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ABSTRACT

Falsification is a popular simulation-based testing method for Cyber-
Physical Systems to find inputs that violate a formal requirement.
However, detecting violations considering multiple probabilistic
requirements simultaneously with a dense space of changing fac-
tors in the execution scenario is an open problem. We address this
problem by proposing a novel approach that combines paramet-
ric model checking and many-objective optimization. Results of
a preliminary empirical evaluation show the effectiveness of the
approach compared to selected baseline methods.
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1 INTRODUCTION

Falsification is an established testing method for Cyber-Physical
Systems (CPSs), such as autonomous driving systems, to detect
violations of safety (or dependability) requirements usually ex-
pressed through a formal notation. However, existing falsification
approaches exhibit limitations. According to Haq et al. [4], the
majority of them do not consider there are often many (possibly in-
dependent) requirements Ry, ..., R, that must be considered together
in practice. Testing each requirement R; often needs expensive sim-
ulations. On the other hand, when the simulation data is available
checking the satisfaction of R; is very efficient. Such a cost imbal-
ance makes it undesirable to test each requirement R; individually,
even though this represents a common approach. An alternative
approach is to test the conjunction ® = Ry A ... A Ry,. In this case,
® is violated if R; does not hold for any i. Although this solution
is computationally efficient, it leads to traceability issues since it
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hides the contributions of each requirement to the violation of .
Further, existing techniques dealing with multiple requirements
do not account for the reproducibility issue [1]. According to Afzal
et al. [1], nondeterminism in CPS simulators is a critical source
of difficulties when testing since multiple simulations may lead
to different outcomes. Thus, requirement violations are stochastic
phenomena that shall satisfy probabilistic requirements to quantify
the likelihood of violations rather than spot a possible occurrence.

To overcome these limitations, we present Parametric Falsifica-
tion (PF), a novel falsification approach that deals with multiple
probabilistic requirements. PF combines two distinct techniques: (1)
parametric model checking [2] to shift part of the problem complex-
ity offline by pre-computing, for each probabilistic requirement,
the corresponding numerical intervals constraining the parame-
ters of a stochastic specification describing the testing scenario; (2)
many-objective optimization [3] to push (many) parameters of the
stochastic specification out of the pre-computed constraints. The
two techniques are applied in sequential steps: (1) offline analysis
of the testing scenario and the target probabilistic requirements
through parametric model checking [5], and then (2) online op-
timization to automatically generate test cases that increase the
likelihood of violations using many-objective search. We also pro-
pose two alternative versions of the online optimization step relying
on Evolutionary Search [3] (ES) and Reinforcement Learning [10]
(RL) algorithms to study and compare their effectiveness.

2 PARAMETRIC FALSIFICATION

We describe the two steps: (1) offline analysis and (2) online opti-
mization in its two alternative versions based on many-objective
ES, and many-objective RL.

Offline Analysis. The analysis step shifts part of the complexity
of the problem offline. It takes as input the set of requirements and,
for each one of them, it calculates constraints for its satisfaction in
terms of numerical intervals. These intervals constrain the parame-
ters of a stochastic model describing the simulated scenario. The sto-
chastic model is a parametric Markov Decision Process [8] (pMDP)
automatically generated from a high-level specification of the test-
ing scenario in terms of a finite state-machine. Given a pMDP, re-
quirements can be expressed using Probabilistic Computation Tree
Logic [5] (PCTL) formulas. Given a set of PCTL requirements and
the pMDP specification of the scenario, we use parametric model
checking to calculate a mapping from sets of intervals (parameter
valuations) to truth values (true/false) for each requirement. Essen-
tially, for each requirement R;, we pre-compute the interval Iy, for
each parameter x;. The set of intervals R; = {Iy,;, Vi} represents the
constraint for the satisfaction of R;. The set of constraints (one for
each requirement) represents the input of the online optimization.
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Online Optimization. Our novel approach defines the optimiza-
tion problem as follows. Let S be the CPS under test and F the set of
controllable factors of the simulation. Let a test case ¢ = (fi, ..., f)
be a tuple of values assigned to factors F for a simulation of S.
Consider for instance simulation of an autonomous driving system.
Here factors F may include vehicle speed, position, speed, orienta-
tion of the pedestrian, and road shape. Given a set of probabilistic
requirements {Ry, Ry, ...}, the degree of a violation dist for a re-
quirement R; produced by S under test case t depends on the actual
value of the parameters compared to the numerical intervals pre-
scribed by the constraint RJC., The actual value of the parameters can
be measured by monitoring the simulation of S for ¢. To estimate
the concentration parameters we use a common approach based
on Bayesian inference [9]. For each x;, we estimate the Credible
Interval CI(x;), by calculating the highest density region of the
distribution for a given credibility level (e.g., 95%). At the end of
the execution of a test case t, we measure the degree of violation
for each x;. Ideally, we would like to find the test cases that yield
the smallest negative dist value for all x;. These represent the most
severe requirement violations. Thus, our optimization problem uses
n dist functions as objectives dist(xy), ..., dist(x,): one objective
function for each specification parameter. The set of controllable
factors F defines instead the search space.

