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Abstract — With the intent to model the global behaviour of
the universal motor, taking into account core saturation and
losses, an equivalent circuit of the machine is described.
A procedure for the calculation of the magnetisation charac-
teristic is developed, correctly modelling the armature reac-
tion; a speed-dependent core losses lumped conductance is
evaluated. Simulated and test results validate the model.

1. Introduction

The commutator universal motor (UM), whose operation
principle and main characteristics are well known, is still
largely used in several small rating home and commercial
appliances: nevertheless, the increasing competition of
other solutions leads to deepen the knowledge of this ma-
chine, both in order to attain design improvements, and to
allow a more accurate estimate of its performances [1-10].

Among the aspects that significantly affect the operation,
the ferromagnetic core behaviour is to be noted: the high
and non uniform level of saturation, together with the dou-
ble frequency rotor lamination losses, make not negligible
the core non linear effects, especially in high speed motors
(running at some ten thousands RPM).

The core saturation affects both the global operating
quantities (particularly current and torque waveforms), and
the commutation parameters (especially self and mutual
inductances of the commutating sections).

The paper is devoted to model the global operation of the
motor: to this aim, the following steps are considered:
− an equivalent circuit is presented, including saturation;
− the magnetisation characteristic is analytically obtained;
− the core loss and the derived conductance are evaluated;
− results of FEM simulations and tests validate the model.

2. Equivalent circuit

The reference motor data are in Table I. Called mf = Nf ⋅im
the field magnetizing m.m.f., in the generic position ζ un-
der the upper pole of fig.1, the total m.m.f. mp(ζ) equals:

( ) ( )( )α−ζ⋅σ+⋅=ζ 1fp mm , ( ) ( )π⋅=σ 2fa NN ;  (1)

σ (reaction factor) and α (equivalent brush shifting) take
into account the distorting and demagnetizing effects of the
armature m.m.f. reaction (slot stepping neglected in (1)).
As shown later, for given values of σ and α, (1) leads to
evaluate the magnetisation characteristic ϕm(mf), linking
the instantaneous values of the pole flux ϕm and of the
field winding m.m.f. mf : for low mf levels, ϕm(mf) reduces
to the unsaturated curve ϕmo= Λo⋅mf.
By the Faraday’s law, the armature flux linkage leads to

the total e.m.f. ea, as measured at the brushes: it consists of
eat and eas, transformer and speed e.m.f.s respectively:

Ω⋅ϕ⋅⋅+
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with Cat and Cas linkage coefficients (dependent on ε, α; for
the motor of Table 1, we have: Cat = −0.059; Cas = 0.31).

By defining fma mϕ=Λ (3)

fmd dmdϕ=Λ (4)

apparent and differential permeances, (2) becomes:
( ) ( ) Ω⋅⋅+⋅=+= mmmmdasataa i iMdtidiLeee     (5)

where ( ) ( )mdtafamda iCNNiL Λ⋅⋅⋅=  (6)

and ( ) ( )maasfam iCNNiM Λ⋅⋅⋅=   . (7)

The e.m.f. induced in the two field coils is given by:
( ) dtdiiLdtdNe mmdfmff ⋅=ϕ⋅⋅= 2     , (8)

with ( ) ( )mdfmdf iNiL Λ⋅⋅= 22   . (9)

Fig.1. Scheme of the reference universal motor.

