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Abstract—MIMO systems in the context of 6G Vehicle-to-
Everything (V2X) will require an accurate channel knowledge
to enable efficient communication. Standard channel estimation
techniques, such as Unconstrained Maximum Likelihood (U-
ML), are extremely noisy in massive MIMO settings, while
structured approaches, e.g., compressed sensing, are sensitive
to hardware impairments. We propose a novel multi-vehicular
algebraic channel estimation method for 6G V2X based on
unsupervised learning which exploits recurrent vehicle passages
in typical urban settings. Multiple training sequences from
different vehicle passages are clustered via K-medoids algorithm
based on their algebraic similarity to retrieve the MIMO channel
eigenmodes, which can be used to improve the channel estimates.
Numerical results show the presence of an optimal number of
clusters and remarkable benefits of the proposed method in terms
of Mean Squared Error (MSE) compared to standard U-ML
solution (15 dB less).

Index Terms—Algebraic MIMO channel estimation, 6G, V2X,
Unsupervised learning, Clustering, K-medoids

I. INTRODUCTION

Millimeter Wave (mmWave) (30− 100 GHz) and sub-THz
(100−300 GHz) bands emerged as viable solutions for 5G and
mostly 6G Vehicle-to-Everything (V2X) applications, due to
the spectrum crunch at sub-6 GHz frequencies. In particular,
the 24.25 − 52.6 GHz band is used in 5G New Radio (NR)
Frequency Range 2 (FR2), while future 6G V2X systems
will exploit even larger spectrum portions in D-band [1].
The high path loss at these frequencies induces a sparse
propagation channel, characterized by few significant paths in
the Space-Time (ST) domain, i.e., Angles of Arrival/Departure
(AoAs/AoDs) and delays [2]. To compensate for the path loss,
Multiple-Input Multiple-Output (MIMO) antenna systems at
both Transmitter (Tx) and Receiver (Rx) are used to increase
antenna gain by beamforming strategies [3], requiring an
accurate channel knowledge. In legacy Orthogonal Frequency
Division Multiplexing/Multiple Access (OFDM/OFDMA) sys-
tems (e.g., 5G NR FR2), standard approaches are based on an
Unconstrained Maximum Likelihood (U-ML) channel estimate
at each training block from known pilot sequences, which
however is extremely noisy in low Signal-to-Noise Ratio
(SNR) conditions. Advanced approaches, such as Compressed
Sensing (CS), reduce the number of unknowns exploiting the
structured channel sparsity and multiple channel observations,
improving the U-ML performance by orders of magnitude [4],

at the price of being sensitive to system calibrations and
parameters initialization [5].

Differently, algebraic LR channel estimation methods [5]–
[7] operate on ensembles of training sequences from a single
(or multiple) User Equipment (UE) to a fixed Base Station
(BS), leveraging the algebraic (unstructured) channel sparsity
and the stationarity of the ST eigenmodes (ST subspace),
i.e., the invariance of AoAs/AoDs and delays, across multiple
channel realizations in time or space [5], [8]. The improved
LR channel estimate is retrieved by a proper modal filtering
of the received training sequence onto the ST propagation
subspace. LR achieves similar accuracy of CS but with an in-
herent robustness against hardware impairments [5]. The main
drawback of the aforementioned LR implementation is that it
requires either a large number of consecutive transmissions
(not suited to V2X) or the knowledge of UEs position at the
BS (increased control signaling).

In this work, we take advantage of the position-aware Multi-
Vehicular (MV) LR approach in [8] to design a novel position-
agnostic clustering-based MV-LR channel estimation method
suited for V2X, where the channel eigenmodes are retrieved
from the set of received training sequences collected from
the recurrent passages of different vehicles in a limited urban
area (radio cell), where the road constraints induce recurrences
in the ST MIMO channel subspace. Instead of requiring the
explicit knowledge of UEs positions, by leveraging the works
in [9], [10], we frame the problem of obtaining the ensemble
of received training sequences for LR as a K-medoids high-
dimensional clustering problem in the ST subspace of the
MIMO channel, where different received training sequences
are grouped based on their algebraic similarity. Numerical
simulations with ray-tracing channel data and realistic vehi-
cle trajectories are compared with both the U-ML and the
position-aware LR channel estimation [8], the latter proven
to be statistically efficient attaining the theoretical MSE lower
bound. The results highlight an optimal number of clusters and
a Mean Squared Error (MSE) gain in the order of ≈ 15− 20
dB compared to U-ML channel estimation, achieving the same
MSE performance of the position-aware one.

