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Abstract
One of the major challenges of coupled problems is to manage nonconforming
meshes at the interface between two models and/or domains, due to different numer-
ical schemes or domain discretizations employed. Moreover, very often complex
submodels depend on (e.g., physical or geometrical) parameters, thus making the
repeated solutions of the coupled problem through high-fidelity, full-order models
extremely expensive, if not unaffordable. In this paper, we propose a reduced order
modeling (ROM) strategy to tackle parametrized one-way coupled problems made
by a first, master model and a second, slave model; this latter depends on the former
through Dirichlet interface conditions. We combine a reduced basis method, applied
to each subproblem, with the discrete empirical interpolation method to efficiently
interpolate or project Dirichlet data across either conforming or non-conforming
meshes at the domains interface, building a low-dimensional representation of the
overall coupled problem. The proposed technique is numerically verified by con-
sidering a series of test cases involving both steady and unsteady problems, after
deriving a posteriori error estimates on the solution of the coupled problem in both
cases. This work arises from the need to solve staggered cardiac electrophysiologi-
cal models and represents the first step towards the setting of ROM techniques for
the more general two-way Dirichlet-Neumann coupled problems solved with domain
decomposition sub-structuring methods, when interface non-conformity is involved.

Keywords Coupled problems · Reduced order models ·
Proper orthogonal decomposition · Discrete empirical interpolation ·
Interface non-conformity · A posteriori error estimates

Communicated by: Olga Mula

� Elena Zappon
elena.zappon@polimi.it

Extended author information available on the last page of the article.

Adv Comput Math (2023) 49:21

Received: 26 April 2022 / Accepted: 15 December 2022 / Published online: 16 March 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-022-10008-w&domain=pdf
http://orcid.org/0000-0002-0608-1636
mailto: elena.zappon@polimi.it


Mathematics Subject Classification (2010) 65M60 · 65N99 · 68U99

1 Introduction

Fast simulation techniques for multi-scale and multi-physics problems are nowadays
of key relevance in many applications from engineering including, among others,
fluid-structure interaction (FSI) and electro-mechanical (EM) couplings [1–7]. Often,
these problems are characterized by two (or more) nonlinear partial differential equa-
tions (PDEs) representing detailed parametric physical systems interacting through
their boundaries. When a full-order model (FOM) based, e.g., on the finite element
(FE) method, is used, solving accurately such coupled systems becomes computa-
tionally demanding, especially when strong constraints on spatial mesh sizes and/or
time steps must be imposed to deal with steep fronts solutions or fast dynamics.

In several cases, such coupled problems describe complex phenomena involving
a set of physical and/or geometrical input parameters, so that a detailed character-
ization of input-output maps requires the repeated solution of the problem at hand
[8–14]. In these cases, numerical simulations carried out by high-fidelity FOMs may
easily become out of reach. In addition, when dealing with nonconforming meshes
at the interface, special techniques, e.g., MORTAR method and INTERNODES
[15–20], need to be employed, making the underlying FOM even more computation-
ally demanding.

In these contexts, efficient reduced order models (ROMs) can be successfully
applied to decrease the overall computational costs. Preliminary studies on reduced
coupled problems, especially in a FSI context, were carried out in [21–25], where
ROMs were applied to one or both subproblems, considering splitting schemes to
handle the model coupling, and in [26], where POD was used to reduce an FSI
problem solved with a monolithic FE scheme. In all these cases, geometrical and
numerical interface conformity between subdomains was necessary to set up the
numerical schemes. Domain decomposition (DD) techniques coupled with reduced
basis (RB) methods [27–29], instead, have been explored in several works, e.g.,
[30–33]. Their goal is to solve expensive models set on involved domains by splitting
the considered geometries in a set of building blocks, often exploiting topological
similarity, and applying the reduction locally, on each building block. The final global
approximation is then computed gluing together the local solutions through differ-
ent techniques, e.g., Lagrangian multipliers or by Fourier basis functions. Moreover,
RB-DD methods have been considered to construct efficient preconditioners [34] or
to perform static condensation [35, 36].

In this paper, we propose a RB method to solve efficiently one-way coupled prob-
lems. Precisely, we consider parametric (either elliptic or parabolic) problems defined
on two domains with a common interface. The first master model is solved as an
independent model, imposing homogeneous Neumann boundary conditions at the
interface; the second slavemodel is dependent from the master model through Dirich-
let interface conditions. Note that Dirichlet interface conditions naturally inherit the
parameter dependency from the master model. As high-fidelity FOM, we consider
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the finite element (FE) method involving either conforming or non-conforming dis-
cretizations at the interface across the domains. In the former case, the slave solution
at the interface corresponds to the master one; in the latter, the slave interface solu-
tion must be computed with an interpolation method, e.g., relying on radial basis
functions.

Then, we implement RB methods to reduce completely the parametric one-way
coupled problem, including the interface conditions. To this end, we consider a
modular approach: the two sub-problems are reduced independently through a POD-
Galerkin approach, while interface data are handled by setting a further efficient
interpolation — or projection — stage relying on the discrete empirical interpolation
method (DEIM) [37–41]. In particular, we show how to use this reduction paradigm
to transfer Dirichlet data across both conforming and non-conforming domain inter-
faces, effectively replacing any high fidelity interpolation technique in the reduced
problem with the DEIM.

Differently from previous works, this new approach is able to decrease the over-
all computational costs of solving parametric one-way coupled problems through
RB methods, including the possibility to consider interface grid non-conformity. The
interface Dirichlet data can be easily transferred between the two problems without
implementing other techniques that could increase the algebraic system dimensions,
as, e.g., in the case of the Lagrange multipliers. Furthermore, several test cases and
the derived a posteriori error estimate show that this modular approach allows to
have full control of the solution accuracy at each reduction step, and to tailor the cor-
responding ROM on every sub-problems. The proposed technique can be seen as a
reduced form of the DD method applied to one-way coupled problems, in which the
two submodels are handled independently and solved sequentially.

The present work arises from the need of solving staggered cardiac electrophysi-
ological models, i.e., bidomain-torso models [42], and is a preliminary investigation
toward the solution of a more general (and challenging) parametrized two-way cou-
pled problem obtained through Dirichlet-Neumann interface conditions. Therefore,
the described modular ROM can be extended to the case in which DD sub-structuring
methods [20, 43] are applied to steady or unsteady two-way coupled problems, in
case of both conforming or non-conforming interface grids; this will be the focus of
a forthcoming manuscript.

The structure of the paper is as follows: after formulating parametrized one-way
coupled problems in Sections 2, 3 and 4 are devoted to their high fidelity discretiza-
tion and their reduced order modeling, respectively. The treatment of the interface
data is postponed to Section 5. Section 6 presents a detailed derivation of a posteriori
error estimates for the proposed technique. FOM and ROM solutions are then com-
pared on a series of numerical benchmarks in Section 7; conclusions and perspectives
then follow in Section 8.

2 Problem formulation

In this section, we introduce an algebraic formulation of the parametrized one-way
coupled problems, assuming to deal with the finite element method as high-fidelity
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FOM, despite the proposed strategy is independent of the employed FOM. Let us
consider a d-dimensional domain (d = 2,3) partitioned into two non-overlapping sub-
domains �1 and �2, sharing the interface � := �1 ∩ �2, and denote by ni , i = 1, 2
the outer unit normal directions of the two domains with respect to �. Hereon, to sim-
plify the notation, we call master model the problem set in �1, and slave model the
one set in �2; correspondingly, we refer to their solutions as to the master solution
and the slave solution, respectively.

2.1 Steady case

We first consider a steady coupled problem; the unsteady counterpart will be
described in the following subsection. Given two input parameter vectors μ1 ∈ Pd1

and μ2 ∈ Pd2 , d1, d2 ≥ 1, and two functions f1(μ1) and f2(μ2) defined on �i ,
i = 1, 2 respectively, we look for u1 and u2 such that

⎧
⎪⎨

⎪⎩

L1(μ1)u1(μ1) = f1 in �1

BCs(μ1) on ∂�1 \ �
∂u1(μ1)

∂n
= 0 on �,

and

⎧
⎪⎨

⎪⎩

L2(μ2)u2(μ2) = f2 in �2

BCs(μ2) on ∂�2 \ �

u2(μ2) = u1(μ1) on �.
(1)

The two problems in (1) can represent either two different physical systems, or the
multi-domain form of the same system, where L1 and L2 denote two parametrized
second order elliptic operators. The master model is made independent from the slave
one imposing homogeneous Neumann boundary conditions on �, while Dirichlet
boundary conditions

u2(μ2) = u1(μ1) on �, (2)

are applied at the interface to ensure the continuity of the solution from the master
to the slave model. One-way coupled problems such as this can arise, e.g., from a
partitioned scheme’s splitting operation on a two-way coupled problem featured by
Dirichlet-Neumann interface conditions.

The high-fidelity FOM would then require to (i) solve the master model with FE
method, then (ii) extract the master solution at the domains’ interface and (iii) use
the data obtained in (ii) as Dirichlet boundary conditions to solve the slave model
with FE method. This procedure is affordable if the grids used are conforming at the
interface of the two domains; however, it usually involves the application of methods
such as the MORTAR [15, 19, 20, 44] or the INTERNODES [17, 18, 45, 46] methods
in the non-conforming case, which might become very expensive especially for three-
dimensional domains.