TABLE I
MAIN QUANTITIES OF THE REFERENCE UNIVERSAL MOTOR

Vn [V];    In [A];    Pin n [W] 220;  5.8; 1250
fn [Hz];    Nn [r.p.m.] 50;   32,000
N° of poles p;    N° of commutator segments k 2;     24
N° of rotor teeth Nt ;     coil sides/(layer-slot): u 12;     2
rotor winding paths: a=p; pole shoe extension 2⋅ζe 2;   2⋅60°
Rotor turns N°: Na;    wire diameter [mm] 360;    0.40
field coil turns N° (per pole): Nf; wire diam. [mm] 130;    0.63
turn pitch shortening: ε;   equiv. brush shifting: α 30°;    22.5°
Brush sizes:   wb ⋅ �b ⋅ hb [mm] 6.3 ⋅ 10.95 ⋅ 37
brush–segments contact ratio;  rotor diam. [mm] 1.96; 38.25
air gap δ; axial stack length �s; lam. width [mm] 1.47; 32; 0.50
lam.AST FEV 4750: nom. loss 1.5T, 50Hz [W/kg]   4.7



Besides the e.m.f.s induced by the flux ϕm, the model must
include: inductive voltage drops (due to L�f, L�a: leakage field
and armature inductances); resistive voltage drops (due to
field and armature resistances Rf and Ra and to the brushes,
vb≈ Rb⋅im); as regards the core losses, they can be modelled by
a suited conductance Gc,  derived at the input terminals.
Thus, by some handling and parameter combinations, the
equivalent circuit of fig.2 can be derived, where:

baf RRRR ++=  , (10)

      ( ) ( ) ( ) afmdamdfm LLiLiLiL �� +++= .      (11)

About the electromagnetic torque Te(im), it is expressed by:

( ) ( ) 2
mmme iiMiT ⋅=   . (12)
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Fig.2. Equivalent circuit of the universal motor.

The circuit of fig.2 is valid for the analysis of every kind of
operating condition. Some of its parameters (e.g.: winding
resistances and leakage inductances) are quite easily valuable,
while the magnetisation characteristic ϕm(mf) and the core
loss conductance Gc require a detailed analysis.

3. Magnetisation Characteristic Calculation

In UMs, magnetic saturation is important in the leading
pole tips, in the rotor teeth faced to them and in the yokes.
Thus, the air-gap magnetic voltage Uδ(ζ) is notably lower
than the m.m.f mp(ζ), requiring a correct evaluation of the
ferromagnetic voltage drops: for each current im, the corre-
sponding flux ϕm is computed by iterations as follows:
− a pole axis-tooth axis rotor alignment is chosen (fig.3);
− the pole flux fringing is considered by extending the pole

tips of a width equal to one air-gap at each extreme;
− the slotting is taken into account by the Carter’s factor;
− Uδ(k)(ζ) is the Uδ(ζ) distribution at the kth iteration;
− Uδ(0)(ζ) is assumed a fraction x of mp(ζ) (e.g. x = 0.50);
− within the pole arc, the elementary air-gap flux equals:

( ) ( )( ) ( )ζΛ⋅ζ=ζϕ δδδ dUd k  ,     (13)

 with dΛδ(ζ) elementary air-gap magnetic permeance;
− then, the pole flux ϕm is given by:

( ) ( )∫
ζ=ζ

ζ−=ζ δ ζϕ=ϕ e

e

k
dm  ; (14)

− the flux ϕpt(k)(ζ) crossing the generic section of the satu-
rated pole tip (the left one in fig. 3) equals:

( )( ) ( )∫
ζ

ζ=ζ δ ζϕ=ζϕ
e

dk
pt   ; (15)

 
Fig. 3 - Scheme of the magnetic structure used for the analytical
evaluation of the magnetisation characteristic.

− the flux density Bpt(k)(ζ) along the pole tip is given by:
( )( ) ( )( ) ( )ζζϕ=ζ pt

k
pt

k
pt AB  ,  (16)

with Apt(ζ) cross section of the pole tip in position ζ;
− from the lamination Hfe(B) curve, the Hpt(k)(ζ) follows:

( )( ) ( )( )( )ζ=ζ k
ptfe

k
pt BHH ; (17)

− the magnetic voltage drop Upt(k), measured from the ex-
ternal edge of the leading pole tip, equals:

