
Electronic Journal of Statistics
Vol. 0 (0000)
ISSN: 1935-7524
DOI: 10.1214/154957804100000000

Supplementary material for: A

Universal Kriging predictor for spatially

dependent functional data of a Hilbert

Space

Alessandra Menafoglio and Piercesare Secchi

MOX - Department of Mathematics
Politecnico di Milano

Piazza Leonardo da Vinci 32, 20133 Milano, Italy
e-mail: alessandra.menafoglio@polimi.it

e-mail: piercesare.secchi@polimi.it

Matilde Dalla Rosa

Eni S.p.A, Exploration & Production Division
Via Emilia 1, San Donato (MI), Italy
e-mail: matilde.dalla.rosa@eni.com

1. Simulation Study

S.1. Simulation of Non-stationary Functional Processes

The simulation of functional stochastic processes {χs, s ∈ D} of the form (13)
can be performed first by simulating a second-order stationary and isotropic
residual field {δs, s ∈ D} by direct construction as in (11), then by generating
the drift term and finally by summing residual and drift term.

For this Section, the residual fields have been simulated considering the space
H = L2([0, 1]), endowed with the Fourier orthonormal basis {ej , j ≥ 1}. Expan-
sion (11) has been truncated to the 7th order for the first dataset of Section 3
and for the 5 collections of datasets analyzed in Subsection S.2; for the second
dataset of Section 3, expansion (11) has been truncated to the 25th order, as-
suming all the coefficients to be zero except for the last seven. The generation
of the 7 non-null scalar fields {ξj(s), s ∈ D}, 1 ≤ j ≤ 7, involved in expansion
(11) –which in fact determine the structure of spatial dependence of the func-
tional random field– has been performed by means of the geostatistical software
ISATISr. In particular, each scalar field has been independently simulated on
a fine grid over the domain D = [0, 2] × [0, 3] ⊂ R2, according to a gaussian
second-order stationary and isotropic distribution; the generating variograms
are listed in Table 1. Having obtained the functional residuals over the whole
grid by combining the scalar grid realizations, the residual datasets have been
finally obtained by sampling uniformly n = 100 grid locations.

0
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Table 1
Generating variogram models for the scalar fields {ξj(s)}, j = 1, ..., 7. Fields ξ5, ξ6, ξ7 are

generated by the sum of the indicated variogram structures.

Structure (Sill, Range, Nug.)

ξ1 Exp. (16, 0.75, 0)
ξ2 Sph. (16, 0.75, 0)
ξ3 Exp. (16, 1.50, 0)
ξ4 Sph. (16, 1.50, 0)
ξ5 Sph.; Exp. (8, 0.75, 0); (8, 0.75, 0)
ξ6 Sph.; Exp. (8, 0.75, 0); (8, 0.75, 0)
ξ7 Sph.; Exp. (12, 1.50, 0); (4, 0.75, 0)

Table 2
Coefficients βj,l, 1 ≤ j ≤ 7, 0 ≤ l ≤ 5 of the drift expansion (S.2) used for the construction

of the complete model and the relative sub-models.

l = 0 l = 1 l = 2 l = 3 l = 4 l = 5

β1,l 1.247 -5.050 4.011 0.389 1.734 1.572
β2,l 0.979 1.651 -1.531 1.535 0.086 0.710
β3,l 0.558 4.008 3.096 0.289 1.246 0.502
β4,l -0.047 -0.020 0.045 -0.031 0.008 -0.001
β5,l 0.032 0.022 -0.024 -0.005 -0.008 -0.047
β6,l 0.029 0.028 0.033 0.046 0.047 -0.0002
β7,l 0.063 0.042 0.016 0.109 0.057 0.004

For Subsection 3, only stationary datasets –obtained directly from the residu-
als realizations– have been considered. For Subsection S.2, non-stationary datasets
have been built instead. For generating the drift terms, polynomials of degree
lower than two have been considered:

ms(t) = a0(t)+a1(t)x+a2(t)y+a3(t)x2+a4(t)y2+a5(t)xy, t ∈ [0, 1], s = (x, y) ∈ D,
(S.1)

where al are deterministic functional (possibly null) coefficients belonging to L2.
For the construction of al, l = 0, ..., 5, the same basis with the same truncation
as for the residuals has been fixed:

al(t) =

7∑
j=1

βj,lej(t), t ∈ T , (S.2)

where βj,l ∈ R, 1 ≤ j ≤ 7, 0 ≤ l ≤ 5, are the deterministic coefficients of
the expansion on the Fourier basis. In Table 2 the coefficients βj,l relative to
the complete model are listed; drift models used in the considered synthetic
examples are obtained as sub-models of the complete model as will be specified
later on.