Given the parameterized nature of the problem, the solutions ui can be seen as two
maps u1 : Pd1 → V1 and u2 : Pd2 → V2 that to any μ1 ∈ Pd1 and μ2 ∈ Pd2

associate the solutions u1(μ1) and u2(μ2) in V1 and V2, where

Vi = H 1
∂�i,D

(�i) := {v ∈ H 1(�i) : v|∂�i,D
= 0}, i = 1, 2; (3)

here ∂�i,D are suitable disjoint subsets of ∂�i \ � for Dirichlet boundary conditions
of problems (1), respectively. Hereon, we will consider only homogeneous Neumann
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boundary conditions on the ∂�i \ � while, in presence of Dirichlet boundary con-
ditions, a lifting technique can be applied. We will assume that the solution of (1)
exists and is unique for each μi ∈ Pdi .

2.2 Unsteady case

With the same notation of (1), we consider the following time-dependent problem:
assuming that μ1 ∈ Pd1 and μ2 ∈ Pd2 , d1, d2 ≥ 1 are two set of time-independent
parameters, f1(t; μ1), f2(t; μ2) are time-dependent functions defined on�i×(0, T ),
i = 1, 2 respectively, and L1 and L2 are second-order elliptic operators, we look for
u1(t; μ1) and u2(t; μ2) such that

⎧
⎪⎪⎨

⎪⎪⎩

∂u1(t; μ1)

∂t
+ L1(μ1)u1(t; μ1) = f1(t; μ1) in �1 × (0, T )

BCs(t; μ1) on ∂�1 \ � × (0, T )

u1(0; μ1) = u1,0(μ1) on �1 × {0},
(4)

⎧
⎪⎪⎨

⎪⎪⎩

∂u2(t; μ2)

∂t
+ L2(μ2)u2(t; μ2) = f2(t; μ2) in �2 × (0, T )

BCs(t; μ2) on ∂�2 \ � × (0, T )

u2(0; μ2) = u2,0(μ2) on �2 × {0},
(5)

where T > 0 represent the final time. As in Section 2.1, we consider homoge-
neous Neumann interface conditions for the master models and Dirichlet interface
conditions as coupling conditions on the slave model:

u2(t; μ2) = u1(t; μ1) on �.

Note that the time variable t has been added to account for the time dependency of
the solution, while the spatial variable x is implicitly considered.

Remark 1 The differential operators L1 and L2 here considered are time indepen-
dent; however, the method presented in this work can be easily adapted to the case
of time-dependent partial differential operators, too. Note that an unsteady coupled
problem can also be obtained coupling a time-dependent problem in �1 and a time-
independent problem in �2, or viceversa. For example, if a time-dependent model
is one-way coupled with a time-independent model, the slave model becomes time-
dependent through the Dirichlet boundary conditions received from the master model
(see the test case ii of Section 7.2).

Similar considerations on the resolution affordability can be stated as for the
steady case. Time-dependent models such as (4)– (5) could be solved computing, for
each time instant, (i) the master solution, (ii) extracting the Dirichlet interface con-
ditions from the master model, and (iii) using them to solve the slave model. Also in
this case, we set ROM strategies for unsteady models starting from their discretized
form with FE methods. As before, Neumann terms can appear in the formulation
according to the problem considered, while in presence of Dirichlet boundary con-
ditions, the lifting method can be implemented. Hereon, we assume that the solution
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of the proposed problems exists and is unique for each parameter instance and each
time t > 0.

3 High fidelity discretization

The RB method proposed in this work aims at reducing the computational costs
of solving a parametrized one-way coupled problem, for instance, when multiple
queries with different parameters values are required; in principle, it can be applied
in case of both conforming or non-conforming grids at the domains interface. For the
sake of generality, here we consider interface non-conformity through two a priori
independent discretizations on the two domains, with two families of triangulations
Th1 = ∪mT1,m in �1 and Th2 = ∪mT2,m in �2, respectively. For instance, one of the
two meshes can be made by simplices (triangles or tetrahedra) and the other by quads
(quadrilaterals of hexahedra), or both can be made by the same kind of elements,
however featuring different mesh sizes h1 and h2. Moreover, different polynomial
degrees p1 and p2 can be used to define FE spaces. Hereon we will restrict ourselves
to quads since they are the elements used in all the test cases presented in Section 7.

Additionally, we denote by �1 and �2 the internal interfaces of �1 and �2, respec-
tively, induced by the triangulations Th1 and Th2 . Note that �1 = �2 = � if the
interface � is a straight segment (for d = 2) or a plane (for d = 3), otherwise
�1 and �2 can also be different. In case of non-conforming grids, we have signal
interpolation if �1 = �2 or signal projection if �1 �= �2 (see Fig. 1).

3.1 Steady case

In the steady case, for each partition Thi
, we first define the FE spaces

X
qi

hi
= {v ∈ C0(�i) : v|Ti,m

∈ Qqi
, ∀Ti,m ∈ Thi

}, i = 1, 2 (6)

where qi is a chosen integer and Qqi
represents the elements of the quads space, and

then introduce the following finite dimensional trial spaces

Vhi
= {v ∈ X

qi

hi
: v|∂�i,D

= 0}, i = 1, 2, (7)

of dimension Ni , i = 1, 2. Using a Galerkin-FE approximation, each of the two
problems in (1) yields a parametrized linear system

ANi
(μi )ui (μi ) = fNi

(μi ), (8)

Fig. 1 �1 and �2 obtained through the triangulations T1,h1 and T2,h2 . On the left, since �1 = �2 = �, we
do an interpolation; on the right, since �1 �= �2, we do a projection of the Dirichlet interface matching
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where ANi
(μi ) ∈ R

Ni×Ni denotes the stiffness matrix, and fNi
(μi ) ∈ R

Ni is the
right-hand side vector, i = 1, 2. For the sake of space, we do not report the detailed
derivation of these systems, which is indeed quite standard [47]. Note that we exploit
the one-to-one correspondence between functions in X

qi

hi
and vectors in R

Ni , as usu-

ally done when dealing with the Galerkin-FE method; here ui (μi ) ∈ R
Ni denotes the

vector of degrees of freedom of the approximation ui,h(μi ) ∈ X
qi

hi
of ui(μi ).

Finally, at the interface, we prescribe Dirichlet conditions that read as

u2|� (μ2) = u1|� (μ1)

if the two interfaces are conforming, or

u2|�2 (μ2) = �u1|�1 (μ1)

in the case of nonconforming interfaces, where � is a suitable interpolation operator.
For instance, in Section 7, � will be a linear interpolation operator, i.e., we will inter-
polate high fidelity Dirichlet interface data through a linear interpolation algorithm
based on VTK subroutines [48].

Remark 2 Note that the reduced order technique here presented can be applied
regardless of the high fidelity interpolation scheme considered. Moreover, in the
online ROM computations, such high fidelity interpolation is replaced by DEIM.
Thus, in principle, any interpolation method can be considered in the high fidelity for-
mulation, according to the precision required by the solution, e.g., the INTERNODES
method define � by means of rescaled localized radial basis functions (RL-RBF)
[18, 49].

3.2 Unsteady case

The spatial discretization of the time-dependent problems (4)–(5) yields a dynamical
system of the form

{

MNi

d

dt
ui (t; μi ) + ANi

(μi )ui (t; μi ) = fNi
(t; μi ), t ∈ (0, T )

ui (0; μi ) = ui,0(μi )
(9)

for i = 1, 2, where MNi
∈ R

Ni×Ni is the mass matrix related to the domain �i and
ui,0(μi ) is the vector of degrees of freedom of the approximation of the initial data
ui,0(μi ); see, e.g., [20] for further details.

Once discretized in space, time discretization can then be performed according
to different numerical schemes [20, 50, 51], such as, e.g., backward differentiation
formulas (BDF). Introducing a uniform partition of (0, T ) in Nt subintervals, each
of length �t = T/Nt , and denoting by tn = n�t the nth time instant, we can
approximate the solution at time tn as

un
i (μi ) 	 ui (t

n; μi ) ∀n = 0, . . . , Nt ,

and the time derivative through the backward Euler formula as

∂ui (t
n+1; μi )

∂t
≈ un+1

i (μi ) − un
i (μi )

�t
∀n = 0, . . . , Nt − 1.
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Remark 3 Although the same time discretization has been used in both subprob-
lems. A staggered numerical scheme can be implemented, employing different time
discretizations on the master and the slave sub-problems. However, if the time step
selected for the slave problem is not equal to, or a multiple of, that used for the mas-
ter problem, a further interpolation method has to be added at the interface to ensure
the correct transmission of the Dirichlet interface conditions. For the sake of simplic-
ity, in this work, we only account for the case in which the same time discretization
is employed.

The high-fidelity FOM in the unsteady case thus reads: find un+1
i (μi ) ∈ R

Ni such
that

{(
MNi

�t
+ ANi

(μi )
)
un+1

Ni
(μi ) = fn+1

Ni
(μi ) + MNi

�t
un

Ni
(μi ), n = 0, . . . , Nt − 1,

u0Ni
(μi ) = uNi,0(μi ),

(10)
for i = 1, 2. Finally, we impose Dirichlet interface conditions, under the form

un+1
2|� (μ2) = un+1

1|� (μ1) ∀n = 0, . . . , Nt − 1

if the two interfaces are conforming, or

un+1
2|�2

(μ2) = �un+1
1|�1

(μ1) ∀n = 0, . . . , Nt − 1

in the non-conforming interfaces case, where � is a suitable interpolation operator.

