
Optimal Map Reduce Job Capacity Allocation
in Cloud Systems

Marzieh Malekimajd
Sharif University of Technology, Iran

malekimajd@ce.sharif.edu

Danilo Ardagna
Politecnico di Milano, Italy
danilo.ardagna@polimi.it

Michele Ciavotta
Politecnico di Milano, Italy
michele.ciavotta@polimi.it

Alessandro Maria Rizzi
Politecnico di Milano, Italy

alessandromaria.rizzi@polimi.it

Mauro Passacantando
Università di Pisa, Italy

mauro.passacantando@unipi.it

April 16, 2015

Abstract

We are entering a Big Data world. Many sectors of our economy are
now guided by data-driven decision processes. Big Data and business
intelligence applications are facilitated by the MapReduce programming
model while, at infrastructural layer, cloud computing provides flexible and
cost effective solutions for allocating on demand large clusters. Capacity
allocation in such systems is a key challenge to provide performance for
MapReduce jobs and minimize cloud resource costs. The contribution
of this paper is twofold: (i) we provide new upper and lower bounds for
MapReduce job execution time in shared Hadoop clusters, (ii) we formulate
a linear programming model able to minimize cloud resources costs and
job rejection penalties for the execution of jobs of multiple classes with
(soft) deadline guarantees. Simulation results show how the execution
time of MapReduce jobs falls within 14% of our upper bound on average.
Moreover, numerical analyses demonstrate that our method is able to
determine the global optimal solution of the linear problem for systems
including up to 1,000 user classes in less than 0.5 seconds.

1 Introduction
Nowadays, many sectors of our economy are guided by data-driven decision
processes [14]. In complex systems that do not lend themselves to intuitive
models (e.g., natural sciences, social and engineered systems [11]), data-driven

1

modeling and hypothesis generation have a key role to understanding system
behavior and interactions.

The adoption of data intensive applications is well recognized as able to
enhance efficiency of enterprises and the quality of our lives. A recent McKinsey
analysis [19] has shown, for instance, that Big Data could produce $300 billion
potential annual value to US health care. The analysis has also shown how
Europe public sector could potentially reduce expenditure of administrative
activities by 15–20%, with an increase of value ranging between $223 and $446
billion [11, 19].

From the technological perspective, the MapReduce programming model is
recognized to be the most prominent solution for Big Data applications [16].
Its open source implementation, Hadoop, is able to manage large datasets
over either commodity clusters and high performance distributed topologies
[29]. MapReduce has attracted interest of both industry and academia, since
analyzing large amounts of unstructured data is a high priority task for many
companies and overtakes the scalability level that can be achieved by traditional
data warehouse and business intelligence technologies [16].

Likewise, cloud computing is becoming a mainstream solution to provide very
large clusters on a pay-per-use basis. Cloud storage provides an effective and
cheap solution for storing Big Data as modern NoSQL databases demonstrated
good extensibility and scalability in storing and accessing data [15]. Moreover,
the pay-per-use approach and the almost infinite capacity of cloud infrastructures
can be used efficiently in supporting data intensive computation. Many cloud
providers already include in their offering Map Reduce based platforms such
as Google MapReduce framework, Microsoft HDinsight, and Amazon Elastic
MapReduce [2, 4, 5]. IDC estimates that by 2020, nearly 40% of Big Data
analyses will be supported by public cloud [6], while Hadoop is expected to touch
half of the world data by 2015 [15].

A MapReduce job consists of two main phases, Map and Reduce; each phase
performs a user-defined function on input data. MapReduce jobs were meant to
run on dedicated clusters to support batch analyses. Nevertheless, MapReduce
applications have evolved and it is not uncommon that large queries, submitted
by different user classes, need to be performed on shared clusters, possibly with
some guarantees on their execution time. In this context the main drawback
[17, 26] is that the execution time of a MapReduce job is generally unknown in
advance. In such systems, capacity allocation becomes one of the most important
aspects. Determining the optimal number of nodes in a cluster, shared among
multiple users performing heterogeneous tasks, is an important and challenging
problem [26]. Moreover, capacity allocation policies need to decide jobs execution
and rejection rates in a way that users’ workloads meet their deadlines and the
overall cost is minimized.

Capacity and Fair schedulers have been introduced in the new versions of
Hadoop to address capacity allocation challenges and effective resource manage-
ment [1, 3]. The main goal of Hadoop 2.x [25] is maximizing cluster utilization,
while avoiding short (i.e., interactive) job starvation.

Our focus in this paper is on dynamic capacity allocation. First, we determine

2

new upper and lower bounds for MapReduce job execution times in shared
Hadoop clusters adopting capacity and fair schedulers. Next, we formulate
the capacity allocation problem as an optimization problem, with the aim of
minimizing the cost of cloud resources and penalties for jobs rejections. We then
reduce our minimization problem to a Linear Programming (LP) problem, which
can be solved very efficiently by state of the art solvers.

We validate the accuracy of our bounds through the YARN Scheduler Load
Simulator (SLS) [7]. The scalability of our optimization approach is demonstrated
by considering a very large set of experiments. The largest instance we consider,
including 1,000 user classes, can be solved to optimality in less than 0.5 seconds.
Moreover, simulation results show that average job execution time is around
14% lower than our upper bound.

To the best of our knowledge, the only work providing upper and lower
bounds for MapReduce jobs execution time is [26], where only dedicated clusters
and FIFO scheduling are considered (that are not able to fulfill job concurrency
and resource sharing requirements for current MapReduce applications).

This paper is organized as follows. MapReduce job execution time lower and
upper bounds are presented in Section 2. In Section 3 the Capacity Allocation
(CA) problem is introduced and its linear formulation is presented in Section 4.
The accuracy of the bounds and the scalability of the solution are evaluated in
Section 5. Section 6 describes the related work. Conclusions are finally drawn in
Section 7.

2 Estimating job execution times in shared clus-
ters

In large clusters, multiple classes of MapReduce jobs can be executed concur-
rently1. In such systems we need to estimate job execution times for determining
the configuration of minimum cost, while providing service level agreement (SLA)
guarantees. Previous works, e.g., [26], provided theoretical bounds to design
performance models for Hadoop 1.0, considering in particular the FIFO scheduler.
Those bounds can be used to predict job completion times only for dedicated
clusters.

Nowadays, large shared clusters are ruled by newer schedulers, i.e., Capacity
and Fair [1, 3]. In the following, we derive new bounds for such systems. In
particular, Section 2.1 introduces preliminaries and provides a tighter bound
with respect to [26] for a single-phase (either Map or Reduce) job. Section 2.2
extends the analysis to the case of two single-phase jobs, while Section 2.3
provides bounds for the case of multiple (single-phase) jobs involved. Ultimately,
we complete our analysis using the bounds in Section 2.4 to derive execution
time bounds for multiple classes of complete MapReduce jobs. Such results are
used in the remaining sections to define the constraints of the CA problem that

1A job class is a set of jobs characterized by the same profile in terms of map, reduce and
shuffle duration.

3

guarantee job deadlines are met. For space limitation, some proofs are omitted
and reported in [18].

2.1 Single job bounds
Let us consider the execution of a single-phase MapReduce job J and let us
denote with k, n, µ, and λ the number of available slots, the number of tasks in
a Map or Reduce phase of J , the mean and maximum task duration, respectively.
In the following, we suppose that the assignment of tasks to slots is done using
an on-line greedy algorithm that assigns each task to the slot with the earliest
finishing time.

Proposition 2.1. The execution time of a Map or Reduce phase of J under a
greedy task assignment is at most

U =
nµ− λ

k
+ λ.