( )( ) ( )( ) ( )∫
ζ

ζ=ζ
ζ⋅⋅ζ=ζ

e
drHU s

k
pt

k
pt ,       (18)

with rs stator internal radius along the pole shoe;
− the magnetic voltage drops along the pole body and the

trailing pole tip are negligible for usual current values;
− the stator yoke magnetic voltage drop is globally evalu-

ated, assuming uniform flux density in the cross section;
− the tooth magnetic voltage drop is evaluated singly, con-

sidering each tooth flux and the flux crossing the slots;
− as for the rotor yoke magnetic voltage, an equivalent

length is assumed (3/8 of the geometrical length);
− the various voltage drops are locally summed, thus giving

the k-th step reconstructed m.m.f. distribution mpr(k)(ζ);
− then the air-gap magnetic voltage is updated as follows:

( )( ) ( )( ) ( ) ( )( )( )∆δ
+

δ ζζ⋅ζ=ζ
 k

rpp
kk mmUU 1   ,   (19)

where ∆ is a relaxation exponent, necessary to obtain the
numerical convergence (a suited ∆ value equals ∆ ≈ 0.25);

− the iterative process continues until the reconstructed
m.m.f. distribution at the kth iteration, mpr(k)(ζ), equals the
impressed one, mp(ζ), unless a chosen difference.

For each current value, a diagram of the magnetic voltage
drop distributions is obtained: fig.4 shows these drops for
im=10 A, together with mp(ζ), all referred to the m.m.f. mf.

1 0.75 0.50 0.25 0 − 0.25 − 0.50 − 0.75 − 1
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

[p.u.]
mp(ζ)/mf

Uδ(ζ)/mf

Ups(ζ)/mf

Ut(ζ)/mf Ury(ζ)/mfUsy(ζ)/mf

ζ/ζe

t10

t9

Fig. 4 – Pole m.m.f. mp(ζ) and magnetic voltage drops under the
pole shoe, referred to mf (data: Table I; im = 10 A ≈ peak saturated
value of In): air gap (Uδ/mf), rotor teeth (t9, t10: see fig.3) (Ut/mf),
pole shoe (Ups/mf), yokes (Usy/mf, Ury/mf); + = mpr(20)(ζ)/mf.

It can be observed that:
− the air-gap magnetic voltage drop Uδ behaves similarly to

mf : thus, the ratio Uδ/mf is fairly constant; the irregular
waveform of Uδ is due to the slotting effect;

− the voltage drop in the leading pole tip Ups is relevant;
− the teeth drops Ut under the leading pole tip are high;
− Usy and Ury are notable: moreover, they are constant, i.e.
ζ independent, because they are not air-gap distributions.

To obtain the magnetisation characteristic, the described
procedure must be repeated for several current values.



Fig.5 shows the characteristic obtained by the described
analytical method (), together with the curve derived by
FEM analyses (---), up to very high peak current values
(ImpMax = 40 A, typical of zero speed starting at full volt-
age); some measurement points are also reported (o), ob-
tained by using a probe coil placed on the pole shoe tips.
The initial permeance Λo of the unsaturated portion of the
characteristic (ϕmo= Λo⋅mf) equals Λo = 0.92 µH.
The agreement is satisfactory, thus validating the analytical
method, significantly quicker than the FEM analysis.
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Fig.5. Magnetisation characteristic evaluated by analytical calcu-
lation (), FEM analysis (---) and tests (o) (motor data: Table I)

FEM analysis has also shown that, for each current value,
the pole flux is practically independent on the rotor posi-
tion (see Table II), having considered the different slot
current distributions. This pole flux invariance (that justi-
fies the (tooth axis) – (pole axis) disposition adopted by the
analytical method) is due to the designed extension of the
pole shoe, in relation to the rotor teeth disposition: this
leads to a constant air-gap pole permeance, thus limiting
undesirable effects (torque ripple and flux pulsations).