4 Reduced order modeling

The proposed ROM strategy is a modular procedure aiming at reducing separately
the three main parts of the one-way coupled problem considered, that is, the master
model, the interface Dirichlet conditions, and the slave model, relying on a POD-
Galerkin-DEIM approach [27–29]. For both the master and the slave models, the goal
is to approximate the FOM solution by means of a reduced basis obtained from a set
of FOM snapshots — that is, solutions obtained through the FOM for selected val-
ues of the parameters — while we seek for a low-dimensional representation of the
parametrized Dirichlet data (see Section 5). Note that the reduction of the slave prob-
lem depends not only on the number of basis functions introduced to approximate its
solution, but also on the chosen approximation of the interface data.

4.1 Steady case

Let us start by considering the steady case of Section 3.1. Since the slave model is
dependent on non-homogeneous Dirichlet conditions at least at the interface, it is
convenient to rely on a lifting technique. Therefore, we can express the slave solution
as

u2(μ2) = ũ2(μ2) + u2,D(μ2)

E. Zappon et al.Page 8 of 4221



where u2,D(μ2) is the lifting vector such that u2|∂�2,D
(μ2) = u2,D(μ2). Then, the

FOM slave model can be replaced by an equivalent FOM involving Dirichlet bound-
ary conditions, in which the contribution of Dirichlet data is moved to the right hand
side: find ũ2(μ2) such that

AN2(μ2)ũ2(μ2) = fN2(μ2) − AN2u2,D(μ2). (11)

Following a standard POD-Galerkin approach (see, e.g., [29]), during the offline
stage, we define two sets of snapshots S1 = {u1(μk

1), μk
1 ∈ Pd1}, S̃2 =

{ũ2(μk
2), μk

2 ∈ Pd2}, for the master and the slave model, respectively, by solving
the FOM problems (8) for suitably chosen parameter values (sampled, e.g., through
latin hypercube sampling [52, 53]).

For each set of snapshots, we construct a global reduced basis through POD; the
corresponding matrix Vi ∈ R

Ni×ni , ni � Ni , i = 1, 2, collects, columnwise, the
obtained basis functions. To define the ROM, we rely on a Galerkin-RB strategy, that
is, we project the original FOM onto the reduced spaces defined by each Vi , i = 1, 2.
Then, in the online stage, the approximation of the master solution can be sought
under the approximated form

u1(μ1) ≈ V1un1(μ1), (12)

where un1(μ1) is the solution of the reduced master problem

An1(μ1)un1(μ1) = fn1(μ1), (13)

where An1(μ1) = V
T
1 AN1(μ1)V1 and fn1(μ1) = V

T
1 fN1(μ1). Similarly, the

approximation of the slave solution is given by

u2(μ2) ≈ V2ũn2(μ2) + u2,D(μ2), (14)

where ũn2(μ2) is the solution of the reduced slave problem

An2(μ2)ũn2(μ2) = fn2(μ2) − V
T
2 AN2(μ2)u2,D(μ2), (15)

denoting by An2(μ2) = V
T
2 AN2(μ2)V2 and fn2(μ2) = V

T
2 fN2(μ2). Note that even

if ũn2(μ2) has homogeneous Dirichlet boundary conditions, it depends on the inter-
face data; thus, the interface conditions must be considered as a parameter-dependent
quantity in the reduction of the slave model.

Finally, the parametric Dirichlet data exchange at the interface of the two domains
has to be reduced. Assuming that there is a portion of the slave boundary ∂�2,D \ �

with Dirichlet boundary conditions different from the interface data, we can write
u2,D(μ2) = u2|∂�2,D\� (μ2) + u2|� (μ2), so that u2|∂�2,D\� (μ2) is just another term
of the right hand side of (15), while u2|� (μ2) = u1|� (μ1). For simplicity, here we
assume that u2,D(μ2) corresponds to the data coming from the master model, i.e.,
u2,D(μ2) = u1|� (μ1).

4.2 Unsteady case

Let us now move to the unsteady case of Section 3.2. In this case, the set of snap-
shots is then made by FOM solutions collected at each time step, for each selected
parameter value. As for the steady case, we consider the lifting technique to isolate
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the non-homogeneous Dirichlet interface conditions, i.e., the slave solution un+1
2 (μ2)

becomes

un+1
2 (μ2) = ũn+1

2 (μ2) + un+1
2,D (μ2), n = 0, . . . , Nt − 1.

The slave FOM model therefore reads: find ũn+1
2 (μ2) ∈ R

N2 such that
⎧
⎪⎪⎨

⎪⎪⎩

(
MN2
�t

+ AN2(μ2)
)
ũn+1
2 (μ2) = fn+1

N2
(μ2) + MN2

�t
un
2(μ2)

−
(
MN2
�t

+ AN2(μ2)
)
u(n+1)
2,D (μ2), n = 0, . . . , Nt − 1,

ũ02(μ2) = u2,0(μ2) − u02,D(μ2).

Considering a POD-Galerkin approach, we define the snapshots sets as S1 =
{ut1

1 (μk
1), . . . , u

tNt

1 (μk
1), μk

1 ∈ Pd1}, and S̃2 = {ũt1
2 (μk

2), . . . , ũ
tNt

2 (μk
2), μk

2 ∈ Pd2},
for the master and the slave model, respectively. POD is then applied on each snap-
shots set, yielding also in this case a global reduced basis, encoded in the matrix
Vi ∈ R

Ni×ni , ni � Ni , i = 1, 2. The expression of the ROM using a POD-Galerkin
method can be obtained pursuing a Galerkin projection onto the reduced space for
both the master and the slave model.

The ROM for the master problem reads: find un+1
n1

(μ) ∈ R
n1 such that

{(
Mn1
�t

+ An1(μ1)
)
un+1

n1
(μ1) = fn+1

n1
(μ1) + Mn1

�t
un

n1
(μ1), n = 0, . . . , Nt − 1,

u0n1(μ1) = un1,0(μ1),

with Mn1 = V
T
1 MN1V1, An1(μ1) = V

T
1 AN1(μ1)V1, fn+1

n1
(μ1) = V

T
1 f

n+1
N1

(μ1), and
un1,0(μ1) the projection of the initial datum for the master problem uN1,0(μ1) on the
reduced basis. Note that now the right hand side fn+1

N1
(μ1) is time dependent and must

be reassembled at each time step. If the matrix AN1(μ1) is time independent, then the
reduced matrix An1(μ1) can be pre-computed and stored offline, and directly used
online.

The ROM for the slave problem reads: find ũn+1
n2

(μ2) ∈ R
n2 such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
Mn2
�t

+ An2(μ2)
)
ũn+1

n2
(μ2) = fn+1

n2
(μ2) + Mn2

�t
un

n2
(μ2)

−
(

V
T
2 MN2
�t

+ V
T
2 AN2(μ2)

)

u2,D(μ2)
(n+1), n = 0, . . . , Nt − 1,

ũ0n2(μ2) = ũn2,0(μ2) − u0n2,D(μ2).

Here Mn2 = V
T
2 MN2V2, An2(μ2) = V

T
2 AN2(μ2)V2, fn2(μ2) = V

T
2 f̃

n+1
N2

(μ2), and

ũn2,0(μ2) and u0n2,D(μ2) are the projections on the slave reduced basis of the initial
datum for the slave problem and the initial interface Dirichlet data, respectively. If
AN2(μ2) is time dependent, its reduced version can be stored in the offline phase,
while the right hand side must be assembled at each time step.

Remark 4 The possible presence of nonlinear terms in the master or slave problems
can also be treated relying on a suitable hyper-reduction technique using, for instance,
the DEIM [37–41, 54]. For simplicity, in this paper, we only focus on linear problems.
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5 Interface DEIM reduction

Continuity of the solution at the interface of two problems domains is essential, and
usually easy to be achieved if the discretization meshes are conforming. In this case,
given the possible different global numbering of the degrees of freedom of the two
discretizations, a map between the interface grids numbering must be computed.
Moreover, in presence of non-conforming meshes, some interpolation method must
be applied. Especially when large domains and very fine discretizations are consid-
ered, in both conforming or non-conforming cases, this procedure might become very
expensive.

When dealing with parametrized solution and, thus, parametrized interface con-
ditions, we must reduce the computational costs of this information transfer, too.
Using the DEIM [37–39], we aim at reducing the dimension of the data to be trans-
ferred between the two domains in the conforming case and, at the same time, to
interpolate or project such data in presence of non-conforming grids. To do this,
we exploit a well chosen set of basis functions, starting from a set of snapshots of
the Dirichlet interface data. Since this reduction step is independent from both the
master and the slave model, the resulting interface DEIM reduction can be used as
an efficient interpolation or projection method across the non-conforming interface
grids, both at the FOM and at the ROM level.

Denoting by Yhk
= {λ = v|�, v ∈ X

qk

hk
} the space of traces of functions on �,

we define the operator � : Yh1 → Yh2 to transfer the information from the master to
the slave model. When �1 and �2 coincide, � is the classical Lagrange interpolation
operator defined by

� φh2
(vi|�1 ) = φh2

(vi|�1 ), i = 1, . . . , N1|�1 ∀φh2
∈ Yh2 ,

where N1|�1 is the dimension of �1. In the following, we will equally denote by N2|�2
the dimension of �2.