Proof. By contradiction, we assume the execution time is U + ε with ε > 0. Note
that nµ is the phase total workload, that is the duration of considered phase
in the case of only one slot available. Let the last processed task has duration
t. All slots are busy before the starting of the last task (otherwise it would
have started earlier). The time that has elapsed before starting the last task
is (U + ε− t). Since all slots are busy for (U + ε− t) time, the total workload
until that point is (U + ε− t) k. At the end of the execution, the whole phase
workload must be unchanged, hence

(U + ε− t) k + t = nµ ⇔
(
nµ− λ

k
+ λ+ ε− t

)
k + t = nµ⇔

(k − 1)λ+ ε k + t(1− k) = 0 ⇔ε k = (t− λ)(k − 1).

Since t ≤ λ, we get ε k ≤ 0, that is a contradiction because we assumed ε > 0
and k ≥ 1.

The worst case scenario is illustrated in Figure 1, where job J starts with
k slots such that for nµ−λ

k time units all slots are busy. After that time only
one task with duration λ is left to be executed. One slot performs the last task
while all other slots are free. Finally, after nµ−λ

k + λ time units, all tasks are
executed and the phase is completed.

Note that a similar upper bound has been proposed in [26]. Our contribution
improves the previous result by λ− µ.

2.2 Two job bounds
In order to provide fast response times to small jobs and maximize the through-
put and utilization of Hadoop clusters, Fair and Capacity schedulers have been
devised. Fair scheduler organizes jobs in pools such that every job gets, on

4

{k
s
l
o
t
s

time

n µ � �

(n µ � �)/k � + (n µ � �)/k

Figure 1: Worst case of one job execution time

average, an equal amount of resources over time. A single running job uses the
entire cluster however, if other jobs are submitted, the slots that are progres-
sively released are assigned to the new jobs. In addition, the Fair scheduler
can guarantee minimum shares, enables preemption and limits the number of
concurrent running jobs/tasks. Capacity schedulers have similar functionalities.
The feature set of the Capacity scheduler includes minimum shares guarantee,
security, elasticity, multi-tenancy, preemption and job priorities.

A scheduler is defined to be work-conserving if it never lets a processor idle
while there are runnable tasks in the system. Both Fair and Capacity schedulers
can be configured in work-conserving or non-work-conserving (which vice versa,
let available resources idle) mode.

Let us consider the execution of two jobs Ji and Jj . If the system is configured
in non-work-conserving mode, available slots are divided statistically and Ji idle
slots are not allocated to Jj . Note that the upper bound defined in Proposition 2.1
and the lower bound provided in [26] are still valid, since resources are partitioned.
Vice versa, if the system is configured according to work-conserving mode, when
Ji finishes, its slots are allocated to Jj if it still has tasks waiting to start. In
this situation, the bounds proposed in Propositions 2.2 and 2.3 hold. We assume
both jobs start at the same time and Ji has αi percent of all the available k
slots whereas αj percent of slots are reserved to Jj , i.e., αi, αj ∈ (0, 1) and
αi + αj = 1.

Proposition 2.2. The execution times of a greedy task assignment of two jobs

(Ji,Jj) in work-conserving mode are at least min

{
ni µi
αi k

,
nj µj
αj k

}
and ni µi + nj µj

k
,

respectively.

Proof. The analysis of the execution of the first finished job is equivalent to the
case with a single job in the system (the best lower and upper bound known in
the literature are given by [26] and Proposition 2.1). As regards the second job,
the number of slots changes at some point of its execution, in other words when
the first job finishes, the second job gets all the slots of the system.

Let us suppose that Ji terminates first, hence Jj receives all slots after at
least ni µi

αi k
time units (i.e., after Ji lower bound [26]). Let us denote with tf the

5

{
s
l
o
t
s

time

{↵i k

↵j k nj µj

ni µi

nj µj/↵j k (n1 µ1 + n2 µ2)/k

Figure 2: Lower bound of two jobs in work-conserving mode.

lower bound for Jj execution time. First Jj has αj k slots until time instant ni µi
αi k

(see the dotted area in Figure 2), then Jj receives all k slots for a period of time
equal to

(
tf − ni µi

αi k

)
. The maximum workload that can be executed according

to the number of slots is greater than or equal to the workload of job Jj :

ni µi
αi k

αj k +
(
tf −

niµi
αi k

)
k ≥ nj µj .

Thus, by replacing αj with 1− αi we get

ni µi
αi k

(1− αi) k +
(
tf −

ni µi
αi k

)
k ≥ nj µj ,

that is equivalent to tf ≥ (ni µi + nj µj)/k.

Proposition 2.3. In a system with two jobs Ji and Jj in work-conserving mode,
the upper bound of the execution time of job Ji is

Ti =

niµi − λi
kαi

+ λi, if nj µj
k αj

≥ ni µi−λi
k αi

,

nj µj + ni µi − λi
k

+ λi, otherwise.

Proof. Here we want to know the upper bound for a job when conserving-mode
policy allows using idle slots. Hence, the upper bound is achieved when the
minimum idle slots become available and it happens when the other job makes
its slots busy. If nj µjk αj

≥ niµi−λi
kαi

holds (see Figure 3), then the slots of other job
can be busy such that upper bound of this job does not change. If the inequality
does not hold, then slots of the other job become available before this job finishes
(see Figure 4). Likewise the previous proof, in the worst case the last task (with
maximum duration) can only start after a period of time in which all slots have
been busy that is: (njµj + niµi − λi)/k.

6

{
s
l
o
t
s

time

{↵i k

↵j k

ni µi � �i

< nj µj

�i

(ni µi � �i)/↵i k + �i

. . .

Figure 3: Upper bound of two jobs in work-conserving mode for the job that
ends the earliest

{

s
l
o
t
s

time

{↵i k

↵j k

ni µi � �i

�i

nj µj

(nj µj + ni µi � �i)/k + �i

Figure 4: Upper bound of two jobs in work-conserving mode for the job that
end the latest

2.3 Multiple class bounds
In a shared system, let k be the number of slots and U be the set of job classes.
In each class i ∈ U , hi concurrent jobs are executed by using αi percent of
system slots. Each job Ji in class i has ni tasks with mean task duration µi and
maximum task duration λi.
Proposition 2.4. The lower bound for the execution time of job Ji in presence
of multiple classes of jobs is

ni µi hi
k αi

.

Proof. Each class has kαi slots and hi concurrent jobs, so each job has overall
kαi/hi slots and, using the bound provided in [26], we get as lower bound
niµi
kαi
hi

= niµihi
kαi

.

Proposition 2.5. The upper bound for the execution time of job Ji in presence
of multiple classes of jobs is

7

(niµi − 2λi)hi
kαi

+ 2λi.

Proof. Figure 5 shows a system where slots are shared among several classes of
jobs. The max number of slots dedicated to a single job of class i is kαi/hi.