TABLE II
RATIOS OF FEM EVALUATED POLE FLUXES (AT VARIOUS MMF.S): TOOTH

AXIS-POLE AXIS ALIGNMENT (ϕmt); SLOT AXIS-POLE AXIS ALIGN. (ϕms)

mf    [kA] 0.13 0.65 1.30 2.60 5.20

ϕmt / ϕms 0.998 0.997 1.006 1.016 1.019

4. Core Loss Modelling

As known, the accurate evaluation of the core losses of
rotating electrical machines is still a challenge: besides the
basic non-linearities of the classical core losses, the occur-
rence of other loss items (rotational hysteresis, extra
losses) make very complex and specialised the experi-
mental and FEM research activities in this field [11].

Here, just the classical core losses in steady-state peri-
odic operation are considered, distinguished in specific
eddy (pe) and hysteresis losses (ph). As shown in § 3, in the
UM the spatial distribution of the air-gap flux density is
not sinusoidal (thus implying a distorted distribution in the
core portions too: see fig.6); moreover, in case of converter
feeding, also the pole flux time waveform is distorted.
Thus, in order to correctly estimate the core losses, the
effects of the space and time harmonics must be included.
The following steps will be considered: parameter extrac-
tion of the specific core losses from the lamination manu-
facturer test data; evaluation of the local loss items, as a
function of position and time, considering the double fre-

quency rotor magnetisation; definition and estimation of
space and time harmonic loss coefficients, suited to give the
actual core losses from the core losses evaluated on the
basis of space and time fundamental sinusoidal waveforms;
evaluation of the core loss equivalent conductance Gc.
From the lamination tests, performed with sinusoidal flux
density waveform, the following expression of the specific
core loss pc$ [W/kg] has been obtained (average loss/cycle):

( ) ( ) ( )ohooec ffBpffBpp ⋅+⋅⋅= ˆˆ 22
$$ ,        (20)

with           ( ) b
hb

a
haho BpBpBp ˆˆˆ ⋅+⋅= ; (21)

 fo=50 Hz: pe$=0.54; pha=0.95; phb=0.30; a=1.18; b=4.00.
In case of non sinusoidal, periodic magnetisation b(t) with
period T = 1/f (without minor hysteresis loops), the hystere-
sis loss item remains unvaried (with B̂ peak instantaneous
value), while the average eddy loss pe over T equals:

( )( )∫⋅⋅=
T

ee dtdttdb
T

kp
0

21
;   (22)

the use of (22) in sinusoidal operation allows to obtain ke:

( )22
$ 2 oee fpk ⋅π⋅=  . (23)

The UM portions considered for the core loss evaluation
are stator yoke (s), rotor teeth (t) and rotor yoke (y): some
core losses occur also in pole shoes and in teeth heads, but
they will be neglected, due to the small masses involved.

The stator loss evaluation is quite simple (because each
stator particle, fixed in space, is subjected to a magnetisa-
tion at line frequency f� = 1/T�): it will be performed later.
Conversely, the rotor loss is less easy to be estimated, due
to the magnetisation at the internal frequency fi, superposed
to that at frequency f�: it will be analysed in detail.

Consider the following expression of the space and time
dependence of the flux density distribution b in the rotor:

( ) ( )tBb υ⋅ξ=   , (24)

where: ξ = generic angular rotor position (measured as ζ,
see fig.1); υ(t) = time dependence of the flux density distri-
bution inside the rotor: υ(t), that is proportional to the pole
flux time waveform ϕm(t), has a peak value equal to υ̂ .
In case of sinusoidal voltage feeding, υ(t) can be assumed
sinusoidal (in fact, the waveform distortion, due to satura-
tion, is typical of im(t), while ϕm(t) remains practically si-
nusoidal); on the contrary, in general (e.g., in case of con-
verter feeding, [8]) υ(t) is just periodic: υ(t) = υ(t + T�).
As concerns B(ξ), it can be regarded in two different ways:
− we can follow the magnetic events of each rotor particle,

during its rotation (lagrangian viewpoint): B = B(ξ(t)): in
this case, according to the verses of fig.1, we have:

iii fpfpdtd ⋅π⋅=⋅⋅π⋅=⋅ω=Ω=ξ− 2222  ;   (25)

− we can consider the flux density distribution in all the
rotor simultaneously, by observing all the fixed positions
ξ=ζ, covered by different rotor particles during rotation
(eulerian viewpoint): B=B(ζ); moreover: B(ζ)= B(ζ+ 2⋅π).