Let us recall that hi and pi are the mesh size and the polynomial degree, respec-
tively, for the FE discretization of the problem set on �i – see Section 3. In case of
conforming interface grids, that is when h1 = h2 and q1 = q2, � represents the map
between the interface DoFs numbering; if the interface meshes are non-conforming,
� is the interpolation or projection operator from the master to the slave interface,
e.g., a linear interpolation as in Section 7.

Following the standard DEIM approach [38], during the offline phase we compute
the set of snapshots for the Dirichlet interface data, that is, we compute multiple
instances of the parametrized interface master solution u1|�1 (μ1) solving the master

problem for each μk
1 ∈ Pd1 . The set of snapshots is then provided by the Dirichlet

data already interpolated on the slave interface grids, that is, we consider as snapshots
set

SD = {u2|�2 (μ
k
1), μk

1 ∈ Pd1}, (16)

where u2|�2 (μ
k
1) = �(u1|�1 (μ

k
1)). According to the assumption of Section 4, i.e., that

the only Dirichlet boundary is the interface between the master and the slave domain,
we have u2,D(μk

1) = �(u1|�1 (μ
k
1)).
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Then, using POD, we build the basis �D to define a low-dimensional representa-
tion of Dirichlet data, that is, to approximate u2,D(μk

1) by

u2,D(μk
1) 	 �Du2,M(μk

1) (17)

where u2,M(μk
1) is a vector of coefficients of dimension M � N2|�2 . Moreover,

using a greedy algorithm [40], we iteratively select M indices

I2,D ⊂ {1, . . . , N2|�2 }, | I2,D |= M (18)

from the basis �D which minimize the interpolation error over the snapshots set
according to the maximum norm. Therefore, I2,D collects those indices of the DoFs
which FOM data are extracted from the slave interface at – they are usually referred
to as magic points in ROM computations.

Then, in the online phase, given a new parameter μ1 ∈ Pd1 , the coefficient vec-
tor u2,M(μ1) can be found imposing M interpolation constraints at the M points
corresponding to the selected indices, that is, by solving the linear system

�D|I2,D u2,M(μ1) = u2|I2,D (μ1),

where �D|I2,D ∈ R
M×M is the matrix containing the rows of �D corresponding to

the set of indices I2,D . In practice, we can express

u2,D(μ1) 	 �D�−1
D|I2,D

u2|I2,D (μ1). (19)

To include the interpolation or projection of the Dirichlet data, during the offline
phase, we replace u2|I2,D (μ1) with the interface solution of the master problem
in the corresponding DoFs. Therefore, for each index i2 ∈ I2,D , we extract the
corresponding DoF p2 in Cartesian coordinates and look for

p1 = min
pj
1∈DoFs�1

(dist(p2 − pj

1)),

meaning the nearest DoF to p2 in the master interface. Then, we search the index of
p1 (with respect to the master numeration) to construct a set of indices

I1,D = {i i2
1 }i2∈I2,D .

Hence, during the online phase, the values needed to reconstruct the Dirichlet
data directly on the slave interface are given by the values of the master solution u1
extracted in correspondence to the i1-th DoF according to I1,D , i.e., in the i1th magic
point, meaning that u2|I2,D (μ1) = u1|I1,D (μ1) and

u2,D(μ1) 	 �D�−1
D|I2,D

u1|I1,D (μ1).

We summarize the interface DEIM reduction in Algorithm 1.

Remark 5 The indices in I2,D are not necessarily listed in ascending order. More-
over, I1,D must be ordered as I2,D .

Remark 6 When �1 = �2 = � and the meshes are conforming, we can find a perfect
match between corresponding interface DoFs, that is, we only reduce the dimension
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of the data to be transferred between the two problems. Instead, if the meshes are
non-conforming or �1 �= �2, the search of the corresponding DoFs yields an error,
especially when the two meshes are very coarse. Obviously, if the master discretiza-
tion is much finer than the slave one, the possibility to find a good match between the
DoFs in the two interfaces increases. Therefore, to minimize such error, we suggest
to choose a finer mesh in the master domain than the one in the slave domain. How-
ever, since the approximation errors obtained with the ROM schemes here considered
are strongly dependent on the problems at hand, a systematic investigation of the
best choice of (and the relation between) the master and slave interface discretization
cannot be provided in general.

Remark 7 Differently from the POD used for the master and slave reduction, the
DEIM-based interpolation presented above does not depend on time. Then, in the
unsteady case, it is sufficient to include in the set of snapshots (16) the time-
dependent interface data to be able to apply the presented method at the domains
interface (see Section 7).

During the DEIM reduction of the interface data, we have considered all vectors
related to u1(μ1) and u2(μ2) in FOM form. Therefore, when also the master and the
slave models are reduced, during the online computation u1(μ1) and u2(μ2) must
be reconstructed from the corresponding reduced vectors un1(μ1) and un2(μ2). This
is an expensive procedure especially when the problem is time dependent and the
FOM solutions must be reconstructed at each time step. To reduce the computational
costs, we compute the FOM solution only for the selected magic points, introducing
an extraction matrix U ∈ R

M×N1 that can be assembled during the offline phase
once the index set I1,D has been computed. Then, each row of U has all entries
equal to zero except for the one in the column corresponding to the index i1 ∈ I1,D ,
which is equal to one. For example, suppose that I1,D has only three elements, e.g.,
I1,D = {5, 3, Ni}, then U ∈ R

3×Ni is such that

U =
⎡

⎣
0 0 0 0 1 0 0 . . . 0
0 0 1 0 0 0 0 . . . 0
0 0 0 0 0 0 0 . . . 1

⎤

⎦ .

Therefore, according to equation (12), the magic points can be directly computed as
follows

u1|I1,D (μ1) = UV1un1(μ1), (20)

and the Dirichlet data can be found through

u2,D(μ1) 	 �D�−1
D|I2,D

UV1un1(μ1).

Note that all the terms except for un1 in the expression above are parameter-
independent, and therefore the product �D�−1

D|I2,D
UV1 ∈ R

M×n1 can be stored once

and for all offline, to be used then online.
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Algorithm 1 Interface DEIM procedure.

Similarly, it is possible to compute directly the reduced Dirichlet term
V

T
2 AN2u2,D(μ1) in equation (15) without reconstructing the FOM vector u2,D(μ1) ∈

R
N2 . In fact, the lifting term is

V
T
2 AN2u2,D(μ1) = V

T
2 AN2�D�−1

D|I2,D
UV1un1(μ1),

where also V2 and AN2 are parameter independent. Hence, in the offline phase,
the matrix product VT

2 AN2�D�−1
D|I2,D

UV1 ∈ R
n2×n1 can be computed and stored.

The complete reduction of the one-way coupled problem can be found in Algorithm
2. Note that, following the proposed procedure, in the online phase, only reduced
dimension operations are needed.
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Algorithm 2 Complete ROM procedure.

Efficient and certified solution of parametrized... Page 15 of 42 21



6 A posteriori error estimates

In this section, we derive suitable a posteriori estimates for the norm of the errors
obtained with the proposed reduced techniques in both the steady and the unsteady
case. Since POD and DEIM techniques are standard, here we only consider the error
between the high-fidelity slave solution and the reduced order slave solution, which
is the final result of the coupled ROM, namely

‖u2(μ2) − V2un2(μ2)‖2. (21)

To this end, we relate the slave error to the ROM errors obtained for the master solu-
tion and the interface data. Since the slave and the master solutions are constructed
in two different reduced spaces, we consider only the 2-norm which can be equally
applied in both cases.

Remark 8 Even if the presented steady and unsteady estimates might seem of little
practical use, they can be useful to assess the importance of different error terms and
then choose appropriate tolerances during each coupled ROM step. Indeed, given the
modular nature of the model, controlling the accuracy of each reduction step, i.e., (i)
of the master ROM solution, (ii) of the interface DEIM approximation, and (iii) of
the slave ROM solution, ensures the final expected accuracy of the slave solution.

6.1 Steady case

Since we aim at finding an estimate of the error computed with the POD reduction
and DEIM, referring to [29], we can define the discrete residual for a generic steady
reduced-order problem according to equation (8) as

r(uN(μ)) = fN(μ) − AN(μ)Vun(μ), (22)

where N and n are the FOM and the ROM dimensions, respectively, and μ ∈ Pd is
the parameter vector. Then, an error bound can be found by estimating the three error
terms separately, according to the following proposition.

Proposition 1 For any μ1 ∈ Pd1 and μ2 ∈ Pd2 , let us denote by ‖u2,h2(μ2) −
V2un2(μ2)‖2 the slave ROM error. Then, the following error estimates holds:

‖u2(μ2) − V2un2(μ2)‖2 ≤ 1
σmin(AN2 (μ2))

‖r2(ũ2(μ2))‖2
+‖�D|I2,D ‖2‖(I − �D�−1

D )u2,D(μ1)‖2
+ C

σmin(AN1 (μ1))
‖r1(u1(μ1))‖2,

where σmin(ANi
), i = 1, 2 denote the smallest singular value of ANi

, ri , i = 1, 2
are the discrete residual (22) of the master model and slave model with homoge-
neous Dirichlet interface conditions respectively, I is the identity matrix and C =
‖�D�−1

D|I2,D
U‖2.
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Proof Exploiting the lifting technique to handle the Dirichlet boundary conditions in
(14), and using the triangular inequality, we can first split the error (21) as

‖u2(μ2) − V2un2(μ2)‖2 = ‖ũ2(μ2) + u2,D(μ2) − V2ũn2(μ2) − (V2un2(μ2))|�2‖2≤ ‖ũ2(μ2) − V2ũn2(μ2)‖2 + ‖u2,D(μ2) − (V2un2(μ2))|�2‖2.