Let us illustrate the worst case scenario for job Ji. We assume that job J−i
is executed before Ji and that each slot freed up from J−i is dedicated to Ji. We
also assume kαi/hi − 1 slots in the last wave of job J−i start performing a task
with maximum duration, and the first slot freed up from job J−i is dedicated
to Ji. In the worst case, this slot also performs a task with maximum duration.
After duration λi, remaining slots in J−i are freed up and are dedicated to job
Ji. kαi/hi slots perform tasks of Ji for

(niµi−2λi)hi
kαi

time and after that there
is just one task with max duration λi. So time (niµi−2λi)hi

kαi
+ 2λi is spent for

performing job Ji
To prove there is no larger upper bound we use contradiction. Let us assume

that job Ji in Figure 6 is executed in time ε+ niµi−2λi
kαi
hi

+ 2λi, ε > 0. Let after

time t1 ≤ λi of the considered job starts, all possible slots kαi/hi (fair share)
are allocated to Ji and the duration of the last task is t2 ≤ λi. The duration
ε+ niµi−2λi

kαi
hi

+ 2λi − (t1 + t2) is the minimum amount of time that the assumed

job has kαi/hi slots. We calculate a bound by computing the minimum amount
of workloads that can be done W 1 and the amount of workload that has to be
done W 2 = niµi. The minimum amount is

W 1 = (ε+
niµi − 2λi

kαi
hi

+ 2λi − t1 − t2)
kαi
hi

+ t1 + t2

as shown by the dotted area in Figure 6. Note that, the first term is the workload
performed when k αi/hi slots are available, while t1 and t2 are the workloads
performed when there is at least one single slot. The following relation between
W 1 and W 2 holds:(

ε+
ni µi − 2λi

k αi
hi

+ 2λi − t1 − t2

)
k αi
hi

+ t1 + t2 ≤ ni µi.

Since 1− k αi
hi
≤ 0 and t1 + t2 − 2λi ≤ 0, we get

ε
k αi
hi

+ ni µi − 2λi + (2λi − t1 − t2)
k αi
hi

+ t1 + t2 ≤ ni µi,

i.e., ε ≤ t1 + t2 − 2λi ≤ 0, which is impossible since ε > 0.

2.4 Bounds for MapReduce Jobs Execution
In this section, we extend the results presented in [26] for a MapReduce system
with SM Map slots and SR Reduce slots using Fair/Capacity scheduler. Similar
jobs are grouped together in a job class i ∈ U and αiM and αiR are the percentage

8

Class

Time

k slots

c

...

1

2

Whole System

One Class

Job

1
2

...

hi

k

↵i hi
slots

�i �i

(ni µi � 2�i) hi

k ↵i
+ 2�i

One Job

Figure 5: Slots sharing in a system with several classes of jobs

{
k/↵i hi slots

✏ + (ni µi � 2�i) hi

k ↵i
+ 2�i � T1 � T2

{{ {

T1 T2

Figure 6: Execution of a single job in considering the proof by contradiction

9

of all Map and Reduce slots dedicated to class i, while there are hi jobs running
concurrently. Let us denote with M i

avg, M i
max, Riavg, Rimax, Sh1,iavg, Sh1,imax,

Shiavg and Shimax the average and maximum durations of Map, Reduce, first
Shuffle and typical Shuffle tasks, respectively. These values define an empirical
performance profile for each job class i, while N i

M and N i
R are the number of

Map and Reduce tasks of job Ji profile. By using the bounds defined in the
previous sections, a lower and an upper bound on the duration of the entire Map
phase can be estimated as follows:

T lowMi =
N i
M M i

avg hi

SM αiM
,

Tup
Mi =

(N i
M M i

avg − 2M i
max)hi

SM αiM
+ 2M i

max.

Similar results can be obtained for the Reduce stage, that consists of the
Reduce and part of the Shuffle phase. In fact, according also to the results
discussed in [26], we distinguish the non-overlapping portion of the first shuffle
wave from the duration of the remaining tasks in the typical shuffle. The time
of the typical shuffle phase can be estimated as:

T lowShi =

(
N i
R hi

SR αiR
− 1

)
Shiavg,

Tup
Shi

=
(N i

R Sh
i
avg − 2Shimax)hi

SM αiR
+ 2Shimax.

Finally, by putting all parts together, we get:

T lowi = Alowi
hi

SMαiM
+Blowi

hi
SRαiR

+ Clowi , (1)

where Alowi = N i
MM

i
avg, Blowi = N i

R(Shiavg +Riavg) and Clowi = Sh
1(Ji)
avg − Shiavg.

In the same way, the execution time of job Ji is at most:

Tupi = Aupi
hi

SMαiM
+Bupi

hi
SRαiR

+ Cupi , (2)

where:

Aupi = N i
MM

i
avg − 2M i

max,

Bupi = N i
RSh

i
avg − 2Shimax +N i

RR
i
avg − 2Rimax,

Cupi = 2Shimax + Sh1(i)
max + 2M i

max + 2Rimax.

According to the guarantees to be provided to the end users, we can use Tupi
upper bound (being conservative) or the approximated formula

T avgi = (T lowi + Tupi)/2 (3)

to bound the execution time of class i jobs in the Capacity Allocation problem
described in the next section.

10

3 Capacity Allocation Problem
In this section, we consider the joint Capacity Allocation and Admission Control
problem for a cloud based shared Hadoop 2.x system. We assume that the system
runs the fair or capacity scheduler, serving a set of user classes, requesting the
concurrent execution of jobs with similar execution profile. Each class i is
executed with siM = αiMSM Map slots and siR = αiRSR Reduce slots with
a concurrency degree of hi (i.e., hi jobs with the same profile are executed
concurrently). We also assume that the system implements an admission control
mechanism bounding the number of concurrent jobs hi executed by the system,
i.e., some jobs can be rejected. Hup

i denotes a prediction for the number of jobs
of class i to be executed and we have hi ≤ Hup

i . Furthermore, in order to avoid
job starvation, we also impose hi to be greater than a given lower bound H low

i .
Finally, a (soft) deadline Di is associated with each class i.

Note that, given siM , siR and hi, the execution time of a class i job can be
approximated by:

Ti =
Ai hi
siM

+
Bi hi
siR

+ Ci, (4)

where Ai, Bi and Ci are positive constants computed as discussed in the previous
section.

We can use Equations (2)–(3) to derive (4), considering conservative upper
bounds. In this latter case Di can be considered as hard deadline. In alternative,
as in [26], (4) can be obtained from (1), (2), and (3). In that case, (4) is not a
bound but an approximated formula and Di becomes soft deadline. In this work,
we follow this latter more flexible approach. We assume that our MapReduce
implementation is hosted in a Cloud environment that provides on-demand
and reserved (see, e.g., Amazon EC2 pricing model [2]) homogeneous virtual
machines (VMs). Moreover, we denote with ciM and ciR the number of Map and
Reduce slots hosted in each VM, i.e., each instance supports ciM Map and ciR
Reduce concurrent tasks for each job Ji in class i. As a consequence, let xm and
xr be the number of Map and Reduce slots required by a certain job Ji, the
number of VMs to be provisioned has to be equal to xm/ciM + xr/c

i
R.

Let us denote with δ and with ρ < δ the cost of on-demand and reserved
VMs, respectively and with r̄ the number of reserved VMs available (i.e., the
number of VMs subscribed with a long term contract). Let d and r be the
number of on-demand and reserved VMs, respectively, used to serve end users’
requests. The aim of the Capacity Allocation (CA) problem we consider here is
to minimize the overall execution cost meeting, at the same time, all deadlines.
The execution cost includes both the VM allocation cost and the penalty cost
for job rejection. Given pi, the penalty cost for rejection of a class i job, the
overall execution cost can be calculated as follows:

δ d+ ρ r +
∑
i∈U

pi (Hup
i − hi) , (5)

where decision variables are d, r, hi, siM and siR, for any i ∈ U , i.e., we have to
decide the number of on-demand and reserved VMs, concurrency degree, and

11

System Parameters
ciM Number of Map slots hosted in a VM of class i
ciR Number of Reduce slots hosted in a VM of class i
U Set of job classes
pi Penalty for rejecting jobs from class i
Di Makespan deadline of jobs from class i
Ai CPU requirement for the Map phase which can be derived by input data

and job class i
Bi CPU requirement for the Reduce phase which can be derived by input data

and job class i
Ci Time constant factor depends on Map, Copy, Shuffle and Reduce phases

that derived by input data and job class i
r̄ Number of available reserved VMs
δ Cost of on-demand VMs
ρ Cost of reserved VMs
Hup
i Upper bound on the number of class i jobs to be executed concurrently

Hlow
i Lower bound on the number of class i jobs to be executed concurrently

Decision Variables
siM Number of slots to be allocated to class i for executing Map task
siR Number of slots to be allocated to class i for executing Reduce task
hi Number of jobs of class i to be executed concurrently
r Number of reserved VMs to be allocated for job execution
d Number of on-demand VMs to be allocated for for job execution

Table 1: Optimization model: parameters and decision variable.

the number of Map and Reduce slots for each job class i. The notation adopted
in this paper is summarized in Table 1.

