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Abstract—Microsoft Kinect cameras are widely used in
robotics. The cameras can be mounted either to the robot itself (in
case of mobile robotics) or can be placed where they have a good
view on robots and/or humans. The use of cameras in the surgical
operating room adds additional complexity in placing the cameras
and adds the necessity of coping with a highly uncontrolled
environment with occlusions and unknown objects. In this paper
we present an approach that accurately detects humans using
multiple Kinect cameras. Experiments were performed to show
that our approach is robust to interference, noise and occlusions.
It provides a good detection and identification rate of the user
which is crucial for safe human robot cooperation

I. INTRODUCTION

In the past years medical robotics has reached a point where
minimally invasive tele-operated systems are not just enough.
Current robotics research focuses more on flexible assistant
systems, flexible robotics or semi-autonomous systems. Those
systems have in common that the usage has to be as intuitive
as possible. A future goal in research should be to have robots
that the surgeon and the personnel does not have to pay direct
attention to. More specific, the system has to behave like the
surgeon expects it to behave, yet to ensure a safe usage of the
system especially in the case conventional serial or parallel
robots are used.

A Common advantage of these systems such as the DLR
Miro [1], the LARS robot [2] and research systems using
the KUKA LWR 4 [3] is the applicable workspace and high
payload of these robots. This offers new applications like Ul-
trasound probe steering, open surgery with increased accuracy
and a applicable workspace, orthopedics interventions using
milling devices and saws, as well as the field of minimally
invasive robotic surgery that is widely explored by Intuitive
Surgical [4] and the University of Washington [5]. However,
compared to specially designed kinematics that move only
around a remote center of motion, these kinds of robots need
to perform larger movements in order to move the tooltip
to the desired position. Requirements like remote center of
motion for minimally invasive robot surgery can be solved
in hardware with special designed robots. Also with special
designed robots, safety systems are less important due to

smaller movements. Systems using multi-purpose robots have
to cope with this issues in software using special supervision
systems.

Our approach aims at solving the problem of safety with
multi purpose robots inside of the operating room. Moreover it
offers the base for a comprehensive operating room supervision
that can also be used for specially designed robots in order
to improve the intuitiveness and the efficiency of the system.
Use cases of the system are simple high speed collision
avoidance and on-line path planning based on low resolution
point clouds, workflow detection focused on the operating
room environment, probabilistic and rule-based inference from
the perceived situation and workflow based control of the
operating room and the surgical robots.

To the best of the authors knowledge there is no publi-
cation about similar approaches yet. However the problem of
multi depth camera room supervision for other applications
is tackled by [6] who developed a multi-kinect system for
interaction with the environment and the past self, [7] who
are focusing on the ”The room is the computer” and the
”Body as display” approach as well as [8] who are tackling the
problem of interference induced by using multiple structured
light Primesense (Primesense, Tel-Aviv, Israel) devices. Other
approaches like [9] and [10] focus on multi-Kinect people
tracking and dynamic scene reconstruction from asynchronous
depth cameras.

Our system is composed of multiple Photonic Mixer
Devices that are dedicated to low-latency high speed scene
supervision. These cameras are used for collision avoidance.
Additionally four Microsoft Kinect cameras are used that
offer larger resolution having the drawback of more latency
introduced into the processing chain. Our supervision system
is developed in the context of OP:Sense [11] which is mainly
dedicated to safe and intuitive workflow controlled human
robot interaction in the operating room as well as exploring
new applications for the operation and has recently been ported
to ROS [12] and OROCOS [13]

The following article describes how we tackled the pro-
cessing of the high amount of data coming from the Kinect
cameras, registration issues between the cameras and describes
our approach to find corresponding users in the camera’s field978-1-4799-2722-7/13/$31.00 c©2013 IEEE



of view. Finally an approach to detect robots in the scene and
a CUDA [14] based distance calculation for point clouds is
described.

II. FRAMEWORK

The OP:Sense system is composed of two KUKA light-
weight robots (KUKA, Augsburg, Germany) that form the
core of the project, a ceiling mounted camera rig holding an
ART tracking system, PMDtec (PMD technologies, Siegen,
Germany) as well as Kinect cameras, custom built attachable
surgical instruments, milling devices, an ultrasound device, a
high precision Stäubli (Stäubli Internationl AG, Freienbach,
Switzerland) RX90 robot, a special endoscope steering robot
and an endoscope. The software framework is based on
OROCOS for low level real time robot tasks such as inverse
kinematics computation or interpolation, as well as ROS for
data processing, acquisition and processing. On top of that, a
custom built framework based on a java implementation for
ROS is being developed in order to cope with probabilistic,
rule- and workflow-based control of the complete system.