Then, since (V2un2(μ2))|�2 denotes the computed interface Dirichlet data, accord-
ing to (19), we can write

‖u2(μ2) − V2un2(μ2)‖2 ≤ ‖ũ2(μ2) − V2ũn2(μ2)‖2 + ‖u2,D − (V2un2(μ2))|�2‖2= ‖ũ2(μ2) − V2ũn2(μ2)‖2
+‖u2,D(μ) − �D�−1

D|I2,D
UV1un1(μ1)‖2,

where �D is the matrix of basis functions for the interface data defined by the DEIM
as in (17), and U is the extraction matrix of (20). Adding and subtracting the same
quantity �D�−1

D|I2,D
Uu1(μ1) on the last term on the right-hand side of the above

inequality, we finally obtained a relation between the three computed errors of the
following form

‖u2(μ2) − V2un2(μ2)‖2 ≤ ‖ũ2(μ2) − V2ũn2(μ2)‖2
+‖u2,D(μ1) − �D�−1

D|I2,D
Uu1(μ1)‖2

+‖�D�−1
D|I2,D

U‖2‖u1(μ1) − V1un1(μ1)‖2.
(23)

Note that in the second term u2,D|I2,D (μ1) = Uu1(μ1), so that

‖u2,D(μ1) − �D�−1
D|I2,D

U u1(μ1)‖2 = ‖u2,D(μ1) − �D�−1
D|I2,D

u2,D|I2,D (μ1)‖2.

Denoting by C = ‖�D�−1
D|I2,D

U‖2, we can finally bound the above quantities by

‖ũ2(μ2) − V2ũn2(μ2)‖2 ≤ 1
σmin(AN2 (μ2))

‖r2(ũ2(μ2))‖2,
‖u1(μ1) − V1un1(μ1)‖2 ≤ 1

σmin(AN1 (μ1))
‖r1(u1(μ1))‖2 (24)

and (see [29], chapters 3 and 10, for further details)

‖u2,D(μ1) − �D�−1
D|I2,D

Uu1(μ1)‖2 ≤ ‖�D|I2,D ‖2‖(I − �D�−1
D )u2,D(μ1)‖2.

6.2 Unsteady case

To find an estimate of the reduced error (21) in the time-dependent case, following
[55] and [56], we can define the generic residual

r(t; μ) = AN(μ)Vun(t; μ) + fN(t; μ) − V
d

dt
un(t; μ), t ∈ (0, T ). (25)

Here, with a slight abuse of notation, we callAN(μ) = −M
−1
N AN(μ) and fN(t; μ) =

M
−1
N fN(t; μ) according to the dynamical system formulation of equation (9), being

μ ∈ Pd the parameter vector; moreover, let I be the identity matrix.
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Proposition 2 Let ANi
(μi ), i = 1, 2 be time-invariant matrices whose eigenvalues

have non-negative real part for all μ1 ∈ Pd1 and μ2 ∈ Pd2 , respectively. Then, for
each t ∈ (0, T ), the following error estimate holds:

‖u2(t; μ2) − V2un2(t; μ2)‖2 ≤
C2(μ2)

(

‖ũ2(0; μ2) − V2ũn2(0; μ2)‖2 +
∫ t

0
‖r2(τ ; μ2)‖2dτ

)

+‖�D|I2,D ‖2‖(I − �D�−1
D )u2,D(t; μ2)‖2

+C1(μ1)C3

(

‖u1(0; μ1) − V1un1(0; μ1)‖2 +
∫ t

0
‖r1(τ ; μ1)‖2dτ

)

,

where C1(μ1) and C2(μ2) are two constants such that

sup
t∈[0,T ]

‖ exp(AN1(μ1)t)‖2 ≤ C1(μ1) and sup
t∈[0,T ]

‖ exp(AN2(μ2)t)‖2 ≤ C2(μ2),

C3 = ‖�D�−1
D|I2,D

U‖2, and ri , i = 1, 2 are the discrete residual (25) of the master

and slave model with homogeneous Dirichlet boundary conditions, respectively.

Proof Fixing a time instant t ∈ [0, T ], as in proposition 1, it is possible to link the
slave error (21) to the master and interface errors according to (23), that is,

‖u2(t; μ2) − V2un2(t; μ2)‖2 ≤ ‖ũ2(t; μ2) − V2ũn2(t; μ2)‖2
+‖u2,D(t; μ1) − �D�−1

D|I2,D
Uu1(t; μ1)‖2

+‖�D�−1
D|I2,D

U‖2‖u1(t; μ1) − V1un1(t; μ1)‖2,
where�D is the basis functions matrix defined in (17), andU the extraction matrix of
(20). Moreover, following proposition 4.1 of [55] (see Appendix A for the complete
proof), for an unsteady (linear) problem handled through POD, it holds that, for each
μ ∈ Pd ,

‖u(t; μ) − Vun(t; μ)‖2 ≤ C(μ)

(

‖u(0; μ) − Vun(0; μ)‖2 +
∫ t

0
‖r(τ ; μ)‖2dτ

)

,

where C(μ) = supt∈[0,T ] ‖ exp(AN(μ)t)‖2 if AN(μ) is time invariant and has
eigenvalues with negative real part. This means that we can write

‖ũ2,h2(t; μ2) − V2ũn2(t; μ2)‖2 ≤ C2(μ2)‖ũ2(0; μ2) − V2ũn2(0; μ2)‖2
+C2(μ2)

∫ t

0‖r2(τ ; μ2)‖2dτ

and

‖u1(t; μ1) − V1un1(t; μ1)‖2 ≤ C1(μ1)‖u1(0; μ1) − V1un1(0; μ1)‖2
+C1(μ1)

∫ t

0‖r1(τ ; μ1)‖2dτ,

for suitable constants C1(μ) and C2(μ).
Furthermore, as explained in Section 5, the DEIM applied at the interface is inde-

pendent from the time variable, which means that the corresponding error can be
estimated as in the steady case [29] as

‖u2,D(t; μ1)−�D�−1
D|I2,D

Uu1(t; μ1)‖2 ≤ ‖�D|I2,D ‖2‖(I−�D�−1
D )u2,D(t; μ1)‖2.
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Hence, the proof is complete denoting C3 = ‖�D�−1
D|I2,D

U‖2.

7 Numerical results

In this section, we investigate the numerical performances of the proposed reduced
strategies on three one-way coupled problems: a steady-steady problem, an unsteady-
steady problem, and an unsteady-unsteady problem. All the simulations, both in the
online and offline stages, are performed in serial on a notebook with Intel Core
i7-10710U processor and 16 GB of RAM. The mathematical models and numeri-
cal methods presented in this section have been implemented in C++ and Python
languages and are based on lifex (https://lifex.gitlab.io/) [57], a new in-house high-
performance C++ FE library mainly focused on cardiac applications based on deal.II
FE core [58] (https://www.dealii.org).

7.1 Test case i : steadymodel - steadymodel

Let us first consider a steady-steady coupled problem, with a reaction-diffusion prob-
lem and a Laplacian as master and slave models, respectively, with suitable boundary
conditions:

⎧
⎪⎨

⎪⎩

−∇ · (α∇u) + βu = f in �1

u = 0 on ∂�1,D \ �
∂u
∂n1

= 0 on �,

and

{
−�v = 0 in �2
∂v
∂n2

= 0 on ∂�2,N ,

coupled with the following Dirichlet conditions at the interface

v = u on �.

We define f (x, y, z) = π
4 yx2 sin

(
π
2 y

)
ez−1, and we vary the two parameters α and

β in [0.5, 5].
The models are solved in three-dimensional domains represented by two concen-

tric hollow spheroids centered in the origin; in particular, �1 is the internal spheroid
with inner and outer radii equal to 0.5 m and 1.5 m, while �2 is the external one,
with inner and outer radii equal to 1.5 m and 3.5 m. The interface � between the two
domains is the spherical surface corresponding to the external boundary �1 of �1
and the internal boundary �2 of �2 (see Fig. 2).

We solve this coupled problem first considering a different discretization, meaning
h1 �= h2 on �1 and �2 and the same FEM order, later, we will consider the same
discretization on �1 and �2 but different FE orders, meaning q1 �= q2.

7.1.1 Different mesh sizes

Figure 3 shows some FOM solutions obtained with FEM-Q1 elements for both mas-
ter and slave models, but different mesh sizes, with h1 = 0.1079 m and h2 =
0.4211 m, so that N1 = 202818 and N2 = 26146 (see Fig. 2).
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Fig. 2 Test case i — different discretizations. Master (left) and slave (center) domains, two hollow
spheroids discretized with different meshes, i.e., h1 = 0.107953 m and h2 = 0.421191 m. The master
domain is inside the slave domain (right). In red, the interface boundary �

In the training phase, the high fidelity Dirichlet interface data are interpolated
on the slave interface using the VTK lifex function that reads reference VTK data
from a polygonal surface during construction, performs a linear interpolation of the
point data array of the reference surface, and returns the interpolation results at spe-
cific input points. Therefore, given a parameters set, during the computation, (i) once
solved the master problem, the solution vector must be saved in Paraview readable
files, (ii) then, the reference surface must be extracted manually from the master
solution using the ParaView software in a post-processing procedure and saved as a
VTP file and, finally, (iii) in the slave assembling of the system, the VTK function
must read the data from such file and compute the interface vector u2,D through a
linear interpolation on the slave interface DoFs. Unfortunately, this method depends
on the user expertise and is quite expensive, especially in case of large dimensional
interface surface and/or fine discretizations. For the test cases, in this paper, with
the considered domains and discretizations, we have measured an extraction costs of
about 6 min for each simulation — note that different machine characteristics and
user experience might rapidly increase the total computational cost of the interface
treatments.