S.2. Model Selection Procedure

The first goal of our simulation study is to evaluate the performance of Algo-
rithm 11 in terms of error of model selection (referred to as model misclassifica-
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tion) –which occurs when the selected model does not coincide with that gen-
erating the data– and type of error (in particular over-fitting or under-fitting1).

In order to analyze the behavior of the algorithm in different scenarios, point-
ing out possible tendency to over-fit or under-fit the data, 5 collections of 32
datasets each have been considered.

Data generation follows this scheme. First a set of 32 drift models has been
built by considering the complete drift model (S.1) –constructed as previously
specified and evaluated in the sampled locations s1, ..., s100– and its 31 sub-
models. In particular, for t ∈ [0, 1], s = (x, y), drift model k = 1, ..., 32, has been

represented through five binary variables {ζ(k)1 , ζ
(k)
2 , ..., ζ

(k)
5 }, by representing:

m(k)
s (t) = a0(t)+ζ

(k)
1 a1(t)x+ζ

(k)
2 a2(t)y+ζ

(k)
3 a3(t)x2+ζ

(k)
4 a4(t)y2+ζ

(k)
5 a5(t)xy,

(S.3)

and setting ζ
(k)
l = 1 if the l-th regressor is included in the sub-model k, ζ

(k)
l = 0

otherwise, for l = 1, ..., 5. Hence, the sub-models have been ordered according

to the bijective relation among the binary numbers ζ
(k)
5 ζ

(k)
4 ζ

(k)
3 ζ

(k)
2 ζ

(k)
1 , k =

1, ..., 32, and their decimal representations plus 1 (the constant term is always
included): the complete model is thus model 32 = 1 + 31 (31 ↔ 11111), the
spatially constant model is model 1 (0↔ 00000), while, for example, sub-model
18 = 1 + 17 is the model with regressors {1, x, xy} (17↔ 10001).

Given the set of drift terms, the first collection of 32 functional datasets,

{χ(k,1)
~s , k = 1, ..., 32}, has been obtained by summing to each drift sub-model

m
(k)
~s the residuals generated as specified in Subsection S.1 (Figure 1, left panel);

the remaining 4 collections {χ(k,r)
~s , k = 1, ..., 32}, r = 2, 3, 4, 5, have been ob-

tained with the same construction but dividing the residual realization by r
(Figure 1, four panels on the right):

χ
(k,r)
~s = m

(k)
~s + δ~s/r,

which in fact corresponds to a reduction by a factor r = 2, ..., 5 of the variogram
sills reported in Table 1.

To illustrate how the datasets collections depend on the amplitude of the
stochastic component, consider the drift model 18, which is of the form

m(18)
s (t) = a0(t) + a1(t)x+ a5(t)xy, (S.4)

and consider the corresponding non-stationary data χ
(18,r)
~s = m

(k)
~s + δ~s/r,

r = 1, ..., 5 (Figure 2, upper panels). The increasing importance of the drift term
is made already explicit by graphical inspection, but it is even more stressed
by the empirical estimate of the semivariogram computed from the data (Fig-
ure 2, lower panels). Indeed, for higher levels of residuals amplitude (r = 1),
the semivariogram is only slightly affected by the drift, presenting an almost

1We say that the algorithm finds an over-fitting solution when it selects a drift model
including all the generating regressors plus at least one; analogously, we say that the algorithm
selects an under-fitting solution when it selects a sub-model of the true model.
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Figure 1. First 15 residual curves for r = 1, 2, 3, 4, 5 (from left to right). Curves in the
panel r, r = 2, 3, 4, 5, are obtained dividing the first panel residuals by r, which is the same
as considering the same realization of the first residual field but with a lower sill for the
generating variogram, namely a sill divided by r.
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Figure 2. From left to right: First 15 data of dataset χ
(18,r)
~s