According to the lagrangian viewpoint, the local instanta-
neous specific eddy loss peξt, in each tooth or yoke rotor
particle, moving with motion law ξ(t), equals:

( ) ( )( ) ( ) ( )( ) ( )[ ]{ }22, dtttBdkdtdbkttp  e ete υ⋅ξ==υξξ ��  (26)

⇒ 
( ) ( )[ ] ( )[ ]{

( ) ( ) }dtdddBB               

BdtdddB ktp

i

iete

υ⋅υ⋅ξ⋅⋅ω⋅−

+⋅υ+υ⋅ω⋅ξ⋅=ξξ

2

, 22

.(27)



Now consider the eulerian viewpoint of a stationary ob-
server, that examines the instantaneous specific rotor core
loss in each fixed position: this corresponds to pose ζ in-
stead of ξ in (27), leading to peζt(ζ,t). In order to obtain the
instantaneous eddy global loss in each rotor homogeneous
portion (teeth or yoke), it is convenient to evaluate a space
average value pet(t) of peζt(ζ,t):

( ) ( )∫
π⋅

ζ ζ⋅ζ⋅
π⋅

=
2

0
,

2
1

dtptp teet  ; (28)

thanks to the fact that the application of (28) to the third
term of (27) gives zero, from (28) it follows:

( ) ( ) ( )( )222 dtdItIkpptp  i ieetetiet υ+υ⋅ω⋅=+= ���� ,  (29)
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dB
Ii ; ( )∫

π⋅
ζζ⋅

π⋅
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2

0

2

2
1

dBI� . (30)

Both B(ζ) and υ(t) can be expressed as a Fourier series:

( ) ( )∑∞
= ϑ+ζ⋅⋅=ζ

1
cosˆ

n Bnn nBB (31)

( ) ( ) ( )∑∞
> υϑ+⋅ω⋅⋅+⋅ω+=υ

10 coscos
z zz tzYtYt �� . (32)

(31) and (32) include all the possible operating situations:
− B(ζ) is surely non sinusoidal, with zero average value;
− as regards υ(t), various conditions can occur: with con-

stant d.c. voltage feeding, just the average value Y0 ex-
ists; in case of sinusoidal voltage feeding, just the fun-
damental harmonic exists; if an a.c. converter voltage
feeding is provided (TRIAC, a.c. chopper), υ(t) contains
the first and the higher order odd harmonics, without Y0;
finally, in case of d.c. chopper, Y0 is included.

The substitution of (31) in (30) gives:

( )2ˆ 2
1BI ii ⋅β=           ( )2ˆ 2

1BI ⋅β=
��    ,           (33)

with ( )∑∞
= ⋅=β

1

2
1

ˆˆ
n ni BBn ,   ( )∑∞

==β
1

2
1

ˆˆ
n n BB� ; (34)

βi and β� can be called eddy space harmonic factors: they
would reduce to unity in the ideal case of a purely sinusoi-
dal distribution of the flux density in the rotor portions.