Notation: Bold upper- and lower-case letters describe ma-
trices and column vectors. (·)T, (·)H, (·)∗, ‖·‖, and vec(·) de-
note, respectively, transpose, conjugate-transpose, conjugate,



Frobenius norm, and vectorization by columns of a matrix.
tr (·), rank (·) extract the trace and the rank of a matrix. ⊗, �
and � denote the Kronecker, the Kathri-Rao and the element-
wise product between two matrices. diag(·) denotes either a
diagonal matrix or the extraction of the diagonal of a matrix.
a ∼ CN (µ,C) denotes a multi-variate circularly complex
Gaussian random variable a with mean µ and covariance C.
E[·] is the expectation operator, while R and C stand for the
set of real and complex numbers, respectively. Finally, δn is
the Kronecker delta.

II. SYSTEM AND CHANNEL MODEL

We consider a MIMO uplink system tailored to a V2I
scenario, in which the Tx and the Rx are equipped with
NT and NR antennas, respectively. At the receiving antennas,
after the time and frequency synchronization and cyclic prefix
removal, the Rx signal is:

y(t) = H(t) ∗ x(t) + n(t), (1)

where symbol ∗ denotes the matrix convolution between the
transmitted signal x(t) ∈ CNT×1 and the frequency-selective
MIMO channel H(t) ∈ CNR×NT . Vector n(t) ∈ CNR×1

denotes the additive Gaussian noise corrupting the received
signal. Sampling (1) at time t = wT , with T = 1/B being
the sampling time (B the bandwidth) we obtain:

y[w] = H[w] ∗ x[w] + n[w], w = 1, . . . ,W (2)

where W is the maximum number of channel taps and
H[w] ≡ H(wT ) is the discrete-time MIMO channel matrix.
For channel estimation purposes, the Tx signal is a known
training sequence assumed to be random and uncorrelated in
space and frequency as E

[
x[w]x[`]H

]
= σ2

xINT
δw−` (σ2

x is
the signal power). The noise n[w] is instead modelled as white
in time/frequency, but generally colored in space, to account
for directional interference, as E

[
n[w]n[`]H

]
= Qnδw−`. The

SNR at each antenna is

SNR =
E
[∥∥∑

w H[w] ∗ x[w]
∥∥2]

tr(Qn)
. (3)

In the following, we detail the MIMO channel model.

A. MIMO Channel Model

The discrete-time wideband (frequency-selective) MIMO
channel between Tx and Rx is routinely modeled as the sum
of P paths as [2]

H[w] =

P∑
p=1

αp aR(ϑp)aT
T (ψp)g [(w − 1)T − τp] =

= AR (ϑ) Λ[w]AT
T (ψ) ,

(4)

where:
• αp ∼ CN (0,Ωp) is the complex gain of the p-th path.

The paths’ amplitudes α = [α1, . . . , αP ]T are assumed to
follow the Wide-Sense Stationary Uncorrelated Scattering
(WSSUS) model, i.e., E

[
αnα

H
n+m

]
= Ω δn−m, in which

Ω = diag (Ω1, . . . ,ΩP ) contains the paths’ powers and

n, m are two channel realizations in time (different fading
blocks) or space (different locations);

• aT (ψp) ∈ CNT×1 and aR(ϑp) ∈ CNR×1 are the Tx and
Rx array response vectors to the p-th path, respectively,
function of the DoDs ψp and the DoAs ϑp;

• g [(w − 1)T − τp] denotes the w-th sample of the cascade
response of the Tx and the Rx pulse shaping filters (PSF),
delayed by τp (p-th path delay).