Every Kinect as described in [15] acquires 3-channel 8 Bit
RGB images with a resolution of 8 bit per channel as well as a
11 Bit depth map with the same resolution. The capturing fre-
quency is 30Hz which results in a data rate of around 40MB/s
This requires the use of a dedicated USB host controller per
Kinect. In order to build up a scalable supervision system with
a flexible number of camera, we outsourced the data capturing
to small AMD based PCs that provide the images from up
to two connected Kinect cameras via Ethernet and ROS. This
allows for an theoretically unlimited amount of used cameras.
The proposed algorithm runs on-line with up to four cameras
when using an Intel Core i7 3770.

The Kinect cameras and the processing chain introduce
a notable time delay described in results into the system. In
order to cope with fast movements and time critical tasks such
as collision detection and avoidance the system is supported
through low delay, high speed PMD cameras. Other objects
that are too small for being tracked via a marker less systems,
such as surgical instruments, can be equipped with optical
markers tracked via an ARTtrack system.

The coordinate frames of the independent camera systems
are registered to each other to acquire a multi-modal scene
representation. The layout of the supervision system can be
seen in Fig.1 A close to reality setup with KUKA lightweight
robots inside the OR can be seen in Fig.2

III. METHODS

The proposed approach is based on OpenNI and ROS. The
number of used Kinect cameras can be parametrized at the start
up of the system. The detection and correspondence matching
as well as distance computation works as follows

A. Registration of Kinect cameras with respect to a reference
frame

As Kinect features a depth camera as well as a RGB
camera with known transformation between the cameras, col-
ored point clouds can be acquired. Using this relationship
between the cameras a checkerboard based algorithm is used

Fig. 1. Layout of the Camera rig from a bird’s view. High Resolution
(204x204 pixels) ToF is pointing downwards all other cameras are pointing
towards the floor with an angle between 30-45 degrees compared to the floor

Fig. 2. Setup in the IPR lab showing the surgeon, the operating table and
the minimally invasive robotics setup

for the registration of the system. For maximum accuracy both
cameras are intrinsically calibrated and afterwards extrinsically
calibrated to each other. One of the four Kinect cameras
is the reference camera Kref and we perform a pairwise
registration between every remaining camera (K1, K2 and K3)
and Kref . The following steps are performed in order to find
the transformation

1) The checkerboard is placed inside the field of view of both
cameras. OpenCV [16] checkerboard detection is applied
to both RGB images

2) For every RGB pixel a depth pixel is captured at the
position of each detected corner.

3) In order to be more robust to noise, average filtering over
60 depth frames is performed. The corresponding depth
values at the position of the checkerboard corners are
stored as references.

4) The correspondences are used to estimate a transforma-
tion between the camera frames using PCL [17]. The
estimation is based on incrementally building a covari-
ance list and the means of the correspondence list. The



rotation is estimated using eigenvalue decomposition of
the covariance. The translational component is estimated
using the means of the point sets similar to what happens
in a standard ICP [18] iteration.

B. Detection of a reference plane within the reference frame

Both the correspondence detection for users in different
cameras and the robot base detection depend on knowledge
about the plane equation that describes the floor of the room the
system is used in. The plane is needed for detecting the robot
at the OR table and to project the centroids on. A common
method to detect a plane is to use a RANSAC algorithm [19]
in combination with a plane model. We used the RANSAC
plane estimator that is shipped with PCL. RANSAC delivers
a plane equation of the dominant plane inside a point cloud.
The plane equation is stored for future processing

C. Robot Base detection

In the medical scenario to which the approach of this paper
is applied, the robots are attached to an operating room table.
After the OR table is moved to its position, which may vary
between different executions, the position and orientation of
the robots has to be determined. First, we detect the plane and
shape of the OR table using a constrained RANSAC. Different
constraints such as the probable table height and angle against
the reference plane are taken into consideration. As the robots
are attached to the table on side-rails, their orientation with
respect to the table is known whereas their position is variable.
We initially locate the base of the robots by a simple circle
fitting restricted to the possible locations along both rails.
Using this base position, the robots’ virtual models are fitted
into the scene to determine their correct 6D pose. As operating
rooms and the workflows may vary (stationary base, movable
operating table), the approach has to be adapted to the current
scenario. For adapting to the real world, other robot detection
algorithms have been implemented that use model fitting or
spatial change detection.