About υ(t), in the following, the presence of a constant
d.c. component Y0 will be excluded (anyway, it would cor-
respond to a classical rotor core loss component, easily
valuable); we suppose the existence of the fundamental
harmonic of υ(t); thus, from (29) and (32), the time aver-
age specific rotor eddy losses, in the period T� equals:

( ) ( )�������
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� IJIJkppdttp
T

p iiieeei
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1
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ℜi and ℜ�, that can be called time harmonic coefficients,
represent the effects of the time harmonics on the rotor
eddy losses: thus, they are zero in case of sinusoidal υ(t).
On the basis of (23), (33)-(37), the specific rotor eddy
losses due to the internal and line frequencies become:
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In the ideal case (ℜ = 0; β = 1), (38) shows a factor ½, ab-
sent in the first term of (20): ½ is due to the space average
value of the rotor squared fundamental component of B(ζ).

The rotor hysteresis losses should be estimated in a simi-
lar manner, but here no instantaneous loss can be defined:
hence, only the space-time average value ph in the period
T� can be considered. Accepting the superposition principle
of the losses occurring at the f� and fi frequencies, we have:

hihh ppp += �   . (39)

The first term ph�, existing even at zero speed, equals:

( )( ) ( )∫
π⋅

⋅ζ⋅υ⋅ζ⋅
π⋅

=
2

0
ˆ

2
1

ohoh ffd B  pp �� .      (40)

As regards the second term of (39), during the rotation each
rotor particle is cyclically magnetised, at frequency fi, be-
tween quasi symmetrical peak flux density values, slowly
modulated according to υ(t). A reasonable approximation
of this phenomenon consists in evaluating an instantaneous
hysteresis loss phit(t), considered constant in each period Ti:

( ) ( )( ) ( ) ( )( ) ( )oihooihohit ff  tB pff tb ptp ⋅υ⋅=⋅= ˆˆ ,(41)

with B̂ = B(ζ
 p) peak flux density of the space distribution,

occurring inside the rotor portion, in the fixed position ζ
 p.

The average hysteresis specific loss at frequency fi equals:

( ) ( )( )
o

iT
ho

T
hithi f

f
dt tB p

T
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T
p ⋅⋅υ⋅== ∫∫ ��

��
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ˆ11
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By posing:    1
ˆˆ BBi =γ   ,       (43)

and considering (21), (42) can be transformed as follows:

( ) ( )oi
bb

ihbb
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ihaahi ffBpBpp ⋅⋅γ⋅η+⋅γ⋅η= 11
ˆˆ

�� ,   (44)

where       ( )
�

� Tdtt
T

∫ ν
ν υ=η

0
,     with ν = a, b  .     (45)

ηa and ηb can be called hysteresis modulation factors; in
case of sinusoidal υ(t), we have: ηa = 0.61; ηb = 0.38.
The specific rotor loss expressions (38) and (39) show that:
− at zero speed just ph� exist, while near the rated speed the

losses phi are prevailing, considering that fi n > 10⋅f�;
− the space harmonic effects are included in βi, β�, and γi,

while the time harmonics affect ℜi, ℜ�, ηa and ηb:  their
evaluation allows to calculate the average rotor specific
losses, once known the space fundamental flux density;

− as known, the space distribution B(ζ) depends on satura-
tion, that apparently affects also βi, β�, and γi;

− on the other hand, by combining (30) and (33), it follows:

( ) ( )( )∫∫
π⋅π⋅
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ζπ
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( ) ( ) ( )( )∫∫
π⋅π⋅

ζζ
π

=ζζ⋅π=β
2

0

22

0
22

1
1ˆ1 dbdBB� (47)

with  ( ) ( ) 1B̂Bb ζ=ζ ;          (48)

it follows that, even if B(ζ), B̂ and 1B̂ deeply depend on
saturation when evaluated separately, their ratio b(ζ) and
γi can be considered less saturation dependent; hence:
− mf amplitude does not affect b(ζ) and γi: thus, βi, β�, γi

can be estimated with mf  = 1, neglecting the saturation;
− conversely, the saturation must be correctly considered

in evaluating the fundamental flux density component;
− about ph�, its manipulation is more complex; however,

this term becomes negligible at usual operating speeds.