In (4), matrices AT (ψ) = [aT (ψ1), . . . ,aT (ψP )] ∈
CNT×P and AR (ϑ) = [aR(ϑ1), . . . ,aR(ϑP )] ∈ CNR×P

identify the Tx and Rx frequency-independent beam spaces,
respectively, while Λ[w] = diag(α1 g[(w − 1)T −
τ1], . . . , αP g[(w − 1)T − τP ]) ∈ CP×P is a diagonal matrix
collecting all the channel amplitudes scaled by the w-th tap
of the PSF. Matrices AT (ψ) and AR (ϑ) define the Tx and
Rx diversity orders of channel H[w] as

rTX
S = rank(AT (ψ)) ≤ min (NT , P ) , (5)

rRX
S = rank(AR (ϑ)) ≤ min (NR, P ) , (6)

i.e., the number of resolvable spatial paths given the number of
Tx and Rx antennas, respectively. By rearranging channel (4),
we can isolate the temporal (delays) features of the channel
as:

H = A (ϑ,ψ) D GT(τ ), (7)

where: (i) H = [vec(H[1]), . . . , vec(H[W ])]; (ii) A (ϑ,ψ) =
AT (ψ) � AR(ϑ) ∈ CNTNR×P span the joint Tx and Rx
beam space; (iii) D = diag(α1, . . . , αP ) and (iv) G (τ ) =
[g(τ1), . . . ,g(τP )] embed the temporal features τ . Vector
g (τp) ∈ RW×1 = [g [−τp] , . . . , g [(W − 1)T − τp]]

T collects
PSF samples delayed by τp. With this channel formulation,
the temporal diversity order is:

rT = rank(G (τ )) ≤ min (W,P ) , (8)

namely the number of temporally-distinguishable channel
paths.

III. MV-LR MIMO CHANNEL ESTIMATION

To overcome the limitations of U-ML channel estimation,
we adapt here the LR method to high-mobility V2X systems
by exploiting the MV concept proposed in [7], [8]. The
BS estimates the ST eigenmodes of channel H̃[w] from
the ensemble of L received training sequences {y`[w]}`=L

`=1 ,
w = 1, . . . ,W , collected from recurrent vehicle passages
in the radio cell, such that {y`[w]}`=L

`=1 share the same ST
propagation subspace (i.e., each UE experiences the same
AoDs/AoAs and delays in communicating with the BS, and
different fading amplitudes).

There are two possible implementations of the method,
based on the available degree of cooperation between the
UEs and the infrastructure (BS). In both cases, the notable
advantage of MV-LR is the possibility, for the BS, to store the
ST eigenmodes list, in order to avoid repeating the training
procedure for each vehicle, minimizing the computations.
Notice that a new training is requested only when macroscopic
changes in the propagation environment occur.



Position-aware approach: The ST eigenmodes of the
MIMO channel are explicitly associated to the physical UE
position in the cell. The BS collects the L received training
sequences {y`[w]}`=L

`=1 , w = 1, . . . ,W , for each location in
the cell by relating them with the estimated physical UEs
positions, obtained through either a suitable signaling or other
localization techniques. The UEs are requested to cooperate
with the infrastructure to build the database of ST channel
eigenmodes, and the LR estimation performance depends on
the positioning accuracy, which can be in the order of few
meters in urban scenarios. As shown in [8], the position-aware
MV-LR approach can attain the theoretical MSE lower bound
only when the positioning accuracy is within≈ 1 m, for typical
hardware settings.

Position-agnostic approach: The ST eigenmodes of the
MIMO channel are not related to a given physical UE position
but rather are subspace-dependent. A huge dataset of N re-
ceived training sequences {y`[w]}`=N

`=1 , N � L, not explicitly
related to physical positions, is clustered at the BS with an
unsupervised learning approach to automatically devise the
algebraic similarity (subspace similarity) in the dataset. The
cooperation between UEs and BS is minimal (exchange of
training sequences, already in place for communication), and
the performance of the system depends on the number K of
chosen clusters, on the dataset (cardinality, data diversity), and
on the selected similarity metric.