4 Optimization Problem
In this section, we formulate the CA optimization problem and propose a
suitable and fast solution technique for the execution of MapReduce jobs in
Cloud environments. The objective is to minimize the execution cost, while
meeting job (soft) deadlines. The total cost includes VM provisioning costs and
a penalty due to job rejection. In equation (5) the term

∑c

i=1
piH

up
i is a constant

independent from decision variables and can be dropped. The optimization
problem can then be defined as follows:

(P0) min δ d+ ρ r −
∑
i∈U

pi hi

12

subject to:

Ai hi
siM

+
Bi hi
siR

+ Ei ≤ 0, ∀i ∈ U , (6)

r ≤ r̄, (7)∑
i∈U

(
siM
ciM

+
siR
ciR

)
≤ r + d, (8)

Hlow
i ≤ hi ≤ Hup

i , ∀i ∈ U , (9)
r ≥ 0, (10)
d ≥ 0, (11)

siM ≥ 0, ∀i ∈ U , (12)
siR ≥ 0, ∀i ∈ U , (13)

where constraints (6) are derived from equation (4) by imposing the execution
of each job to end before its deadline (i.e., Ei = Ci − Di < 0). Constraint
(7) ensures that no more than the available reserved VMs can be allocated.
Constraint (8) guarantees that enough VMs are allocated to execute submitted
jobs within their deadlines. Constraints (9) bound the job concurrency level for
each user.

We remark that, in the above problem formulation, variables r, d, siM , siR,
hi are not integer as in reality they should be. In fact, requiring variables
to be integer makes the problem much more difficult to solve. However, this
approximation is widely used in the literature (see, e.g., [9, 30]) since relaxed
variables can be rounded to the closest integer at the expense of a generally very
small increment of the overall cost (this is intuitive for large-scale MapReduce
systems that require tens or hundreds of relatively cheap VMs), justifying the
use of a relaxed model. Therefore, we decided to deal with continuous variables,
considering a relaxation of the real problem. However, this restriction will be
removed in the numerical analyses reported in Section 5.

Problem (P0) has a linear objective function but constraints (6) are non-linear
and non-convex (the proof is reported in [18]). To overcome the non-convexity of
the constraints, we introduce new decision variables Ψi = 1/hi, for any i ∈ U , to
replace hi. Then, problem (P0) is equivalent to problem (P1) defined as follows:

13

(P1) min δ d+ ρ r −
∑
i∈U

pi
Ψi

subject to:

Ai
siMΨi

+
Bi
siRΨi

+ Ei ≤ 0, ∀ i ∈ U , (14)

r ≤ r̄, (15)∑
i∈U

(
siM
ciM

+
siR
ciR

)
≤ r + d, (16)

Ψlow
i ≤ Ψi ≤ Ψup

i , ∀ i ∈ U , (17)
r ≥ 0, (18)
d ≥ 0, (19)

siM ≥ 0, ∀ i ∈ U , (20)
siR ≥ 0, ∀ i ∈ U , (21)

where Ψlow
i = 1/Hup

i and Ψup
i = 1/H low

i . We remark that now constraints (14)
are convex (the proof is reported in [18]). The convexity of all the constraints of
problem (P1) allows to prove the following result.

Theorem 4.1. In any optimal solution of problem (P1), constraints (14) hold
as equalities and the number of slots to be allocated to job class i, siM and siR,
can be evaluated as follows:

siM = − 1

EiΨi

(√
AiBi ciM

ciR
+Ai

)
, (22)

siR = − 1

EiΨi

(√
AiBi ciR
ciM

+Bi

)
. (23)

The proof of Theorem 4.1 is reported in [18]. The results of Theorem 4.1
allow to transform (P1) into an equivalent linear programming problem, which
can be solved very quickly by state of the art solvers.

Theorem 4.2. (P1) is equivalent to the following problem:
(P2) min δ d+ ρ r −

∑
i∈U

pi hi

subject to:

r ≤ r̄, (24)∑
i∈U

γi hi ≤ r + d, (25)

Hlow
i ≤ hi ≤ Hup

i , ∀ i ∈ U , (26)
r ≥ 0, (27)
d ≥ 0, (28)

14

where γi = γ1i + γ2i with:

γ1
i = − 1

Ei ciR

(√
AiBi ciR
ciM

+Bi

)
, (29)

γ2
i = − 1

Ei ciM

(√
AiBi ciM

ciR
+Ai

)
, (30)

and the decision variables are r, d and hi = 1/Ψi, for any i ∈ U .
The proof of Theorem 4.2 is reported in [18]. Since (P2) is a linear problem,

commercial and open source solvers currently available are able to solve efficiently
very large instances. A scalability analysis is reported in the following section.

The Karush-Kuhn-Tucker (KKT) conditions corresponding to problem (P2)
guarantee that any optimal solution of (P2) has the following important proper-
ties.

Theorem 4.3. If (r∗, d∗, h∗) is an optimal solution of problem (P2), then the
following statements hold:

a) r∗ > 0, i.e., reserved instances are always used.
b)
∑
i∈U γi h

∗
i = r∗ + d∗, i.e., γi can be considered a computing capacity

conversion ratio that allows to translate class i concurrency level into VM
capacity resource requirements.

c) If pi/γi > δ, then h∗i = Hup
i , i.e., class i job are never rejected.

d) If pi/γi < ρ, then h∗i = H low
i , i.e., class i concurrency level is set to the

lower bound.
e) If r̄ >

∑
i∈U γiH

up
i , then d∗ = 0, i.e., for property b), if the total capacity

requirement can be satisfied through reserved instances, on demand VMs
are never used.

f) If r̄ <
∑
i∈U γiH

low
i , then r∗ = r̄ and d∗ > 0, i.e., for property b), if

the minimum job requirements exceed reserved instance capacity, then on
demand VMs are needed.

Proof. The KKT conditions associated to (P2) are:

ρ− ν + µr − λr = 0, (31)
δ − ν − λd = 0, (32)

−pi + γi ν + µi − λi = 0, ∀ i ∈ U , (33)

ν

(∑
i∈U

γi h
∗
i − r∗ − d∗

)
= 0, (34)

λr r
∗ = 0, (35)

µr (r∗ − r̄) = 0, (36)
λd d

∗ = 0, (37)

λi (h∗i −Hlow
i) = 0, ∀ i ∈ U , (38)

µi (h∗i −Hup
i) = 0, ∀ i ∈ U , (39)

ν, λr, µr, λd ≥ 0, (40)
λi, µi ≥ 0, ∀ i ∈ U . (41)

15

a) Assume, by contradiction, that r∗ = 0. Then

d∗ ≥
∑
i∈U

γi h
∗
i ≥

∑
i∈U

γiH
low
i > 0,

thus λd = 0 and ν = δ. On the other hand, (36) implies that µr = 0 and
λr = ρ− ν = ρ− δ < 0 which is impossible.

b) Since r∗ > 0, we have λr = 0, hence (31) implies ν = ρ+ µr ≥ ρ > 0, thus
constraint (25) is active at (r∗, d∗, h∗).

c) It follows from (32) that ν = δ − λd ≤ δ, hence we have

µi = λi + pi − γi ν ≥ pi − γi ν ≥ pi − γi δ > 0.