Fig.6 shows the p.u. flux density distributions bt(ζ) and
by(ζ) in the rotor teeth and yoke of the motor of Table I
(actual values divided by the corresponding fundamental
amplitudes); also the air-gap flux density bδ(ζ) is reported
(referred to teeth fundamental flux density too).
These distributions have been evaluated analytically from
(1), neglecting saturation and pole tip fringing: thus, bδ(ζ)
presents discontinuities at the pole tip edges. On the con-
trary, bt(ζ) changes smoothly: in fact, the tooth flux density
has been evaluated in terms of space moving average of
the bδ(ζ) distribution, in one tooth pitch ζ t = 2⋅π/Nt:

( ) ( )∫
ζ

ζ δ⋅
ζ

=ζ 2

1

1
dxxbb

t
t  ,  

21
tζ−ζ=ζ , 

22
tζ+ζ=ζ ; (49)

this implies a gradual bt(ζ) transition at the pole shoe tips.
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Fig.6. Flux density p.u. distributions bt(ζ), by(ζ) in rotor teeth and
yoke (actual values divided by the corresponding fundamental
amplitudes; motor of Table I); p.u. air-gap flux density bδ(ζ)
(referred to teeth fundamental flux density): analytical evaluation;
saturation and fringing neglected (PA, IA= polar, interpolar axis).

The analytical formulation of bt(ζ) and by(ζ) has led to
obtain the following closed-form expressions of the teeth
and yoke space factors, dependent on α, σ, ζe and ζt: their
values are given in Table III, for the motor of Table I.
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The numerical results of Table III suggest some remarks:
− the tooth eddy loss factor βit appears very high: this is

due to the bt(ζ) slopes at the tip edges in (46); these slopes
are linked to the intense eddy currents occurring in each
tooth core during its entry and exit under the pole field;

− also the yoke eddy factor βiy is due to the by(ζ) slopes, but
the space filtering effect due to the teeth distributed flux
contributions make more smoothed the by(ζ) slopes;

− as regards β�t and β�y, (47) shows that they represent the
squared value of the space r.m.s. p.u. flux density: thus,
observing bt(ζ) and by(ζ), it is reasonable that β�t > β�y;

− the values of γit and γiy come from (43) and fig.6; in fact:

ttitt BBB 11
ˆˆˆ >⋅γ= ;      yyiyy BBB 11

ˆˆˆ <⋅γ=  .    (56)

TABLE III
VALUES OF THE ROTOR TEETH (t) AND YOKE (y) SPACE FACTORS,

EVALUATED  ANALYTICALLY BY (50)-(55) (MOTOR DATA: TABLE I)

βit = 2.54 β�t = 1.07 γit = 1.27 βiy = 1.16 β�y = 1.01 γiy = 0.93

The estimation of the actual core losses is based on the
assumption that the flux density waveform bq(t) (in the
equivalent section area Aq of each core portion; q = s, t, y)
is proportional to the pole flux ϕm(t) waveform (as already
assumed in (24) for the time dependence of the flux density
distribution); thus, for each motor portion, we can write:

( ) ( ) qmq Attb ϕ= ,      q = s, t, y ,      (57)

qmq AB 11
ˆˆ Φ= ,        q = s, t, y ,         (58)

in time domain and for the time fundamental harmonics.
Eq.(57) is not obvious, because the different local satura-
tion levels could imply a non perfect proportionality link
among the local flux density bq(t) and the global flux ϕm(t):
a few FEM and circuit simulations have shown that (57) is
acceptably satisfied in all the magnetic branches.
The equivalent sections Aq and the masses Mq equal:

sstyss kwA �⋅⋅⋅= 2  ,            ysesfes hAM ⋅⋅ρ=  ,        (59)

sstt
t

t kw
p

N
A �⋅⋅⋅⋅

π
= 2

,   s st t t tfet khwNM �����⋅ρ=  , (60)

sstyry kwA �⋅⋅⋅= 2 ,    yr s st yrfey DkwM ⋅π⋅ρ= ��� � , (61)

with kst stacking factor, w (h) width (height) of the consid-
ered branch, Dyr average yoke diameter, ρfe core density;
thus, the core losses can be evaluated as follows:
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+⋅=++=
ytsq

hqeqqcyctcsc ppMPPPP
,,

  .        (62)