After the interpolation method has been applied, u2,D can be stored and used for
the interface DEIM training, so that the POD-DEIM-POD ROM can be constructed

Fig. 3 Test case i — different discretizations. Master (top) and slave (bottom) solutions for three different
instances of the parameters vector μ = [α, β]
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Fig. 4 Test case i — different discretizations. Singular values decay of the master solution (left), interface
Dirichlet data (center), and slave solution (right)

according to Algorithm 2. Since we apply POD also to compute the basis functions
for the interface data in the DEIM (see Section 5), we will refer to the POD toler-
ance not only for the master and the slave ROM, but also for the interface reduction
problem.

Then, we first evaluate the singular values decay of the master solutions,
the slave solutions, and the interface data, by varying the dimension Ntrain =

Fig. 5 Test case i — different discretizations. L2(�2) mean slave solution errors over Ntest trials fixing the
master POD tolerance and varying the interface and the slave POD tolerances
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{20, 40, 60, 80, 100} of the training set. The decay of the singular values, reported
in Fig. 4, shows that the training set needed to get a sufficiently rich reduction has
dimension at least Ntrain = 60. Moreover, the eigenvalues decay of the slave solu-
tion and interface data are very similar, conveying the strong dependency of the slave
solution from the Dirichlet data. We then select additional Ntest = 50 values of the
parameters vector to test our method.

The POD technique applied to reduce the master model is standard; thus, we con-
sider only the slave error as proof of the ability of our strategy to reconstruct the
correct solution (see Section 6). In particular, we define the absolute slave error as
the mean of the 2-norm error (21) over the Ntest solutions. Figures 5 and 6 show the
errors computed fixing the prescribed POD tolerance used to reduce the master model
and interface data, respectively. We recall that the slave solution is dependent on the
interface Dirichlet data, which in turn is influenced by the master ROM solution.
Thus, the slave error depends both on the master POD and interface DEIM errors.
In particular, as expected, a good approximation of the master solution but not of the
interface data (and vice versa) yields high errors for the slave solution independently
of the slave reduction operated. For instance, a 10−5 accuracy on the slave reduction

Fig. 6 Test case i — different discretizations. L2(�2) mean slave solution errors over Ntest trials fixing the
interface POD tolerance and varying the master and slave POD tolerances

E. Zappon et al.Page 22 of 4221



Fig. 7 Test case i — different discretizations. L2(�2) mean slave solution error vs the CPU time fixing
the master POD tolerance (left) and the interface POD tolerance (right) to 10−5 and varying the tolerances
used for the reduction of the other quantities

and a 10−2 accuracy for the master or the interface reduction yields an overall slave
error of about 10−2. Hence, a good approximation of all quantities is required to get
a good estimate of the final solution, i.e., on average, the same order of accuracy for
each step of the reduction must be imposed.

Regarding efficiency, Fig. 7 reports the error decay fixing the prescribed POD
accuracy of the master and interface data reduction versus CPU time. Increasing the
POD accuracy in one of the three reduction steps does not dramatically increase
the total cost, especially when the prescribed tolerance for the interface reduction
is fixed, entailing that the major computational cost is given by the master ROM
solution. For instance, with a 10−5 accuracy on the master POD, passing from a
10−2 to a 10−5 accuracy on the slave and the interface POD will cause an increase
of only 0.0044s (that is, an increase of about 0.23%) in the total computational costs.
A 0.04% reduction in the total cost is alternatively obtained if a 10−4 and a 10−5

accuracy is imposed on the interface and the slave POD, respectively. Therefore, a
very accurate reduction can be computed without loosing ROM efficiency.

Table 1 Test case i — different discretizations

High fidelity model Reduced order model

#FE FE solution #RB Offline Online Speed up

DoFs time time time

Master model 202k ∼ 19.76s 8 ∼ 1901s ∼ 1.82s 10.9x

Slave model 26k ∼ 1.85s 6 ∼ 103s ∼ 0.04s 46.3x

Interface data ∼ 6m 7 ∼ 484s 0.00s

Coupled model ∼ 381.61s ∼ 2488s ∼ 1.86s 205.2x

FOM and ROM dimensions with CPU times. We highlight the performances of the ROM with respect to
the interface Dirichlet data treatment and the speed up using colors from red (worst) to green (best)
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Finally, in Table 1, we report the dimensions and performances of the FOM and
ROM offline and online stages for one instance of the parameter vector, with master,
slave, and interface POD tolerances equal to 10−5. Up to a very expensive offline
phase, according to Fig. 7, a satisfying speed up of about 200 times is obtained
for the slave model given that, during the online reduced computation, data reading
and interpolation procedures are avoided, saving up about 98% of the computational
costs of the interface extraction. However, the greatest computational cost reduction
is gained by the complete coupled ROM due to the absence of the manual interface
extraction method, thus implying a saving of about 100% on the interface extraction.

7.1.2 Different FE orders

We repeat the same experiment considering the same mesh size for for the discretiza-
tion of the two domains and different FE orders. Specifically, we choose q1 = 2 and
q2 = 1, and h1 = h2 = 0.421191 so that N1 = 202818 and N2 = 26146. Also in
this case, we select Ntest = 50 values of parameter vector to test the coupled ROM. In
Figs. 8 and 9, we report the slave error (21) over the Ntest trials fixing the master and

Fig. 8 Test case i — different FE orders. L2(�2) mean slave solution errors over Ntest trials fixing the
master POD tolerance and varying the interface and the slave POD tolerances
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Fig. 9 Test case i — different FE order. L2(�2) mean slave solution errors over Ntest trials fixing the
interface POD tolerance and varying the master and the slave POD tolerances

the interface POD tolerances. Once more, a good approximation of the master solu-
tion and of the interface data provides an accurate slave solution, even if the influence

Fig. 10 Test case i — different FE order.L2(�2)mean slave solution errors vs. CPU time fixing the master
and the interface POD tolerances to 10−5, and varying the tolerances used for the reduction of the other
quantities
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Table 2 Test case i — different FE order

High fidelity model Reduced order model

#FE FE solution #RB Offline Online Speed up

DoFs time time time

Master model 202k ∼ 19.49s 8 ∼ 1950s ∼ 6.30s 3.1x

Slave model 26k ∼ 2.54s 6 ∼ 566s ∼ 0.05s 50.8x

Interface data ∼ 6m 7 ∼ 646s 0.00s

Coupled model ∼ 382.03s ∼ 3162s ∼ 6.35s 59.9x

High fidelity and reduced order model dimensions and CPU times. We highlight the performances of the
ROM model with respect to the interface Dirichlet data treatment and the speed up using colors from red
(worst) to green (best)

of the master solution seems to be higher than before — indeed, the error decay is
faster when fixing the interface POD tolerance than the corresponding master one.

Figure 10 and Table 2 show similar results regarding computational costs. The
overall speed up decreases to a third of the one obtained in the first test case, mainly
due to the high CPU time of the online master ROM. Such computational costs are
not related to the reduced order technique applied, but to the cost of assembling
the full-order stiffness matrix of the master model, which is higher when employ-
ing high order FEs compared to the Q1 case. Indeed, 6.25s are here needed for the
assembling of AN1 , whereas the remaining reduced order operations only take 0.25s.
This is, however, independent of the ROM scheme for coupled problems here pre-
sented, which results in an overall good performance, given the absence of interface
conditions to handle manually.

In Fig. 11, we compare the interface results for a given instance of parameters α

and β, and the location of the magic points selected through the DEIM procedure,
when employing the same FE order but different mesh sizes — that is the first test
case — or else Q2 − Q1 FE orders and the same mesh size on the master and slave
problems. The picture shows that even if the interface solutions remain quite similar,

Fig. 11 Magic points location on the interface of the master and slave domains, when using different mesh
size but the same FE order (left), or different FE order but the same mesh size (right). The model solution
computed for α = 0.95 and β = 3.65 is shown
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the magic points — although about the same in number — can have slightly different
locations. Moreover, in Fig. 12, we report the approximation errors over the interface
data, fixing the tolerance for the reduction of the master model and varying that of
the DEIM at the interface. The plots show that, independently of the master reduc-
tion, when dealing with a higher FE order, the DEIM is able to better approximate
the interface solution, even if very similar accuracy is achieved in both cases for a
prescribed DEIM tolerance of 10−5. A possible explanation of these results is that
the interface solutions are smoother when Q2 elements are employed than using Q1
elements, possibly enhancing the reduction process.

7.2 Test case ii : unsteadymodel - steadymodel

We now apply the proposed ROM to a steady-unsteady coupled problem. In partic-
ular, we choose the heat equation as master model and a simple Laplacian as slave
model. Hence,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

− ∇ · (α∇u) = f in �1 × (0, T )

u = 0 on ∂�1,D \ � × (0, T )
∂u
∂n1

= 0 on �1,N × (0, T )
∂u
∂n1

= 0 on � × (0, T )

u(0) = 0 on �1,

and

{
−�v = 0 in �2
∂v
∂n2

= 0 on ∂�2,N ,

with the usual coupling conditions at the interface

u = v on �.