In the following, we briefly outline the algebraic background
for the MV-LR channel estimation from L different training
sequences {y`[w]}`=L

`=1 , w = 1, . . . ,W (obtained from differ-
ent vehicular UEs), assumed to share the same ST propagation
subspace. The complete analytical treatment can be found in
[6]. The MV-LR-estimated channel is retrieved through the
application of a training sequence-specific matrix T` and an
ensemble-specific matrix Π(L) on single received training
signal y` =

[
yT
` [1], . . . ,yT

` [W ]
]T ∈ CWNR×1 as:

ĥ` = Π(L) T` y` = Π(L) y`, (9)

where: (i) ĥ` ∈ CWNRNT×1 is the MV-LR-estimated channel
vector, that can be rearranged to obtain either Ĥ`[w] and (ii)
y` = T` y` ∈ CWNRNT×1 is the U-ML channel estimate,
analytically detailed in [5].

The ensemble-specific linear processing in (9) is designed
as [6]:

Π(L) = Ĉ
H
2 Π̂ Ĉ−

H
2 , (10)

where (i) Ĉ ≈ (1/σ2
x) (IW ⊗ INT

⊗QT
n ) is the estimated co-

variance matrix of y`, needed to handle spatial/temporal noise
correlations (e.g., interfering users) and (ii) Π̂ = Û∗TÛT

T ⊗
ÛTx,∗

S ÛTx,T
S ⊗ ÛRx

S ÛRx,H
S is the projection matrix onto the

ST propagation subspace associated to the separable basis
Û = Û∗T⊗ ÛTx,∗

S ⊗ ÛRx
S . Orthonormal bases ÛT ∈ CW×rT ,

ÛTx
S ∈ CNT×rTx

S and ÛRx
S ∈ CNT×rRx

S are retrieved as
the rTx

S , rRx
S and rT leading eigenvectors of the spatial (Tx

and Rx) and temporal sample correlation matrices over L
whitened U-ML channel estimates y` = Ĉ−

H
2 y`. Therefore,

matrix Π(L) operates a noise-aware modal filtering on the

U-ML channel estimate, whose effectiveness is proportional
to the unstructured sparsity degree of the channel. It can be
demonstrated that, if at least one of the following conditions
holds:

rTx
S < NT , rRx

S < NR, rT < W, (11)

the LR method outperforms the U-ML one. Asymptotically
(L→∞), the MV-LR attains the maximum performance. The
value of L for the asymptotic convergence depends on NT ,
NR and W as well as on the SNR. For the MIMO settings
and bandwidths considered in Section V, L ≈ 100 guarantees
the convergence. Notice that Π(L) can be explicitly position-
dependent (position-aware approach) or not (position-agnostic
approach).

IV. CLUSTERING-BASED MV-LR CHANNEL ESTIMATION

In this section, we describe the clustering algorithm used for
the position-agnostic MV-LR implementation in V2X urban
settings. Let us consider a large number, N , of training
sequences {yi}i=N

i=1 , collected at the BS over the whole radio
cell, already pre-processed by matrix Ti (U-ML channel
estimates) and whitened. We aim at clustering them in order
to (i) identify few representative received training sequences
with markedly different ST features, allowing to define a finite
set of K comprehensive ST patterns (clusters) easy to discrim-
inate in a noisy setting; (ii) compute the LR orthonormal sets
ÛT, ÛTx

S and ÛRx
S for each cluster to efficiently apply MV-

LR.
The proposed goals can be modelled in the framework of the

K-medoids problem. With respect to the well-known K-means
algorithm, K-medoids does not require the computation of a
mean—which is meaningless for received training sequences
belonging to different locations in space—, and it is more
resilient to outliers and noise. Given a set of data points X =
{xj}, j = 1, · · · , N , K-medoids clustering aims at selecting
K elements mi—called medoids—among them such that the
sum of dissimilarities

D =

K∑
k=1

∑
xn∈Ck

d(xn,mk) (12)

is minimized, where Ck is the cluster represented by medoid
mk, and d is an arbitrary dissimilarity measure between two
data points. A medoid mk minimizes the intra-cluster sum of
dissimilarities:

mk = argmin
xn∈Ck

∑
xt∈Ck

d(xn, xt). (13)

After a random initialization, the clusters are defined by
assigning, according to the utilized dissimilarity measure, each
dataset point to the nearest medoid, which can be considered
a representative element of the cluster. In this work, to solve
the K-medoids problem, the Partitioning Around Medoids
(PAM) [11] algorithm has been used.