(upper panel) and empirical
semivariogram computed from the dataset (lower panel), for r = 1, 2, 3, 4, 5.

stationary behavior (e.g., downwards concavity near the origin, presence of a
horizontal asymptote for higher distances); on the contrary, for decreasing am-
plitude of the residuals (r = 2, 3, 4, 5), the experimental semivariograms assume
a non-stationary aspect (e.g., upwards concavity near the origin, super-quadratic
growth for higher distances). This behavior is mainly due to the increasing influ-
ence of the drift term on the data, since the empirical semivariogram estimator
(20) computed from non-stationary data becomes severely biased when the drift
component is predominant with respect to the residual one.

The generated collection of datasets has been used for testing the proce-
dure as follows. For each collection r, r = 1, ..., 5, the model selection step has
been separately applied to each of the corresponding 32 datasets, considering as
candidate models all the 32 polynomials of degree lower than two, namely the
complete model (S.1) and all its sub-models, and setting the number of the GLS
iterations equal to M = 5, which seems sufficient for Algorithm 10 to converge.

For each dataset χ
(k,r)
~s , k = 1, ..., 32, the selected model and, in case of model

misclassification, the type of error (over-fitting, under-fitting or none of them)
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Figure 3. Simulation results for the model selection algorithm. From left to right: results

applying Algorithm 11 to the collection of 32 datasets {χ(k,r)
~s

, k = 1, ..., 32} for r = 1, 2, 3, 4, 5.
The horizontal axis identifies the number of the generating model, the vertical axis the number
of the selected model; grey empty dots indicate correct selection, red full dots over-fitting,
green square dots under-fitting, blue triangular dots the other cases. The points (18,2) –

under-fitting– and (18,18) –correct selection– correspond to the dataset χ
(18,r)
~s

, for r = 1, 5.

has been recorded. Simulation results are shown in Figure 3. It is clear that the
number of misclassified models sensibly decreases when the residual amplitude
decreases. Indeed, as the r parameter increases, the drift term becomes more
significant in the prediction: we thus expect a better performance of Algorithm
11 in cases high signal-to-noise ratio (r = 3, 4, 5).

Consider now the behavior of the procedure in terms of over-fitting or under-
fitting. Figure 3 shows that in response to a decrease in the residual amplitude
(r = 3, 4, 5) the behavior moves mainly from under-fitting to correct selection,
except for a few cases in which over-fitting occurs (for r = 5, only datasets 5, 7,
13, 17, 25 are slightly over-fitted).

What is even more interesting to notice is that in very critical scenarios
(r = 1, 2), the most common misclassification error is under-fitting (Figure 4,

first and second panels). As an example, consider the dataset χ
(18,1)
~s (Figure 4,

first panel). Comparing the non-stationary data with the drift curves (Figure
4, second panel), it is evident that the residuals heavily affect the shape of the

curves, making them almost indistinguishable from the curves of dataset χ
(2,1)
~s

(Figure 4, third panel). Here under-fitting occurs, but, as a matter of fact, drift

models 2 and 18 are equally likely for the dataset χ
(18,1)
~s : indeed, the larger

fluctuations for t in [0, 0.2] presented by dataset 18 –due to the xy component
in drift model 18, which is missing in drift model 2– might be due to the residual
fluctuation, and thus the simplest model is selected. Hence, in the presence of
highly correlated residuals, Algorithm 11 proves to be very parsimonious, which
is a very desirable property for a model selection procedure.

S.3. Drift Estimation and Universal Kriging Prediction

Our next goals are the analysis of the performance of Algorithm 10 and the
evaluation of Universal Kriging predictions.