We define f (x, y, z, t) = 1−sin(πy)cos(π
2 x), the time interval (0, 1) and we choose

to vary α in [0, 5]. We remark that the time variable is considered as a second param-
eter for the slave model. The two problems are set on two three-dimensional cubes
with a common face �. We choose ∂�1,D \� as the face of �1 opposite to �, ∂�1,N
as the faces of �1 perpendicular to �, and ∂�2,N = ∂�2 \ �. We used different

Fig. 12 L2(�) means interface errors over Ntest trials fixing the POD tolerance for the master problem
to 10−4 (left) and 10−5 (right), and varying the DEIM tolerance for the interface reduction. The plots
compare the interface errors decay when employing different mesh size (blue line) or different FE order
(red line) between the master and slave domain
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Fig. 13 Test case ii.Master (left) and slave (right) domains, with the interface boundary � reported in red

mesh sizes on �1 and �2, and the same FEM-Q1 elements. In particular, we fix
h1 = 0.0541 m and h2 = 0.1082 m, yielding a size of N1 = 35937 and N2 = 4913
for the two problems. See Fig. 13 for a graphical representation of the domains and
Fig. 14 for some FOM solutions at the interface.

We solve the master model using a BDF scheme of order 1 with �t = 10−2. Then,
we evaluate the singular values decay of the master and slave solutions and interface
data varying Ntrain = {10, 20, 40, 60, 80}. The corresponding snapshot matrices are
formed by Ns = NtNtrain full-order vectors, in which Nt = 100 is the number of
time-steps used to solve the heat equation. The eigenvalue decay reported in Fig. 15
shows that Ntrain = 40 is enough to get a sufficiently rich reduction. As before, the
eigenvalue decays of slave solution and interface data are quite similar.

We select Ntest = 5 values of α to test our procedure and we estimate the reduced
error on the slave domain as in test case i, considering the mean of the 2-norm error
over the NtNtest trial of the ROM and FOM slave solutions. We report the errors in
Figs. 16 and 17. We found that, once again, the reduced slave solution depends more
on the reduction of the master solution than on that of the interface data. In any case,

Fig. 14 Test case ii. Interface solutions for three different time instant (from left to right) and two different
instances of α (from top to bottom)
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Fig. 15 Test case ii. Singular values decay of the master solution (left), interface Dirichlet data (center),
and slave solution (right)

a good approximation of both quantities is required to obtain a good approximation
of the slave solution, as for the steady-steady test case of the previous section.

Figure 18 and Table 3 outline the performances of the ROM related to a fixed
prescribed POD tolerance of 10−5. The reported time values refer to a complete sim-
ulation in time with 100 time steps. Compared to the steady-steady test case, the
overall performances of the ROM worsens since some expensive tasks are repeated

Fig. 16 Test case ii. L2(�2) mean slave solution errors over Ntest trials fixing the master POD tolerance
and varying the interface and the slave POD tolerances
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Fig. 17 Test case ii. L2(�2) mean slave solution errors over Ntest trials fixing the interface POD tolerance
and varying the master and the slave POD tolerances

in the ROM at each time step. In particular, according to the applied BDF formula,
the right hand side of the master model depends of the FOM solution and therefore
must be reconstructed at each time step. This task can be avoided considering, for
example, a hyper reduction technique for the right hand side. In any case, an over-
all speed up of about 2 or 3 times can be obtained for each submodel, and a total
speed up of 7 times can be achieved for the coupled problem, since the manual inter-
face extraction and interpolation are not required in the online phase — two tasks
that would require almost the 75% of the FOM CPU time. As before, we point out
that considering an accuracy in the reduction of 10−5 for the three parts of the model
will increase of only about 3% the total computational costs of the simulation with
respect to a reduction with POD tolerances equal to 10−5 for the master model and
to 10−2 for the slave and the interface subproblems.

7.3 Test case iii : unsteadymodel - unsteadymodel

This last test case addresses a simplified mass transfer problem used to describe
the exchange of substances in biology between blood and the arterial wall. The
problem unknowns are the solute concentration convected along the vessel by blood
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Fig. 18 Test case ii. L2(�2) mean slave solution errors vs. CPU time fixing the master POD tolerance
(left) and the interface POD tolerance (right) to 10−5, and varying the tolerances used for the reduction of
the other quantities

and absorbed by the arterial wall under the blood stress induced on the vascular tis-
sue. This fluid-wall model is based on an advection-diffusion equation to describe the
solute dynamics in the arterial lumen, coupled with a pure diffusive equation account-
ing for the mass diffusion in the arterial wall [59, 60]. Usual coupling conditions are
of Robin type; here, however, we perform a further simplification considering an iso-
lated arterial vessel. Hence, we first solve the advection-diffusion equation for the
blood transport and, then, the pure diffusive equation in the arterial wall imposing
our usual interface Dirichlet conditions. Specifically, denoting Cf (x, t) and Cw(x, t)
the dimensionless concentrations of the solute in the lumen �f and in the wall �w,
respectively, we end up with the following problems:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂Cf

∂t
+ v · ∇Cf − αf �Cf = 0 in �f × (0, T )

Cf = ζ on f,in × (0, T )

αf ∇Cf · nf = 0 on f,out ∪ � × (0, T )

Cf (0) = 2.58 · 10−1 in �f .

Table 3 Test case ii

High fidelity model Reduced order model

#FE FE solution #RB Offline Online Speed up

DoFs time time time

Master model 36k ∼ 103.55s 9 ∼ 4780s ∼ 55.99s 1.9x

Slave model 5k ∼ 19.66s 7 ∼ 847s ∼ 6.86s 2.9x

Interface data ∼ 6m 15 ∼ 862s 0.00s

Coupled model ∼ 483.21s ∼ 6489s ∼ 62.84s 7.7x

High fidelity and reduced order model dimensions and CPU times. We highlight the performances of the
ROM model with respect to the interface Dirichlet data treatment and the speed up using colors from red
(worst) to green (best)

Efficient and certified solution of parametrized... Page 31 of 42 21



Fig. 19 Test case iii. Fluid (left) and wall (right) domains, a small tube of radius r = 0.3 cm with a
corresponding wall of thickness equal to the 10% of the fluid domain lumen. Two different discretizations
are considered, i.e., hf = 0.0863505 cm and hw = 0.0914553 m. In red, the interface boundary �

and ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂Cw

∂t
− αw�Cw = 0 in �w × (0, T )

Cw = Cf on � × (0, T )

Cw = 0 on w,0 × (0, T )

αw∇Cw · nw = 0 on w,in/out × (0, T )

Cw(0) = 2.58 · 10−1 in �w.

Fig. 20 Test case iii. Fluid solute concentration (first and third rows) and wall solution concentration con-
sidering a section of the wall domain (second and fourth rows) for three different time instants (columns),
with ζ = 0.37 (first two rows) and ζ = 0.67 (second two rows)
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Fig. 21 Test case iii. Singular values decay of the fluid solution (left), interface Dirichlet data (center),
and wall solution (right)

where we use subscripts f and w to refer to the fluid or the wall, respectively, in
place of the usual indices 1 and 2. Here, v is the fluid velocity vector and αf and αw

are the blood and wall solute diffusivity constants, respectively.
Then, we define as �f a small tube of radius r = 0.3 cm and length 1 cm, while

�w has a thickness equal to 10% of the vessel lumen (see Fig. 19). We fixed the
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Fig. 22 Test case iii. L2(�2) mean wall solution error over Ntest trials fixing the fluid POD tolerance and
varying the interface and the wall POD tolerances
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Fig. 23 Test case iii. L2(�2) mean wall solution errors over Ntest trials fixing the interface POD tolerance
and varying the fluid and the wall POD tolerances

initial concentration of the solute for both fluid and wall, namely Cf (0) = Cw(0) =
2.58 · 10−1, and we impose a parabolic profile to the fluid velocity with constant
flow rate Q = 2.0 cm3/s. Moreover, we choose αf = 1.2 · 10−3 cm2/s and αw =
0.9 · 10−3 cm2/s, so that the Péclet number of both problems is of order 103. The
two physical parameters, αf and αw, could in principle vary. However, this will not
influence the proposed techniques, but only the overall approximation due to RB
methods. Therefore, for the sake of simplicity, we choose to fix the two parameters
to ensure a sufficiently large Péclet number to have a predominant advection effect,
which is easily captured by RB schemes.

Regarding the high-fidelity discretization, we define T = 0.8 s (a cardiac beat
in a real biological setting), �t = 5 · 10−3 s and apply a BDF scheme of order
1. We discretize differently �f and �w, choosing hf = 0.0863505 cm and hw =
0.0914553 cm so that Nf = 144813 and Nw = 29624 (see Fig. 20 for some snap-
shots of the fluid and wall solution). For the fluid model we consider — besides a
varying time – ζ ∈ [0.1, 1] as parameter, which describes the solution constant con-
centration at the inlet; for the wall model, reduction is performed with respect to time
and the interface conditions, as usual.
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Fig. 24 Test case iii. L2(�2) mean wall solution error vs the CPU time fixing the fluid POD tolerance
(left) and the interface POD tolerance (right) to 10−5 and varying the tolerances used for the reduction of
the other quantities

Again, first we evaluate the singular value decay related to different snapshots
sets obtained with Ntrain = {5, 10, 15, 20, 25} samples of ζ , obtained through LHS.
As for the test case ii, given the time-dependent nature of the coupled problem, the
corresponding set of snapshots has dimension Ns = NtNtrain, where Nt = 160 is the
number of time steps considered for each simulation. The eigenvalue decays reported
in Fig. 21 show that Ntrain = 15 is enough to get a good reduction.