Optimization using Evolutionary Search. We address the optimiza-
tion problem described above by using many-objective ES. We use
NSGA-III [3], a mainstream many-objective optimization algorithm.
We call this approach PF-ES. Similar to existing work, PF-ES uses
the notion of archive to keep the set of test cases satisfying the
objectives. It takes as input a set of specification parameters X, a
set of constraints C (each one for each requirement), and returns
an archive (test suite) A that aims to maximally achieve individual
objectives, that is, minimize dist(x1), ..., dist(xy) according to C.

Optimization using Reinforcement Learning. We adopt an approach
similar to MORLOT [4]. The approach combines: Q-Learning [10]
to search for effective changes of controllable factors that cause
violations; and many-objective search for test case generation to
achieve many independent objectives individually within a given
budget. To take into account many objectives simultaneously (i.e.,
minimization of dist for each parameter), the algorithm extends
standard Q-Learning algorithms by maintaining multiple Q-tables,
each of them addressing one objective. In our problem, each Q-
table captures the best action (change of controllable factors) for
one objective in a given state (current state of controllable factors).
Since different actions can be chosen for different objectives, the
algorithm selects the Q-table based on the objective that achieved
the maximum reward (smallest dist value) in the previous iteration.
This is because the corresponding objective is closer to violations.

Our falsification approach PF that makes use of this method
is referred to as PF-RL. Notice that PF-RL takes inspiration from
MORLOT but is different. MORLOT uses requirements directly as
objectives, while objectives in PF-RL are determined by specifica-
tion parameters. MORLOT dynamically changes the factors of a
scenario over multiple steps of a single simulation, while PF-RL
keeps controllable factors constant for each simulation to collect
a sample and estimate the probability of violations under a given
assignment.
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Figure 1: Effectiveness of PF compared to selected baseline
approaches in terms of number of violations.

3 PRELIMINARY EVALUATION

We show some preliminary results of our empirical evaluation us-
ing an existing benchmark in the area of autonomous driving [7].
The tested scenario includes a vehicle equipped with an automated
emergency braking component. The vehicle drives down an urban
street, while a pedestrian starts crossing. Safety requirements here
predicate, for instance, over the probability of violating a given pro-
tective human-vehicle distance, and the probability that the vehicle
goes out of the lane. Our experiments focus on the effectiveness
of PF compared to Random Search (RS) and a selected baseline for
multi-requirement falsification, so-called Focused Falsification [6]
(FOC). Here we measure the effectiveness in terms of requirement
violations. Figure 1 illustrates the distribution of violations for each
requirement (Ro,R1,Rz2) using RS, FOC, PF-RL, and PF-ES over 30
executions with the same budget (900 simulations). Preliminary
results show that PF significantly outperforms RS. PF-ES is the best
option and it is always better than FOC and PF-RL.

4 CONCLUSION

We present PF, a novel approach for CPS falsification that combines
parametric model checking and many-objective optimization to
falsify multiple (independent) probabilistic requirements. We plan
to extend PF by leveraging surrogate models to reduce the cost of
online optimization while preserving its effectiveness.
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