Simulations have been performed on the data generated before, focusing on
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Figure 4. From left to right: first 15 data of dataset χ
(18,1)
~s

and corresponding drift (first

and second panels), first 15 data of dataset χ
(2,1)
~s

and corresponding drift (third and fourth
panels).

drift model 18 in the presence of residuals δ~s/r, with r = 1, 5 (Figure 1, first

and fifth panels). Dataset χ
(18,1)
~s has been used in order to evaluate the effect

of under-fitting both on drift estimates and on Universal Kriging predictions;
in particular, Algorithm 10 and Universal Kriging prediction have been carried
out first having selected the drift model by means of Algorithm 11 and then

assuming that the true drift model is known. Dataset χ
(18,5)
~s has been used in

order to study the influence of the residuals amplitude on the results, analyzing
the performance of the procedures on less noisy data.

In all simulations the number of GLS iterations has been fixed to M = 5,
which proved to be sufficient for Algorithm 10 to converge. For each of the three
cases sketched before, the drift estimation, as well as the Universal Kriging
prediction, has been performed over the whole generated grid for every t in
[0, 1]. Since it is hardly possible to show at once a space-time grid of values
–which is 4-dimensional– we consider two kind of visualizations: the functional
visualization, obtained by plotting t ∈ [0, 1] on the horizontal axis, and the value
χs(t) on the vertical axis for different s ∈ D –thus ignoring the spatial location–
and the space contour representation, obtained by slicing the 4D space-time grid
at some fixed t –thus loosing the functional variation–.

Figure 5 shows the contour plots of the GLS drift estimation, for all the three

considered situations, namely for dataset χ
(18,1)
~s with drift model 2 –selected by

Algorithm 11– (second panels of Figure 5a and 5b), with drift model 18 (third

panels of Figure 5a and 5b) and for dataset χ
(18,5)
~s with drift model 18 (fourth

panels of Figure 5a and 5b). Recall that both datasets are characterized by the
same generating drift model.

It is clear from Figure 5a that the error in the drift estimate is not negligible
in most critical situations, namely for r = 1, t ∈ [0, 0.2] and when model 2 is
chosen by Algorithm 11 (Figure 5a second panel; recall Figure 4), and it becomes
even more severe where the non-linear behavior of the drift is more apparent,
as in the bottom-right part of the spatial domain. However, for higher values of
t, the linear model 2 seems appropriate (Figure 5b second panel), although it is
more parsimonious than the generating one.

The choice of the drift model has consequences not only on the drift maps, but
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Figure 5. Comparison of true and estimated drift through contour plots, for t = 0.1, t = 0.7.
In each sub-figure, from left to right: generated drift grid, drift estimated with Algorithm 10

from χ
(18,1)
~s

with model 2 –selected with Algorithm 11–, from χ
(18,1)
~s

with model 18 and from

χ
(18,5)
~s

with model 18 –selected with Algorithm 11–.
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Figure 6. Residuals semivariograms: empirical semivariogram computed from generated
residuals (solid grey lines), empirical semivariogram of the estimated residuals with model
18 (dotted blue lines), semivariogram of the residuals estimated with drift model 2 (only in
left panel, dashed green line).

Table 3
Cross-validation squared error for χ

(18,1)
~s

, considering model 2 –selected by Algorithm 11–
and model 18.

Selected Model: 2 Correct Model: 18

Median 5.19 5.33
Mean 7.47 7.54

also on the residuals variogram estimate. As a matter of fact, the deterministic
variability not captured by under-fitted drifts, is picked up by the corresponding
residual variogram, leading to its over-estimation (Figure 6a, green line). Such
over-estimation is partially balanced by the downward bias that occurs estimat-
ing the variogram from estimated residuals –due to the variance decomposition
(29)– which seems not to be very severe in the considered cases (compare gray
lines and blue lines in Figure 6a and 6b).

Even though the drift estimate as well as the variogram estimation obtained
by selecting model 2 instead of model 18 might not seem very satisfactory,
the Universal Kriging prediction appears not to be affected by under-fitting,
both for t = 0.1 and for t = 0.7 (Figure 7a and 7b). Indeed, all the patterns
presented by the original grid realization (first panels in Figure 7a and 7b) are
well reproduced by both interpolations, with very similar results for models 2
and 18.