Therefore h∗i = Hup
i .

d) Since ν ≥ ρ, we get

λi = µi + γi ν − pi ≥ γi ν − pi ≥ γi ρ− pi > 0,

hence h∗i = H low
i .

e) We have
r∗ =

∑
i∈U

γi h
∗
i − d∗ ≤

∑
i∈U

γiH
up
i < r̄,

thus µr = 0 and ν = ρ. Therefore, λd = δ − ρ > 0 implies d∗ = 0.
f) We have

d∗ =
∑
i∈U

γi h
∗
i − r∗ ≥

∑
i∈U

γiH
low
i − r̄ > 0,

hence λd = 0 and ν = δ. Therefore, µr = δ − ρ > 0 implies r∗ = r̄.

Property a) is obvious, since reserved instances are the cheapest ones. Prop-
erty b) and Theorem 4.2 lead to an important theoretical result. Indeed, γi
parameters can be interpreted as a computing capacity conversion ratio that
allows to estimate VM capacity requirements in terms of class i concurrency
level. Accordingly, also properties c) and d) become intuitive. The product γi δ
is the unit cost for class i job execution with on-demand instances. If γi δ is
lower than the penalty cost, then class i jobs will always be executed. Vice versa,
if γi ρ, i.e., the class i per unit reserved cost, is larger than the penalty, class
i jobs will always be rejected. Finally, properties e) and f) relate the overall
minimum

∑
i∈U γiH

low
i and maximum

∑
i∈U γiH

low
i capacity requirements to

reserved instance capacity and allow to establish a priory if on demand VMs will
or will not be used.

5 Experimental Results
In this section we: (i) validate job execution time bounds, (ii) evaluate the
scalability of the CA problem solution, and (iii) investigate how different (P2)
problem settings impact on the cloud cluster cost.

16

Our analyses are based on a very large set of randomly generated instances.
Bound accuracy is evaluated through the YARN Scheduler Load Simulator
(SLS) [7]. In the following section, the design of experiments is presented.
Bound accuracy and scalability analyses are reported in Sections 5.2 and 5.3.
Finally, the analysis of how (P2) problem parameters impact on cost is reported
in Section 5.4.

5.1 Design of experiments
Analyses in this section intend to be representative of real Hadoop systems.
Instances have been randomly generated by picking parameters according to
values observed in real systems and logs of MapReduce applications. Afterwards,
we use uniform distributions within the ranges reported in Table 2.

In our model, the cloud cluster consists of on-demand and reserved VMs. We
considered Amazon EC2 prices for VM hourly costs [2]. On demand and reserved
instance prices varied in the range ($0.05,$0.40), to consider the adoption of
different VM configurations.

Regarding MapReduce applications parameters, we used the values reported
in [27], which consider real log traces obtained from four MapReduce applications:
Twitter, Sort, WikiTrends, and WordCount.

Moreover, as in [27] we assume that deadlines are uniformly distributed in
the range (10, 20) minutes. We use the job profile from [27] to calculate a
reasonable value for penalties. First, the minimum cost for running a single job
(let it be cji) is evaluated by setting Hup

i = H low
i and solving problem (P2),

disabling the admission control mechanism. Then, we set the penalty value for
job rejections pi = 10 cji as in [8]. We varied Hup

i in the range (10, 30), and we
set H low

i = 0.9Hup
i .
Job Profile Cluster Scale

N i
M (70, 700) Hup

i (¢) (10, 30)
N i
R (32, 64)

Job Rejection PenaltyM i
max (s) (16, 120)

Shtyp
i

max (s) (30, 150) pi (¢) (250, 2500)
Rimax (s) (15, 75)

Cloud Instance PriceSh
1(i)
max (s) (10, 30)

ciM , ciR (1, 4) ρ (¢) (5, 20)
Di (s) (600, 1200) δ (¢) (5, 40)

Table 2: Cluster characteristics and Job Profiles

5.2 Accuracy of Execution Time Bounds
The aim of this section is to compare our time bounds (1) and (2) against the
execution times obtained through YARN SLS [7], the official simulator provided
within Hadoop 2.3 framework.

YARN SLS requires an Hadoop deployment and it interacts with it by means
of mocked NodeManagers and ApplicationMasters with the purpose of simulating

17

Twitter Sort
No. of users Tup1 gap m1 gap No. of users Tup2 gap m2 gap

4 7.78% 1.24% 10 6.04% 0.61%
6 6.35% -0.09% 8 8.83% 3.26%
5 18.53% 7.68% 4 19.79% 10.42%
4 16.10% 6.43% 6 12.79% 4.79%
8 6.70% -11.98% 7 2.85% -7.48%
3 17.04% 7.12% 7 14.24% 5.64%
6 4.65% -9.80% 10 6.35% -10.80%
6 2.26% -5.07% 6 5.07% -1.58%
9 0.49% -4.94% 7 2.43% -2.44%
4 8.24% 1.56% 10 5.28% -0.45%

Table 3: Two job classes analysis (Twitter and Sort)

both a set of cluster nodes and the relative workload. Those entities interact
directly with Hadoop YARN, simulating a whole running environment with a
one to one mapping between simulated and real times (i.e., the simulation of 1
second of the Hadoop cluster requires 1 second simulation).

SLS requires as input a cluster configuration file and an execution trace. This
trace can be provided either in Apache Rumen2 format or in the SLS proprietary
format (the one we adopted), which is a simplified version containing only the
data strictly needed for simulation. In particular, among other information, it
provides for each job and each task the start and end times.

In our evaluation we consider the MapReduce job profiles extracted from log
traces available from Twitter, Sort, WikiTrends, and WordCount reported in [27].
In order to use the SLS tool, we generated synthetic job traces representing
these workloads. First of all, since SLS does not provide shuffle phase execution
time, we have to use a simplified version of equations (1) and (2). Therefore,
we partially removed the shuffle phase, by ignoring the first shuffle wave (to a
certain extent overlapped with the last Map wave, though) and by including the
remaining part (e.g., Shiavg) in the Reduce phase. We also consider the total
number of available slots as shared between the Map and Reduce tasks, being
unable to assign them to a specific phase. In particular, we used a number of slots
equals to the number of virtual cores allocated in the simulator. These slots have
been used in both phases so we set SM and SR equal to the available cores. Then,
we set the ratios αiR

hi
=

αiM
hi

equal to 1/
∑
k∈U hk. This because the available

resources are equally shared among the different users, so each class i will have
a ratio of resources proportional to its users hi: αiR = αiM = hi/

∑
k∈U hk.

In order to validate our bounds, we must compute job durations, i.e., for
each job, the difference between its submission and completion time.