The stator specific losses are given by:

( ) ( )22
1$ 1ˆ

osees ffBpp �� ⋅ℜ+⋅⋅=                           (63)

( ) ( )o
bb

shb
aa

shahs ffBpBpp �
⋅υ⋅⋅+υ⋅⋅= ˆˆˆˆ

11 ,    (64)

while the specific eddy and hysteresis losses in rotor teeth
and yoke can be evaluated by (38) and (44), once inserted
the appropriate peak flux densities (from (58), with q = t, y)
and the space and time harmonic coefficients.
By (58) and (62), the core losses can be written as follows:

( )imcc ffPP ,,ˆ
1 �

Φ=   ; (65)

in (65) the space harmonic factors are known quantities for
a given motor, while the time harmonic factors (ℜi, ℜ�, ηa,
ηb) must be evaluated from the actual ϕm(t) waveform.

Now consider the sinusoidal feeding operation at f�= fn
(→ ϕm(t) roughly sinusoidal): for a fixed rms value V of
v(t), the internal frequency and the peak pole flux depend
on the rotational speed only; thus, (65) becomes:



( )Ω= ,VPP cc   ;          (66)

the core loss estimation for the motor of Table I at rated
voltage and speed gives: Pcn = Pc(Vn, Ωn) = 30 W.
Fig.7 shows the p.u. core loss dependence on the p.u.
speed, for a few voltage rms p.u. values around the rated
condition. From (66), the following derived conductance
Gc can be defined at the input terminals of the fig.2 circuit:

( ) ( ) 2,, VVPVG cc Ω=Ω ,        (67)

whose p.u. curves are shown in fig.8: the spread of the
values confirms the heavy non-linear nature of the core
behaviour, both concerning magnetisation and losses.
Even if no direct experimental core losses measurements
were possible, some indirect evaluations have shown the
soundness of the obtained results.
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Fig.7. Estimated p.u. core losses, as a function of the p.u. speed,
with rms p.u. voltage as a parameter, for the motor of Table I, fed
by sinusoidal voltage at f� = 50 Hz (Pcn = Pc(Vn, Ωn) = 30 W).
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Fig.8. Estimated p.u. equivalent conductance (see fig.2), as a
function of the p.u. speed, with rms p.u. voltage as a parameter

(motor data: Table I; Gcn = Gc(Vn, Ωn) = Pcn /Vn
2).

As an example of the global correctness of the developed
model, fig.9 shows the waveform of the simulated and of
the measured input current i(t), for the motor of Table I,
under rated voltage feeding, while fig.10 illustrates the rms
value of the input current as a function of the speed, under
rated voltage too: a fair agreement can be recognised.
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Fig.9. Waveform of input current i(t), for the motor of Table I
operating in rated conditions: simulated (); measured (---).
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Fig.10. Input rms current as a function of the rotational speed:
circuit simulation (); tests (o) (motor data: Tab.I, rated feeding).

5. Conclusions

The paper has developed a model for the analysis of the
global operation of the universal motor, with particular ref-
erence to the non-linear core behaviour:
− an equivalent circuit has been presented, including satu-

ration effects, valid in general operating conditions;
− then, an analytical determination of the magnetisation

characteristic has been performed, whose results have
been validated with measurements and FEM simulations;

− subsequently, the stator and rotor core losses have been
evaluated, considering saturation effects and space and
time harmonics; hence, a lumped conductance has been
obtained, as a function of voltage and speed;

− experimental results concerning a commercial motor have
shown the soundness of the model.
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