Cross-validation results, shown in Table 3, confirm these graphical obser-
vations. The statistics relative to the n = 100 cross-validation squared errors
‖χsi

− χ∗k
si
‖2, i = 1, ..., 100 and k = 2, 18, are very similar, with slightly better

results for the selected model –which is not surprisingly, since the optimality
criterion in Algorithm 11 is precisely based on cross-validation error–.

Moreover, notice that dataset χ
(18,1)
~s is characterized by a high residuals
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(b) t = 0.7

Figure 7. Comparison of simulated grid and UK prediction for χ
(18,1)
~s

through contour plots,
for t = 0.1, 0.7. In each sub-figure, from left to right: generated grid, UK prediction for with
drift model 2 –selected with Algorithm 11– and with drift model 18.
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(b) t = 0.7

Figure 8. Comparison of simulated grid and UK prediction for χ
(18,5)
~s

through contour plots,
for t = 0.1, t = 0.7. In each sub-figure: generated grid (left panel), UK prediction for with
drift model 18 –selected with Algorithm 11– (right panel).

amplitude and thus the prediction turns out to be only slightly drift-driven:
therefore, the Universal Kriging prediction proves to be very robust with respect
to under-fitting of the drift model. On the contrary, in the presence of low
residuals amplitude, as for r = 5, the drift term becomes very influential on
the data and on the prediction: in such a case, the performance of the model
selection algorithm is much more satisfactory than before (Figure 3), as well
as the drift estimation (fourth panels of Figure 5a and 5b), and the Universal
Kriging prediction appears to be very accurate (Figure 8).

The increasing precision in estimating the drift for decreasing residuals vari-
ability is even more apparent by comparing the estimated drift coefficients âl,

l = 0, 1, 5, computed from dataset χ
(18,1)
~s and χ

(18,5)
~s , adopting in both cases

drift model 18 (Figure 9). Indeed, the coefficients relative to the case r = 1
(Figure 9, upper panels) capture also part of the stochastic variability and are
thus much more fluctuating than the reference ones, while the coefficients com-

puted from χ
(18,5)
~s (Figure 9, lower panels) are much more smooth reproducing

more precisely the reference ones. Notice that the first situation is particularly
critical because both residuals and drift curves are built on the same truncated
basis and thus excite the same set of frequencies. The presence of more uncer-
tainty in the estimates for noisier data is confirmed by the curves âl ± 2

√
Λll,

Λ = Cov(â~l), l = 0, 1, 5, reported in Figure 9, which provide measures of the
estimates variability.

Several other scenarios have been considered in the simulation study, obtain-
ing further evidence of the results shown here: the performance of the proposed
methodology on simulated data confirmed to be very satisfactory.

Indeed, the combination of Algorithms 10 and 11 leads to a very robust
and flexible procedure. On one hand, in the presence of highly correlated data,
the adoption of a predictive criterion for selecting the drift model proves to be
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Figure 9. Comparison of the coefficients estimates âl, l = 0, 1, 5, computed from dataset

χ
(18,1)
~s

(upper panels) and from dataset χ
(18,5)
~s

(lower panels): estimated functional coeffi-
cients âl, l = 0, 1, 5 (solid blue lines), generated coefficients al, l = 0, 1, 5 (solid grey lines).
Dashed blue lines correspond to âl ± 2

√
Λll, Λ = Cov(â~l

), l = 0, 1, 5. Vertical dashed grey
lines indicate t = 0.1 and t = 0.7.
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appropriate to avoid over-fitting in favor of more parsimonious models; at the
same time, in such cases Universal Kriging prediction proves to be very robust
to under-fitting. On the other hand, in the presence of less noisy data, the results
obtained by Algorithm 11 become more reliable, as well as the drift estimations
by Algorithm 10, leading to a very precise prediction.

In any case, the obtained predictions appear very accurate in reproducing all
the main patterns presented by the generated realizations, with only a moderate
smoothing effect. This is a remarkable result especially given the simplicity of the
kriging predictor which involves only global definitions of spatial dependence,
besides being linear in the data through scalar coefficients. Indeed, simulations
show that the proposed methodology is so flexible that not only global features,
but also local structures can be well reproduced by this kind of predictor.
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