Since SLS is a trace based simulator, we must generate a trace that interleaves
2A tool for extracting traces from Hadoop logs http://hadoop.apache.org/docs/r1.2.1/rumen.html

18

WordCount WikiTrends
No. of users Tup1 gap m1 gap No. of users Tup2 gap m2 gap

2 23.12% 5.27% 4 37.46% 23.93%
4 8.35% -4.20% 4 26.46% 16.78%
3 28.30% 7.08% 2 57.48% 39.47%
2 14.04% -0.65% 3 23.28% 12.65%
4 19.15% 3.80% 3 48.68% 35.86%
5 17.32% 5.06% 4 34.95% 25.61%
3 21.97% 4.34% 3 35.58% 22.15%
3 37.22% 14.59% 2 62.11% 43.47%
5 15.89% 2.52% 3 37.19% 26.62%
2 17.50% 2.41% 5 26.01% 15.08%

Table 4: Two job classes analysis (WordCount and WikiTrends)

for each user the submission of jobs by their average duration. However, we do
not know this duration (that is the goal of this simulation), but we can obtain
it by relying on a fixed-point iteration method. We consider a closed model
in which for each class i, hi users can concurrently submit multiple jobs. Let
approximate the average job duration Ti with an initial guess Ai,0 for each class
i ∈ U and run the simulation of the generated trace. Then, we can refine our
guess of Ti iteratively with the value Ai,n, computed as follows:

Ai,n = β T̃i,n−1 + (1− β)Ai,n−1, (42)

for each class i ∈ U (we experimentally set β = 0.07), where T̃i,n−1 is the average
job duration obtained by SLS for class i at the previous run n− 1.

We iterate this procedure until Ai,n and T̃i,n are close enough for each class
i ∈ U . At that point Ai,n ≈ T̃i,n ≈ Ti for each job class i. We stop the fixed-point
iteration method when the ratio max

i∈U
|Ai,n− T̃i,n|/T̃i,n is below a given threshold

τ (set experimentally equal to 0.1). We then evaluate how far our bounds are
from this value, by comparing T̃i,n with the upper bound Tupi and the average
of the two bounds mi = (T lowi + Tupi)/2.

Each simulation trace has been built by considering different user classes
(drawn fromWorkCount, Sort, Twitter andWikiTrends traces) setting Ai,0 = Tupi
for any i ∈ U . In order to avoid that jobs start simultaneously (unrealistic in real
systems), we delay each job submission by a random exponentially-distributed
time value (i.e., the user think time set equal to a tenth of the estimated job
execution time). Ultimately, we scaled down by a factor of 10 the original
execution times in order to achieve a simulation speedup.

We considered different test configurations with two and three job classes and
with a random number of users in the range [2, 10]. Those scenarios represents
light load conditions that correspond to the worst case for the evaluation of our

19

Twitter Sort WordCount
N. Tup1 gap m1 gap N. Tup2 gap m2 gap N. Tup3 gap m3 gap
5 16.99% 7.24% 3 17.82% 9.46% 2 16.20% 5.07%
4 10.25% 1.06% 3 15.01% 6.85% 3 10.88% 0.26%
5 6.21% -1.26% 3 2.84% -3.30% 4 5.26% -3.30%
5 8.71% -7.89% 4 10.24% -4.06% 2 8.84% -10.32%
5 3.92% -3.39% 5 2.66% -3.46% 2 3.82% -4.62%
5 14.32% 5.43% 4 14.31% 6.44% 2 14.37% 4.34%
3 10.10% 2.21% 4 13.58% 6.38% 5 8.24% -0.53%
4 21.64% 11.33% 2 17.84% 8.97% 4 18.58% 7.26%
2 11.51% 2.06% 3 8.37% 0.21% 5 9.74% -0.74%
4 9.53% 1.68% 4 10.46% 3.46% 4 7.37% -1.32%

Table 5: Three job classes analysis (Twitter, Sort and WordCount)

bounds. Indeed, under light load conditions the probability that any user class is
temporarily idle can be significant and, the Fair and Capacity scheduler, would
assign the idle user class slots to other classes to boost their performance. Vice
versa, under heavy loads our upper bounds become tighter.

Tables 3-6 report the results we achieved. For each run the number of users
and the gap between Ti and both Tupi and mi are reported (a negative mi gap
means that Ti > mi). All the simulations have been performed considering a
cluster with 128 cores and using the YARN fair scheduler.

Overall, for the two job classes, the gap between the upper bound and the
jobs mean execution time is around 19% on average, while the gap with respect
to mi is only 10% on average. For three classes the average between the upper
bound and the jobs mean execution time gap is 11%, while the gap with respect
to mi is 5%. Over all the set of experiments the average between the upper
bound and the jobs mean execution time is 14%.

Simulations run on Microsoft Azure Linux small instances (i.e., single core,
1.75GB VMs). The fixed-point iteration procedure converges in 4.4 iterations on
average. The simulation time of each fixed-point procedure iteration was around
31 minutes.

5.3 Scalability analysis
In this section, we evaluate the scalability of our optimization solution. We
performed our experiment on a VirtualBox virtual machine based on Ubuntu
12.04 server running on an intel Xeon Nehalem dual socket quad-core system
with 32 GB of RAM. Optimal solution to problem (P2) was obtained by running
CPLEX 12.0 where we also restricted decision variables r, d and hi to be integer,
i.e., we considered the Mixed Integer Linear Programming (MILP) version of
(P2). We performed experiments considering different numbers of user classes.
We varied the cardinality of the set U between 20 and 1,000 with step 20, and

20

Sort WordCount WikiTrends
N. Tup1 gap m1 gap N. Tup2 gap m2 gap N. Tup3 gap m3 gap
4 5.15% -1.51% 4 6.28% -2.33% 4 15.77% 9.73%
4 8.01% -0.12% 3 9.48% -0.97% 3 23.12% 15.46%
5 2.56% -4.51% 2 2.48% -6.51% 4 14.40% 7.90%
4 8.79% -0.22% 2 9.02% -2.38% 3 16.17% 8.19%
2 3.54% -4.25% 3 7.03% -3.18% 5 11.32% 4.39%
2 13.98% 5.07% 3 13.05% 1.18% 4 19.55% 11.28%
4 14.74% 6.60% 2 14.79% 3.80% 4 21.14% 13.55%
5 8.64% 1.60% 4 6.90% -2.51% 2 14.52% 7.97%
5 0.91% -5.64% 2 2.26% -6.75% 4 9.64% 3.37%
4 11.02% 4.40% 4 7.84% -0.93% 4 14.43% 8.42%

Table 6: Three job clasess analysis (Sort, WordCount and WikiTrends)

run each experiment ten times.
The results show that the time required to determine global optimal solution

for the MILP problem is, on average, less than 0.08 seconds. The instances of
maximum size including 1,000 user classes can be solved in less than 0.5 second
in the worst case.

5.4 Case Studies
In this section, we investigate how different (P2) problem settings impact on
the cloud cluster cost. In particular, we analyse three case studies to address
the following research questions: (1) Is it better to consider a shared cluster
or to devote a dedicated cluster to individual user classes? (2) What is the
effect of job concurrency on cluster cost? (3) Which is the cost impact of more
strict deadlines? (is there a linear relation between the cost and job deadlines?).
Instances have been generated according to Sections 5.1 and 5.3. Furthermore,
to ease the results interpretation we excluded reserved instances and assumed
there is a single type of VM available from the cloud provider.