TABLE I
SIMULATION PARAMETERS

Simulation parameter Symbol Value
Carrier frequency f0 28 GHz
Bandwidth B 1, 50 MHz
BS height from the ground - 6 m
Number of BS antennas NR 64 (8× 8)
Number of UE antennas NT 16 (4× 4)
Training dataset size N 5 · 104 samples
Number of clusters K 2− 30
Signal to Noise Ratio SNR 0 dB

For grouping ST-similar received training sequences, we
take advantage of the subspace correlation index proposed in
[12], deriving the following similarity metric:

ηi,j =
tr[RiR

H
j ]√

tr[RiRH
i ]tr[RjRH

j ]
=

1

1 + di,j
(14)

for i, j ∈ 1, · · · , N , where Ri = yiy
H
i , and ηi,j ∈ (0, 1].

The distance measure di,j ∈ [0,∞) is able to capture the
dissimilarity of two received sequences yi, yj in the ST
domain, as shown in Section V. The proposed method can be
summarized by the following steps: (1) collection at the BS of
training sequences {yi}i=N

i=1 , transmitted by UEs crossing the
radio cell; (2) clustering of the collected training sequences
within the ST domain into K clusters by means of the
PAM algorithm, using the dissimilarity metric di,j in (14);
(3) computation of the MV-LR ST orthonormal bases {ÛT,
ÛTx

S , ÛRx
S }k, k = 1, · · · ,K, by using the corresponding

clustered received training sequences; (4) filtering of the `-th
new received sequence y` by using the set of LR orthonormal
bases corresponding to medoid mk, k = 1, · · · ,K, nearest to
y` with respect to dissimilarity di,j . Since the convergence of
the MV-LR algorithm is affected by the number of available
received training sequences per cluster, we adopt the silhouette
method [13] to determine the clustering quality and to select
a suitable number of clusters K, searching for: (i) an even
distribution of the training points among clusters to ensure
the convergence of the MV-LR algorithm for each of them,
(ii) a high intra-cluster cohesion, and (iii) a low inter-cluster
similarity.

The complexity of the proposed method can be effectively
measured by the number of requested training sequences N ;
the complexity of PAM algorithm scales ∝ N2, which is
affordable for the considered dataset (see Section V), but still
inherently limited for very large datasets. A valid alternative
is CLARA (Clustering for Large Applications) [14], which
runs PAM multiple times on small subsamples of the original
dataset.

V. NUMERICAL RESULTS

We analyse the performance of the proposed channel es-
timation method in the communication scenario (radio cell)
depicted in Fig. 1. The BS, located at a height of 6 m from
the ground, is equipped with a planar array of NR = 64

Fig. 1. Selected urban scenario and representation of the considered vehicular
trajectories.

antennas (8 × 8), while each UE with a planar array of
NT = 16 antennas (4 × 4). We select 28 GHz as the carrier
frequency (compliant to 5G NR FR2) and two communication
bandwidths: (i) B = 1 MHz, for which the MIMO channel
is frequency-flat (W = 1); (ii) B = 50 MHz, producing a
frequency-selective (W = 7 taps) MIMO channel. The set of
simulation parameters is reported in Table I.

