difficult, especially for thin layers or nanostructures.15 The

Fast-scanning X-ray nanodiffraction microscopy technique

offers a non-destructive technique to access to structural

properties (strain, lattice orientation) with sub-micrometer

resolution without need of sample preparation and without

any surface or morphological limitations (buried films or

integrated circuits), and the required experimental setups are

increasingly becoming available at synchrotron light sour-

ces.7,8 Moreover, a significant gain of time compared to clas-

sical X-ray scanning methods is obtained: up to eight

decades in the acquisition time of two-dimensional scans.

Finally, the approach clearly opens new experimental possi-

bilities such as in situ experiments (e.g., following in real

time the structural evolution during heating, catalytic reac-

tion, magnetic/electric field exposition, etc.). In the present

work, the misfit lines are directly visible under appropriate

diffraction conditions due to the local lattice tilts and alloy

composition variations associated with their strain fields.16,17

The ultimate aim of the nanodiffraction analysis is to under-

stand the relationship between pit spacing, layer thickness,

and homogeneity of strain relaxation, in order to obtain

strain-relaxed areas, which are free of dislocations.

FIG. 1. (a)–(d) A schematic sequence of the fabrication steps for inverted

pyramids on a Si (001) substrate, where the thicknesses and the pit size are

not in scale. In (a) 100 nm of SiNx is deposited by sputtering. By electron

beam lithography and reactive ion etching, a mask with square openings is

defined (b). By wet chemical anisotropic etching, inverted pyramids are

obtained with an angle of 54.7� between the (111) and the (001) planes (c),

and finally, the SiNx film is removed by phosphoric acid solution (d). (e)

SEM image of a symmetrical pattern made up of an array of inverted

{111}-faceted pyramids before deposition of the SiGe layer. The pitch is

2.5 lm, the distance between the inverted pyramids is about 1.5 lm and the

pyramid width is about 1 lm. (f) AFM tapping amplitude image of a sym-

metrical pattern made up of an array of inverted {111}-faceted pyramids af-

ter the deposition of a 250 nm thick Si0.8Ge0.2 layer. The image area is about

10� 10 lm2. The lines connecting the pits are attributed to bunches of misfit

dislocations at the Si/SiGe interface. For AFM imaging ultra sharp tips were

used. According to the surface topography, misfit dislocations run along pit

rows while the regions between rows remain dislocation free. The scale bar

for images (e) and (f) is 2 lm long.
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Nanodiffraction experiments were carried out at a beam

energy of 8.47 keV, so that the (004) and (113) Bragg peaks

were accessible at a scattering angle, 2hBragg, of about 65�

and 53�, respectively, with hBragg being the Bragg angle. The

latter was accessed in grazing-exit geometry in order to

maintain a small incident spot size on the sample (incidence

angle x� 52�). The very low exit angle (�1�) means that

the diffracted intensity is concentrated close to the surface of

the sample, thereby minimizing the brightness of the Si sub-

strate peak. The incident beam was focused to a 250� 750

nm2 (vertical� horizontal) spot size using a Fresnel zone

plate of 300 lm diameter and 80 nm outer-most zone

width,18 leading to a beam footprint on the sample of

�320� 750 nm2 at the given (113) incidence angle. The dif-

fracted beam was recorded with a two-dimensional MAXIPIX

photon-counting detector,19 characterized by 516� 516 pix-

els and 55 lm pixel size, and positioned at 1.26 m from the

sample. Regions of interest (ROIs) close to the Si and SiGe

Bragg peaks were defined on the detector, so that during the

measurements, the integrated intensity over these ROIs was

recorded. The sample was mounted on a fast xyz scanning

piezoelectric stage, with a lateral stroke of 100 lm and a

resolution of 2 nm. It was itself mounted on a hexapod. An

optical microscope was mounted on the goniometer, rotating

with the sample, so that patterned regions could be found

and positioned in the path of the X-ray beam.