5.4.1 Effect of sharing cluster

In this case study, we want to examine the effect of cluster resource sharing.
In particular, we consider two scenarios. The first one is our baseline, which
corresponds to (P2) problem setting. The second one considers the same resource
demand (in terms of job profiles, deadlines, etc.) but |U| (P2) problems are
solved independently, i.e., assuming a dedicated cluster is devoted to each user
class. To perform the comparisons, we consider different numbers of user classes.
We vary the cardinality of the set U between 20 and 1,000 with step 20 and
randomly generate ten instances for each cardinality value. For each instance
we calculate two values: the first one is the objective function of the baseline

21

1.0001	

1.0002	

1.0003	

1.0004	

1.0005	

1.0006	

1.0007	

20
	

80
	

14
0	

20
0	

26
0	

32
0	

38
0	

44
0	

50
0	

56
0	

62
0	

68
0	

74
0	

80
0	

86
0	

92
0	

98
0	

Cl
us
te
r	 c
os
t	 v

ar
ia
.o

ns
	

Number	 of	 user	 classes	 	

Figure 7: Effect of assuming all user classes together.

scenario, that we refer to as dependent objective function; the second value,
that we call independent objective function, is evaluated by summing up the |U|
objective functions of the individual problems. The comparison is performed by
considering the ratio between the dependent and independent objective function.
Figure 7 reports the average of this ratios for different numbers of user classes.
Overall, the cluster cost marginally decreases by assuming all user classes together
and on average we have 0.48% variation on the overall cluster cost. We can
conclude that, thanks to cloud elasticity, the adoption of shared or dedicated
clusters leads to the same cost. Note that, shared cluster can lead to benefits
thanks to HDFS (e.g., better disk performance and node load balancing) but
this can not be captured by our cost model.

5.4.2 Effect of job concurrency degree

In this case study we want to analyze the effect of the job concurrency degree on
the cost of one single job. To perform the experiment, we assume there is just
one user class in the cluster. We vary the job concurrency degree hi from 10 to
30 and, for each value, we randomly generate 10 instances of problem (P2). For
each instance we disable the admission control by setting up H low = Hup and
we solve the optimization problem. We calculate the cost of one single job for
each instance by dividing the objective function by the job concurrency degree.

Figure 8 shows how the per-job cost varies with different job concurrency
degrees for a representative example. Overall, the analysis demonstrates that
the cost variance for different job concurrency is negligible, i.e., the different job
concurrency degree leads to less than 0.002% variation of the cost of one job.
Hence, in a cloud setting, elasticity allows to obtain a constant per-job execution
cost independently of the number of users in a class. This result is in line with
Theorem 4.3 b).

22

1370.5	

1371	

1371.5	

1372	

1372.5	

1373	

1373.5	

1374	

10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	 29	 30	

Co
st
	 o
f	 a

	 si
ng
le
	 jo

b	

Job	 concurrency	

Figure 8: Effect of job concurrency degree on single job cost.

5.4.3 Effect of tightening the deadlines

Here we want to examine the relation between cost and deadlines. In particular,
we check the effect of reducing the deadlines on the cluster cost. We vary the
cardinality of the set U between 20 and 1,000 and for each cardinality we generate
several random instances as described in Section 5.3. For each instance, we
iteratively tighten the deadlines of every user class to observe how the changes
are reflected on the cost. In each step, we decrease the deadlines by 5% of
the initial value. The reduction process continues until the instance with new
deadlines does not have a feasible solution. After each reduction, we calculate
the increased cost ratio, i.e., the ratio between the objective function for the
problem with the new deadlines and the objective function of the problem with
the initial deadlines. Figure 9 illustrates the trend of the increase cost ratio for
a representative instance with 20 user classes: the reduction is not linear and
the cost to pay for reducing the deadlines by a 60% is more than three times
with respect to the base case.

6 Related Work
Capacity management and optimal scheduling of Hadoop clusters received a
lot of interest by the research community. Authors in [13] propose Starfish, a
self-tuning System for analytics on Hadoop. Indeed, rarely Hadoop exhibits
the best performance as it is, without a specific tuning phase. Starfish, collects
at runtime some key informations about the job execution generating a profile
that is eventually exploited to automatically configure Hadoop without human
intervention. The same tool has been successful employed to solve cluster sizing
problems [12].

Tian and Chen [24] face the problem of resource provisioning optimization

23

0	

1	

2	

3	

4	

5	

6	

7	

8	

5	 10	 15	 20	 25	 30	 35	 40	 45	 50	 55	 60	 65	 70	

Co
st
	 o
f	 c
lu
st
er
	

%	 reduc.on	 on	 deadlines	

Figure 9: Effect of reducing deadlines on cluster cost.

minimizing the cost associated with the execution of a job. This work presents a
cost model that depends on the amount of input data and on the considered job
characteristics. A profiling regression-based analysis is carried out to estimate
the model parameters.

A different approach, based on closed queuing networks, is proposed in [20]
that considers also contention and parallelism on compute nodes to evaluate the
completion time of a MapReduce job. Unfortunately, this approach concerns
the execution time of the map phase only. Vianna et al. [28] propose a similar
solution, which however, has been validated for cluster exclusively dedicated to
the execution of a single job.

The work in [17] models the execution of Map task through a tandem queue
with overlapping phases and provides very efficient run time scheduling solutions
for the joint optimization of the Map and copy/shuffle phases. Authors show
how their runtime scheduling algorithms match closely the performance of the
offline optimal version.

The work in [10] introduces a novel modeling approach based on mean field
analysis and provide very fast approximate methods to predict the performance
of Big Data systems.

Deadlines for MapReduce jobs are considered also in [23]. The authors rec-
ognize the inability of Hadoop schedulers to handle properly jobs with deadlines
and propose to adapt to the problem some well-known multiprocessor scheduling
policies. They present two versions of the Earliest Deadline First heuristic and
demonstrate they outperform the classical Hadoop schedulers.

The problem of progress estimation of parallel queries is addressed in [21].
The authors present Parallax, a progress estimator able to predict the completion
time of queries representing MapReduce jobs. The estimator is implemented on
Pig and evaluated with PigMix benchmark.

ParaTimer [22], an extension of Parallax, is a progress estimator that can

24

predict the completion of parallel queries expressed as Directed Acyclic Graph
(DAG) of MapReduce jobs. The main improvement with respect to the previous
work, is the support for queries where multiple jobs work in parallel, i.e., have
different path in the DAG. Authors in [31] investigate the performance of
MapReduce applications on homogeneous and heterogeneous Hadoop cloud
based clusters. They consider a problem similar to the one we faced in our work
and provide a simulation-based framework for minimizing infrastructural costs.
However, admission control is not considered and a single type of workload (i.e.,
user class) is optimized.

In [26] the ARIA framework is presented. This work is the closest to our
contribution and focuses on clusters dedicated to single user classes running
on top of a first in first out scheduler. The framework addresses the problem
of calculating the most suitable amount of resource (slots) to allocate to Map
and Reduce tasks in order to meet a user-defined soft deadline for a certain
job and reduce costs associated with resource over-provisioning. A MapReduce
performance model relying on a compact job profile definition to calculate a lower
bound, an upper bound and an estimation of job execution time is presented.
Finally, such model, improved in [32], is validated through a simulation study
and an experimental campaign on a 66-nodes Hadoop cluster.

7 Conclusions and Future Work
In this paper, we provided an optimization model able to minimize the execution
costs of heterogeneous tasks in cloud based shared Hadoop clusters. Our model
is based on novel upper and lower bounds for MapReduce job execution time.
Our solution has been validated by a large set of experiments. Results have
shown that our method is able to determine the global minimum solutions for
systems including up to 1,000 user classes in less than 0.5 seconds. Moreover,
the average execution time of MapReduce jobs obtained through simulations is
within 14% of our bounds on average. Future work will validate the considered
time bounds in real cloud clusters. Moreover, a distributed implementation of
the optimization solver able to exploit the YARN hierarchical architecture will
be developed.