The recurrent vehicle passages in the cell are generated
using SUMO (Simulation of Urban MObility) software [15],
providing position, velocity and heading of vehicles over time
for different realistic trajectories, exemplified in Fig. 1. The
MIMO channel data over the trajectories is generated with
the Altair WinProp ray-tracing software [16]. The algorithm
has been trained using a dataset of N = 5 · 104 received
training sequences, sampled over the vehicular trajectories at
0 dB of SNR. The clustering-based MV-LR performance has
been evaluated in terms of Normalized Mean Squared Error
(NMSE), defined as:

NMSE =
E[‖h` − ĥ`‖2]

E[‖h`‖2]
, (15)

where the channel estimate ĥ` can be U-ML, position-aware
MV-LR or position-agnostic MV-LR. The position-aware MV-
LR approach has been analytically proved in [5] to attain the
theoretical MSE lower bound for L → ∞ (in practice, L >
100); therefore, in this work we use it as benchmark to test
the effectiveness of the proposed position-agnostic method. As
we deal with complete vehicles’ trajectories, the NMSE of the
reference position-aware MV-LR method is averaged over the
whole trajectory length.

Fig. 2 summarizes the results. Figs. 2a and 2b represent the
optimal extracted clusters—depicted with different colors—
over the geographical map of the urban scenario, and the
selected trajectory realization, not comprised in the training
dataset (dashed arrow). It is worth noticing that the colored
clustered points on the map are not necessarily representative
of UEs positions; they depict the invariance regions of the
channel estimates in the ST domain for the retrieved clustering,
each with a different spatial configuration. By using the
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Fig. 2. Performance of the proposed algorithm at 1 MHz channel bandwidth (left) for K = 14, and 50 MHz channel bandwidth (right) for K = 10: spatial
representation of clusters and reference trajectory (a,b); average silhouette coefficients for K = 2 to K = 30 clusters (c,d); NMSE performance comparison
on a reference trajectory realization (e,f).
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Fig. 3. Position-agnostic NMSE gain with respect to U-ML varying the
number of clusters K, as function of spatial channel ranks, for B = 1 MHz
bandwidth

silhouette method, detailed in [13], we selected the number
of clusters leading to the largest average silhouette coefficient.
Figs. 2c and 2d show the average silhouette coefficients over
the whole scenario varying the number of clusters K from 2
to 30. For the considered urban scenario, a number of clusters
K = 14 for B = 1 MHz and K = 10 for B = 50 MHz yields
the maximum average silhouette coefficient and a substantial
MSE improvement over U-ML channel estimates. From Fig.
3, we notice that the average NMSE gain decreases with K
and with the selected channel spatial diversity orders (ranks)
(for B = 1 MHz); this is due to the increasing cohesion in
the ST domain of the the channel estimates grouped within
each cluster. However, the analysis of the average silhouette
coefficients provides a measure of the clusters’ relevance for
each K. As reported in Section IV, a clustering that suitably
distributes the dataset points among clusters, as here, leads to
a uniform NMSE performance within each cluster, allowing
to match the position-aware MV-LR method. Therefore, a
proper selection of K according to the silhouette coefficient
allows to avoid performance unfairness across clusters. Finally,
Figs. 2e and 2f show the position-agnostic MV-LR NMSE
performance, normalized to the U-ML one, over the selected
trajectory sampled over the covered space by 0.5 m steps.
As can be seen, position-agnostic MV-LR outperforms U-ML
by achieving ≈ 15 dB less (B = 1 MHz) and ≈ 20 dB less
(B = 50 MHz) of MSE, attaining the same performance of the
position-aware one. A similar behavior has been observed for
all the other testing trajectories, not reported here, confirming
the effectiveness of the proposed clustering-based MV-LR
channel estimation method.

VI. CONCLUSION

This paper proposes a novel clustering-based MV-LR chan-
nel estimation method for 6G V2X. By clustering, through a
K-medoids approach, a dataset of received training sequences
from multiple UEs, the BS learns, in a completely unsuper-
vised way, to aggregate training sequences sharing similar ST

subspaces, to estimate the cluster-specific ST MIMO channel
eigenmodes without the knowledge of UEs’ geographical
positions. For an optimal number of clusters selected by means
of the silhouette method, numerical results show remarkable
benefits in terms of NMSE, with an average reduction of
≈ 15 − 20 dB with respect to the U-ML channel estimates,
attaining the position-aware MV-LR performance. Future in-
vestigations will extend the proposed method to hybrid MIMO
systems and to propagation affected by blockage, as well as
to dynamic scenarios.
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