D. Human detection using OpenNI

OpenNI and NITE are frameworks for the development
of 3D sensing technologies using the Primesense sensor that
is built into the Kinect camera. For a single Kinect camera
it offers user detection and full body tracking without the
requirement of a calibration pose. We use OpenNI for user
detection in every single Kinect camera. Up to 16 users can
be detected in the field of view of a single Kinect camera.
We extract the pixels of every single user and add them to an
empty depth map that is used for future processing. The result
is as set of n depth maps per camera where n is the number
of users detected in the camera frame. Every depth map holds
the depths of a single detected user. This is repeated in every
iteration and triggers the execution of the complete processing
chain. Fig.3 shows a user detected by two Kinect cameras in
different positions

E. Removal of noise pixels in depth image

A common problem of PMD and Kinect sensors is noise
at the edges inside an image. Using PMD cameras, the term
”jumping pixels” is commonly used for pixel that change

Fig. 3. User detected by two cameras

position from foreground to background and vice versa. How-
ever Kinect shows a behavior where several pixels at corners
lie between foreground and background. This noise makes it
hard to perform a robust brute force distance computation and
affects the computation of centroids. We use a two step noise
removal process. In the first step the morphological erosion
filter is applied to each depth image holding a user. This
removes pixels at the corners of these images eliminating most
of the noise.

F. Point cloud computation for every detected user

Using the known focal length of the Primesense sensors
lens, the resolution of the sensor and the function that maps
depth maps to meters, one can compute a point cloud from
every depth map.

G. Denoising in Point clouds

The resulting point cloud is still not completely free of
noise. Especially artifacts that occur during movements cannot
be completely removed by the erosion operation. In order
to cope with the remaining noise statistical outlier removal
is being performed. The used algorithm is described in [17]
and uses k-neighbors of a point to find inliers and outliers.
Points that are closer to the mean µ of the k neighbors than
1.0*σ (standard deviation) of the k-neighbors are considered as
inliers. The result is a point cloud representing a single user in
a single camera with almost no visible noise at the edges. This
provides the optimal base for centroid computation, sensor
fusion and distance computations.

H. Finding correspondences based on centroids

In order to determine corresponding users the centroid of
the point cloud representing the complete user is computed.
The centroid of a point cloud can be computed by summing
up the translational components of every point in the scene on
its own. Dividing the resulting vector through the number of



points gives the centroid of a point cloud like shown in eq.(1)

c =

p1,x+p2,x+...+pn,x

n
p1,y+p2,y+...+pn,y

n
p1,z+p2,z+...+pn,z

n

 (1)

where pi is a point in the point set.

In our approach the centroids are used for the fusion of user
point clouds. The point clouds are transformed into the refer-
ence frame KRef . Afterwards corresponding users are found
using the Euclidean distance between every computed centroid.
If the Euclidean distance is below a certain threshold, the users
in the clouds are considered to be the same user. A matrix
holding the correspondences (in the following: correspondence
matrix) is being computed that is used for concatenation of the
point clouds. However the centroid is a measure that is not
very robust to movements of the user. Bending of the users
or articulation of a joint causes the centroid to move. As the
field of view of the cameras is different, partial occlusions
are possible and only parts of a user may be in the fov of a
single camera. The movement of a centroid in a single camera
may result in a distance between corresponding centroids that
is above the defined threshold which results in false negative
detection of correspondences.

A solution is to enlarge the threshold for correspondence
detection which results in higher false negative detection. We
tackle the problem using the fact that the erosion operation
from the removal of noisy points does not only remove noise
but also useful information. The impact on image parts repre-
senting limbs is higher compared to the impact on abdominal
and thoracic regions. The cause for this is that in a 2D view
(depth image) of the users more edges are visible for limbs
compared to the upper body parts. The erosion operation
removes pixels at every edge and therefor stronger affects the
limbs.

The reduction of limb points moves the centroid more into
the center of the body of the detected user as long as the users
body is visible in the viewport of the camera. The overall
number of Points inside thorax and abdomen exceeds the
number of the points of the limbs which additionally helps to
pull the centroid towards the center of mass of a user. However
the problem of the movement of the centroid through bending
of the upper body is not solved. We reduce the problem to a
two dimensional one by projecting the centroids to the floor
plane which was detected in a prior step. This eliminates errors
along the longitudinal axis of the user and helps for cases
where only parts of a user are visible in a single camera image.