Acknowledgement
The work of Marzieh Malekimajd has been supported by the European Com-
mission grant no. FP7-ICT-2011-8-318484 (MODAClouds). Danilo Ardagna
and Michele Ciavotta’s work has been partially supported by the the European
Commission grant no. H2020-644869 (DICE). The simulations and numerical
analyses have been performed under the Windows Azure Research Pass 2013
grant.

25

References
[1] Capacity Scheduler. http://hadoop.apache.org/docs/r2.3.0/hadoop-

yarn/hadoop-yarn-site/CapacityScheduler.html.

[2] Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2.

[3] Fair Scheduler. http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/
hadoop-yarn-site/FairScheduler.html.

[4] MapReduce: Simplified Data Processing on Large Clusters. http://
research.google.com/archive/mapreduce.html.

[5] Microsoft Azure. http://azure.microsoft.com/en-us/services/
hdinsight/.

[6] The digital universe in 2020. http://idcdocserv.com/1414.

[7] YARN Scheduler Load Simulator (SLS). http://hadoop.apache.org/
docs/r2.3.0/hadoop-sls/SchedulerLoadSimulator.html.

[8] J. Anselmi, D. Ardagna, and M. Passacantando. Generalized Nash Equi-
libria for SaaS/PaaS Clouds. European Journal of Operational Research,
236(1):326–339, 2014.

[9] D. Ardagna, B. Panicucci, and M. Passacantando. Generalized Nash Equi-
libria for the Service Provisioning Problem in Cloud Systems. IEEE Trans-
actions on Services Computing, 6(4):429–442, 2013.

[10] A. Castiglione, M. Gribaudo, M. Iacono, and F. Palmieri. Exploiting mean
field analysis to model performances of big data architectures. Future
Generation Computer Systems, 37(0):203–211, 2014.

[11] C. P. Chen and C.-Y. Zhang. Data-intensive applications, challenges,
techniques and technologies: A survey on big data. Information Sciences,
275(0):314 – 347, 2014.

[12] H. Herodotou, F. Dong, and S. Babu. No one (cluster) size fits all: Automatic
cluster sizing for data-intensive analytics. In SOCC ’11, pages 18:1–18:14,
2011.

[13] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and
S. Babu. Starfish: A Self-tuning System for Big Data Analytics. In CIDR
’11, pages 261–272, 2011.

[14] H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel,
R. Ramakrishnan, and C. Shahabi. Big data and its technical challenges.
Commun. ACM, 57(7):86–94, 2014.

[15] K. Kambatla, G. Kollias, V. Kumar, and A. Grama. Trends in big data
analytics. Journal of Parallel and Distributed Computing, 74(7):2561–2573,
2014.

26

http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://aws.amazon. com/ec2
http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
http://research.google.com/archive/mapreduce.html
http://research.google.com/archive/mapreduce.html
http://azure.microsoft.com/en-us/services/hdinsight/
http://azure.microsoft.com/en-us/services/hdinsight/
http://idcdocserv.com/1414
http://hadoop.apache.org/docs/r2.3.0/hadoop-sls/SchedulerLoadSimulator.html
http://hadoop.apache.org/docs/r2.3.0/hadoop-sls/SchedulerLoadSimulator.html

[16] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon. Parallel data
processing with mapreduce: A survey. SIGMOD Rec., 40(4):11–20, 2012.

[17] M. Lin, L. Zhang, A. Wierman, and J. Tan. Joint optimization of overlapping
phases in MapReduce. SIGMETRICS Performance Evaluation Review,
41(3):16–18, 2013.

[18] M. Malekimajd, A. M. Rizzi, D. Ardagna, M. Ciavotta, M. Pas-
sacantando, and A. Movaghar. Optimal Capacity Allocation for ex-
ecuting Map Reduce Jobs in Cloud Systems. Technical Report n.
2014.11, Politecnico di Milano, http://home.deib.polimi.it/ardagna/
MapReduceTechReport2014-11.pdf.

[19] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and
A. H. Byers. Big data: The next frontier for innovation, competition, and
productivity. McKinsey Global Institute, 2012.

[20] D. A. Menascé and S. Bardhan. Queuing Network Models to Predict
the Completion Time of the Map Phase of MapReduce Jobs. In 38th
International Computer Measurement Group Conference, 2012.

[21] K. Morton, M. Balazinska, and D. Grossman. ParaTimer: A Progress
Indicator for MapReduce DAGs. In SIGMOD ’10, pages 507–518, 2010.

[22] K. Morton, A. Friesen, M. Balazinska, and D. Grossman. Estimating the
progress of MapReduce pipelines. In ICDE ’10, pages 681–684, 2010.

[23] L. T. X. Phan, Z. Zhang, Q. Zheng, B. T. Loo, and I. Lee. An empirical
analysis of scheduling techniques for real-time cloud-based data processing.
In SOCA’11, pages 1–8, 2011.

[24] F. Tian and K. Chen. Towards Optimal Resource Provisioning for Running
MapReduce Programs in Public Clouds. In CLOUD ’11, pages 155–162,
2011.

[25] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley,
S. Radia, B. Reed, and E. Baldeschwieler. Apache Hadoop YARN: Yet
Another Resource Negotiator. In SOCC ’13, pages 5:1–5:16, 2013.

[26] A. Verma, L. Cherkasova, and R. H. Campbell. ARIA: Automatic Resource
Inference and Allocation for Mapreduce Environments. In ICAC ’11, pages
235–244, 2011.

[27] A. Verma, L. Cherkasova, and R. H. Campbell. Resource Provisioning
Framework for Mapreduce Jobs with Performance Goals. In Middleware’11,
pages 165–186, 2011.

27

http://home.deib.polimi.it/ardagna/MapReduceTechReport2014-11.pdf
http://home.deib.polimi.it/ardagna/MapReduceTechReport2014-11.pdf

[28] E. Vianna, G. Comarela, T. Pontes, J. M. Almeida, V. A. F. Almeida,
K. Wilkinson, H. A. Kuno, and U. Dayal. Analytical Performance Models
for MapReduce Workloads. International Journal of Parallel Programming,
41(4):495–525, 2013.

[29] F. Yan, L. Cherkasova, Z. Zhang, and E. Smirni. Heterogeneous cores for
MapReduce processing: Opportunity or challenge? In NOMS ’14, pages
1–4, 2014.

[30] Q. Zhang, Q. Zhu, M. Zhani, and R. Boutaba. Dynamic Service Placement
in Geographically Distributed Clouds. In ICDCS ’12, pages 526–535, 2012.

[31] Z. Zhang, L. Cherkasova, and B. T. Loo. Exploiting Cloud Heterogeneity
for Optimized Cost/Performance MapReduce Processing. In CloudDP ’14,
pages 1:1–1:6, 2014.

[32] Z. Zhang, L. Cherkasova, A. Verma, and B. T. Loo. Automated Profiling
and Resource Management of Pig Programs for Meeting Service Level
Objectives. In ICAC ’12, pages 53–62, 2012.

28

	Introduction
	Estimating job execution times in shared clusters
	Single job bounds
	Two job bounds
	Multiple class bounds
	Bounds for MapReduce Jobs Execution

	Capacity Allocation Problem
	Optimization Problem
	Experimental Results
	Design of experiments
	Accuracy of Execution Time Bounds
	Scalability analysis
	Case Studies
	Effect of sharing cluster
	Effect of job concurrency degree
	Effect of tightening the deadlines

	Related Work
	Conclusions and Future Work