The intensity map shown in Fig. 2(c) represents a two-

dimensional real-space map of the total diffracted intensity

of the SiGe (113) Bragg peak, in which the aperiodic pattern

shown in Fig. 2(a) can clearly be identified. A total area of

80� 80 lm2 was scanned by tiling 16 scans of 20� 20 lm2

each. The crosshatch lines in the AFM image due to pile-ups

of misfit dislocations correspond to regions of lower intensity

in the X-ray map, represented in blue in Fig. 2(c). The excel-

lent match between the morphological and intensity maps

clearly proves that the strain field induced by the dislocations

can be qualitatively observed by the fast scanning X-ray

nano-diffraction measurement. Since the Bragg peak was

aligned in an unpatterned region of the sample, this can be

considered as a “bright field” image: In this case, the disloca-

tion lines (which correspond to crosshatch lines visible in

AFM images) result in a loss of diffracted intensity. Figure

2(d) displays an X-ray map of the same area as in Fig. 2(b),

around the SiGe (113) Bragg peak, with the pit positions

FIG. 2. (a) AFM tapping amplitude image of an aperiodic pattern made up of an array of inverted {111}-faceted pyramids on top, which a 250 nm thick

Si0.85Ge0.15 layer was deposited. The pitch increases from 2 to 5 lm. The patterned area is about 60� 60 lm2. A 20� 20 lm2 square marks the area shown in

(b), where the lines between the pits, corresponding to bunches of dislocations, can clearly be seen. (c) X-ray diffraction intensity real space map taken at the

(113) Bragg condition of the SiGe film over the same area analyzed by AFM in (a): the same features can be identified in both (a) and (c), both within and out-

side the aperiodic pattern itself. In particular, apart from the pits themselves, crosshatch lines in the AFM image correspond to regions of lower intensity in the

X-ray map. (d) X-ray map of the same area of (b) at the SiGe (113) Bragg conditions, with the pit positions marked as a guide to the eye. The feature marked

with the dotted oval corresponds perfectly between the two images. In all experiments, the X-ray beam is incident from the right of the image, and the detector

is on the left. The x direction is therefore defined to be ½110�, and the diffraction measurement is only sensitive to in-plane strain in this direction not the ½1�10�
direction.

021918-3 Mondiali et al. Appl. Phys. Lett. 104, 021918 (2014)



marked as a guide to the eye. The feature marked with the

dotted oval shows the perfect correspondence between the

two images. The color maps denote the presence of regions

with different relaxation levels: the blue color represents a

relaxed area that corresponds to the dislocation lines visible

also in AFM images. The red–yellow zones between the pits

correspond to strained areas, which are not affected by plas-

tic relaxation. The X-ray beam is incident from the right of

the image, and the detector is on the left, so the x direction is

defined to be [110]. The symmetric (004) diffraction mea-

surement is sensitive only to the out-of-plane lattice parame-

ter along [001], but the asymmetric (113) measurement is

sensitive to the in-plane strain along [110] but not ½1�10�.
(The measurement is only sensitive to lattice plane tilting in

the ½1�10� direction, leading to non-coplanar diffraction.) This

means that the measurement is only sensitive to the in-plane

strain fields of misfits running in the ½1�10� direction, as la-

beled by the red arrow in Fig. 3. The arrow and the dotted

line in Figs. 2(b) and 2(d) are used as reference for Fig. 3.

These X-ray intensity maps show how the total diffracted in-

tensity changes as the incidence angle is moved slightly

away from the Bragg condition. Intensity at slightly lower

incidence angles corresponds to an increase in the degree of

relaxation (less strain), and vice versa. So, by considering

the variation of intensity for the different images, a qualita-

tive sense of the strain variation corresponding to defects can

be built up. Areas, which present high intensity at a single

incidence angle, are defect-free with a well-defined strain

state. These dislocation-free regions may be homogeneously

strained and suitable for device growth. Some areas can be

identified which are brighter in the image at þ0.03�, com-

pared to the Bragg condition, indicating increased strain

within the pattern. Defect lines can also be identified, show-

ing diffracted intensity over a broader range of incidence

angles away from the Bragg peak. Bright horizontal lines are

not seen in any images, since the defects running in this

direction induce lattice tilts, which cause the diffracted

X-ray beam to leave the coplanar scattering geometry

condition.

In conclusion, this work shows how a fast-scanning

X-ray measurement can be used to study the propagation of

misfit dislocation bunches formed during the epitaxial

growth of SiGe films on pre-patterned Si substrates. The use

of a Si-rich SiGe layer, at the very beginning of relaxation,

ensures that the misfit network is relatively sparse. It is found

that the obtained X-ray maps qualitatively reflect the AFM

topographical images.
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