The computation of the distance between the centroids is
performed on this projected centroids and the final correspon-
dence matrix is being stored.

An example for a case where projection to the floor helps
is, if a users complete body is visible in one of the cameras
and only an arm is visible in one of the other cameras. In the
3 dimensional case the centroid of the user in the full body
cloud is close to the center of mass of the user, but in the cloud
representing only the arm is close to the center of mass of the
arm. Projection to the floor in this case eliminates all errors
along one of the three axes and allows for lower thresholds.

Projection can simply be performed by computing the
normal of a plane (in our case the floor) and moving the
centroid along this normal until the plane is being crossed.

Anyway, a high threshold for correspondence estimation is
necessary in order to reduce false positive detection rate as the
view-ports of the Kinects are different which results in partial
point clouds of the user. As the part of the body behind the
surface seen by the Kinect cannot be captured the centroid is
biased along the axis between the observed user and the Kinect
towards the Kinect camera. In order to cope with registration
errors and the aforementioned problem a threshold of 0.6m has
been chosen for our experiments but the absolute minimum for
acceptable correspondence estimation has not been evaluated
yet.

I. Concatenation of point clouds per user

Using the correspondence matrix we perform a lookup on
the computed point clouds of the users detected in different
cameras. The point clouds are concatenated into a single larger
point cloud which results in overlapping regions being repre-
sented by points of several cameras and several viewpoints
and regions that are only represented by the points of only
one camera.

Regions with overlapping point clouds introduce redun-
dancy into the concatenated point cloud. In order to reduce
the size of the point cloud and to remove redundancy we
downsample the point cloud using a grid. This reduces the
amount of points in areas where points are dense and does not
reduce areas with a lower number of points. The downsampled
point cloud is being used for distance computations and
situational inference in subsequent steps of the process

J. Distance computation on GPGPU

In order to get a measure about distance between humans,
robots, as well as humans and robots we implemented a
CUDA based algorithm that operates on point clouds without
using any shape information. Collision checks with meshes
are not included but in the target scenario there is no need for
precise collision checking. As described before the robot base
is detected in the scene using point clouds. After successful
detection we rely on the CAD model of the robot and position
encoders of the robots joints. We update the CAD model using
Denavit-Hartenberg forward kinematics and the measured joint
angles. From the CAD model we extract all vertices dropping
the triangles. The vertices of a CAD model can be considered
to be a point cloud. Both, the CAD point cloud and the point
cloud from the processing chain are being loaded into CUDA
pinned memory in every updated cycle. Finally the cloud is
uploaded to the graphics ram of a NVIDIA Geforce GTX480.
A kernel on the NVIDIA GTX480 computes eq.(2)

d(p, q)2 = ||q − p||2 (2)

which is the squared euclidean distance. We use a brute force
method to compute all squared euclidean distances between the
source and target cloud. Afterwards we compare all squared
euclidean distances on the graphics adapter. The points for
which the squared euclidean distance is minimal, are closest
in the point clouds. We pass back the smallest value together
with point indices of the points in source and target cloud



to the main process where the square root for this value is
being computed on the CPU. This gives a measure of the
closest distance between two point clouds and is being used as
simple collision avoidance in a first step. Two thresholds have
been defined. If the distance is below threshold 1 a warning is
displayed to the user. If the distance is below threshold 2 the
robot can be stopped in order to avoid hazardous situation like
collisions. The use of thresholds describing safe and unsafe
regions removes the requirement of performing a collision
check in our scenario. Small distances between a user and the
robot can be considered unsafe and uncomfortable for a user,
especially in the case of surgical robots where the robot acts
as an assisting system. The brute force approach only works
if the data is nearly free of outliers, as those are considered
as user points as well as useful information. If outliers and
noisy pixels cannot be completely removed the quality of
the distance computation decreases resulting in a higher false
positive detection rate of hazardous events. Fig.4 shows the
running system.

Fig. 4. Complete system during run time Foreground: supervised scene
Background: Scene representation with user detected being to close to the
robot

IV. RESULTS

We measured the frequency of the received image data
collected and transmitted via Ethernet by the mini computer
using built-in ROS mechanisms. The resulting frequency with-
out any computation was 25Hz. The accuracy evaluation for
the checkerboard based registration has been performed using
12 poses for the checkerboard in a volume of 1.8m x 1.0m
x1.5m. The data has been statistically analysed using a Kruskal
Wallis method to show the registration error of the pairwise
registered Kinects. In the following, Kinect pairs of a source
and the reference camera are called pair.

TABLE I. MEDIAN VALUES IN MM AND QUARTILE RANGE FOR THE

ACCURACY EVALUATION OF EACH PAIR OF KINECT
TM

CAMERAS.

Variable Median Value 1st quartile 3rd quartile

Pair 1 19.8392 12.7431 28.2076
Pair 2 26.8867 19.9021 34.8021
Pair 3 26.6838 20.2448 35.1427

In Table I, the median values and the inter-quartile ranges
of the accuracy evaluation are reported. The statistical analysis
showed that the results for pair one are significantly different
from the other two pairs. Fig.5 shows the results of the
accuracy evaluation for each pair of Kinect cameras in all the
tested positions.

Fig. 5. Boxplot of the error for each pair of Kinect in each position.
The horiziontal bars shows the statistical difference between the positions,
if present.

When introducing the detection and fusion chain per-
formance measurements show that an Intel Core i7 3770
can process up to four Kinect cameras using the proposed
approach.

Our approach accurately removes noise pixels at the edges
of detected users but also removes some useful information
as well. We did not observe any pixels not connected to a
user during our experiments which made distance computation
without knowledge about the objects possible.

We did not yet include algorithms that rely on the combined
point clouds. This means that no information about allowed
false positive and false negative detected correspondences is
available. In the future we are going to fuse tracking data
collected from multiple trackers based on our approach to
built an accurate skeleton model. The false positive and false
negative detection rates are correlated via the threshold for
correspondence estimation. The higher the threshold, the lower
the false negative detection rate, but the higher the false
positive detection rate.

We measured the delay between the actual action inside the
scene and the time until the data has been completely processed
using a high speed camera that was able to see both the screen
and the scene. The delay has been extracted by measuring
the time between the action being performed and the monitor
showing the result. The delay is about 950ms im average using
Kinect cameras and transmission via ROS and Ethernet.

V. DISCUSSION AND CONCLUSIONS

We propose a novel approach for fusion of detected users
inside 3D depth maps as well as a registration method for
RGB-D sensors. The approach is scalable and robust to in-
terference introduced by the use of multiple Kinect cameras
and does not need models to compare the captured data with.
Therefore the approach is highly flexible, can run with different
detection algorithms and works also for other objects than
humans and other RGB-D cameras than the Kinect.

However several issues have not been tackled yet. The
approach shows a registration error that makes it usable



for high level scene supervision for workflow detection and
for inferring about the situation but is not suited for high
precise measurements of body area, volume or exact distance
calculation. Additionally the removal of noisy pixels increases
the model quality but removes also part of the surface around
an object being detected. The use of better sensors like precise
stereo cameras could reduce the error but introduces problems
like lighting and the need for stereo calibration. The delay
between the action being performed and the scene being
completely processed is rather high. This is not a problem for
inferring about long lasting processes like workflow detection
in the operating room but makes the use of faster systems like
our PMD system necessary for time critical tasks like collision
avoidance. In order to reduce the threshold for correspondence
estimation, a shape based model for computing a point that is
closer to the center of mass of a user compared to the centroid
may help.

Future work will use the fusion approach to fuse joint
angles as well. The correspondence matrix will be used to
determine skeleton tracker observing the same user. We plan
to implement a fusion approach for skeleton tracking based on
fitness values for every single tracker. An important research
topic is to include situation based information into the pro-
cess. Measuring distance to infer about hazardous situation is
not enough as in cooperative control modes that may occur
during operations the robot is allowed to be in contact with
the surgeon. In order to further improve the detection rate
we plan to introduce additional tracking algorithms into the
processing chain which enables us to combine detected users
from both algorithms. This approach very likely reduces the
false negative detection rate of the complete system.

The final output data will be used to infer about the
current situation in the operation, to switch between workflow
steps and will form the base for probabilistic and rule-based
control of the overall system. The target system is a complete
integrated neurosurgical platform developed in the scope of
the ACTIVE project. Here several robots work close together
with humans and share the same workspace. The system is
intended to follow the workflow during the operation and
provide safe and intuitive human robot interaction during the
whole intervention.
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