Then, we select Ntest = 3 values of ζ and we estimate the reduced error on the
slave domain, opting in this case for a relative 2-norm error

‖u2,h2(μ2) − V2un2(μ2)‖2
‖u2,h2(μ2)‖2

computed for each reduced solution vector. Figures 22 and 23 report the reduced
errors obtained prescribing a fixed accuracy of the fluid solution and the interface
data reduction, respectively. Despite the higher complexity of this test case, we high-
light that the interface reduction does not impact on the final solution in terms of

Table 4 Test case iii

High fidelity model Reduced order model

#FE FE solution #RB Offline Online Speed up

DoFs time time time

Fluid model 144k ∼ 394.68s 7 ∼ 5974s ∼ 68.62s 5.7x

Wall model 29k ∼ 250.49s 9 ∼ 3884s ∼ 12.26s 20.4x

Interface data ∼ 6m 7 ∼ 5525s 0.00s

Coupled model ∼ 945.17s ∼ 15383s ∼ 80.88s 11.7x

High fidelity and reduced order model dimensions and CPU times. We highlight the performances of the
ROM model with respect to the interface Dirichlet data treatment and the speed up using colors from red
(worst) to green (best)
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accuracy, as shown in test cases i and ii. In particular, prescribing a POD tolerance
for the interface reduction between 10−3 and 10−5 does not change the final error on
the slave solution; this latter is instead influenced by the slave reduced solution, as
expected.

Time performances for a 10−5 accuracy on the master, slave, and interface POD
aree instead reported in Fig. 24 and Table 4. As for test case ii, the computational
costs refer to a complete simulation in time — in this case, a 160 time-step solution
— including necessary repeated operations such as the assembling of the reduced
right hand side and of the FOM solutions for both fluid and wall models. All these
bottlenecks can be eventually overcome considering, especially for the master reduc-
tion, a different assembling of the right hand side and hyper-reduction techniques
according to their complexity. Moreover, we point out that the gained speed up is
of about 20 times, corresponding to a saving up of about 95% of the computational
costs of the wall simulations due to both the ROM strategy implemented and, more
importantly, of the interface non conformity considered. Together with a saving up
of 100% of the interface extraction, this ensures a 12 times speed up of the complete
coupled problem solution, corresponding to a reduction of the 90% of the CPU time
compared to the FOM solution. Finally, we highlight that an accuracy of 10−5 in the
slave solution requires only an increase of about 0.3% of the total cost of the solution
of the same models imposing an accuracy of 10−5 on the master reduction, and of
10−2 on the slave and interface reduction, i.e., passing from a final accuracy of 10−2

to 10−5 of the slave solution.

8 Conclusions

In this paper, we have proposed a new RB method to deal with parametrized one-way
coupled PDEs. This strategy can be used in combination with domain decomposition
techniques when one-way coupled problems must be solved independently from each
other and in sequence, following the Dirichlet interface condition direction. The effi-
ciency of the coupled ROM is ensured by the modular nature of the proposed strategy,
enabling the possibility to treat in very different ways the master and slave reduction,
including different FE degrees. In particular, the main building blocks of this method
are the slave and master models, to be reduced with tailored RB strategies, and the
interface Dirichlet data, which is treated (and passed between the interface domains)
through DEIM, without applying other expensive techniques, such as, e.g., Lagrange
multipliers. Special emphasis has been put in the importance of using DEIM to handle
interface data between conforming and, more importantly, non-conforming interface
grids.

A posteriori reduced error estimates for the proposed method in both the steady
and the unsteady cases have been derived, showing the strong relation between the
slave error and the master and interface errors.

A series of numerical tests have then shown that our reduction strategy can be
applied to a wealth of different coupled problems. The efficiency in the coupled ROM
online phase outperforms the high-fidelity counterpart, gaining an overall speed up
in the complete coupled problem computation from 200 times for the most simple
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steady case to 12 times for the more complex ones. However, the biggest advantage
in CPU time can be seen in the interface treatment, both in the saving up of the 100%
of the interface extraction time and in the general speed up obtained through the slave
model reduction, which can ultimately ensure a saving up of the 95% of CPU time
also in the most complex cases, such as in the fluid-wall mass transport problem of
Section 7.3. Such results are related to the FOM technique employed in this work
to treat interface non-conformity. This interpolation method is, indeed, specific of
our computational environment and represents a bottleneck of our simulations. Other
methods and implementations could be alternatively exploited, featuring possibly dif-
ferent computational costs. Nonetheless, the error can be carefully controlled at each
step of the reduction with small influence, as a whole, of the accuracy imposed on
the interface reduction.

On the basis of the results obtained with simple partitioned one-way coupled prob-
lems, we expect to be able to apply the present strategy to more complex and relevant
coupled problems. A natural extension of the presented strategy also concerns the
use of other kinds of interface (e.g., Neumann-like) conditions, and the treatment of
more challenging two-way coupled problems; both these aspects represent the focus
of a forthcoming publication.

Appendix A: A posteriori error estimator for unsteady reduced
basis models

To find an a posteriori error estimate for the ROM approximation in a time-dependent
case, according to [55], we can start by considering the following parametrized linear
dynamical system for a vector u(t; μ) ∈ R

n:
{

d
dt
u(t; μ) = AN(t; μ)u(t; μ) + fN(t; μ), t ∈ (0, T )

u(0; μ) = u0(μ)

Here the matrix AN(t; μ) ∈ R
N×N and the vector fN(t; μ) ∈ R

N , where N denotes
the dimension of the reference FOM space, are μ-dependent. Moreover, we define
the projection matrix V ∈ R

N×n defined through RB methods, where n ≤ N is the
ROM dimension. Then, the reduced dynamical system is:

{
d
dt
un(t; μ) = An(t; μ)un(t; μ) + fn(t; μ), t ∈ [0, T ]

un(0; μ) = un,0(μ)
(A1)

where An(t; μ) = V
T
AN(t; μ)V, fn(t; μ) = V

T fN(t; μ)V, un(t; μ) is the reduced
approximation, i.e., uN(t; μ) ≈ Vun(t; μ), and un,0(μ) is the projection of u0(μ)

onto the reduced space.
Let us now denote the error and the residual as

e(t; μ) := u(t; μ) − Vun(t; μ),

r(t; μ) := AN(t; μ)Vun(t; μ) + fN(t; μ) − V
d
dt
un(t; μ),

respectively; given a symmetric positive definite matrix G ∈ R
N×N , let us denote by

〈·, ·〉G the induced inner product, and the induced norm as ‖u‖G := √〈u, u〉G onRN .
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Similarly, ‖A‖G := sup‖u‖G‖Au‖G, for A ∈ R
N×N . For example, ifG = IN×N , i.e.,

it is the identity matrix, than we obtain the simple 2-norm used in this work. Then,
the following a posteriori error estimate can be stated:

Proposition 3 (A posteriori error estimate) Assuming that AN(t; μ) = AN(μ) is
time-invariant and has eigenvalues with negative real part for all μ ∈ P , than the
solution is bounded by

sup
t

‖ exp(AN(μ)t)‖G ≤ C1(μ),

where C1(μ) is a computable constant. Then, the following error estimates holds:

‖u(t; μ) − Vun(t; μ)‖G ≤ C1(μ)

(

‖e(0;μ)‖G +
∫ T

0
‖r(τ ; μ)‖Gdτ

)

. (A2)

Proof From the residual definition, we obtain that

V
d

dt
un(t; μ) = AN(μ)Vun(t; μ) + fN(t; μ) − r(t; μ).

Subtracting this equation from the original system, we get the evolution system
{

d
dt
e(t; μ) = AN(μ)e(t; μ) + r(t; μ)

e(0; μ) = u0(μ) − Vun,0(μ).
(A3)

for the error, that admits the explicit solution

e(t; μ) = exp(AN(μ)t)e(0; μ) +
∫ T

0
exp(AN(μ)(T − τ))r(τ ; μ)dτ .

The thesis follows thanks to the assumption ‖ exp(AN(μ)s)‖G ≤ C1(μ) for s ∈
R

+.

Error relations similar to (A2) can also be found for time dependent systems,
meaning when AN(t; μ) depends on time, by a suitable modification of C1(μ). To
do this, we first point out that the error evolution system (A3) holds also for time-
variants systems. Then, integrating, we get

e(t; μ) = e(0; μ) +
∫ T

0
AN(τ ; μ)e(τ ; μ) + r(τ ; μ)dτ .

Denoting by �(t) := ‖e(t; μ)‖G, α(t) := ‖e(0; μ)‖G + ∫ T

0 ‖r(τ ; μ)‖Gdτ and
β(t) := ‖AN(τ ; μ)‖G, we can obtain

�(t) ≤ α(t) +
∫ T

0
β(τ )�(τ )dτ .

Moreover, assuming an upper bound ‖AN(t; μ)‖G ≤ C3(μ) for t ∈ [0, T ], μ ∈
P , using the Gronwall inequality, we can write

�(t) ≤ α(t) + ∫ T

0 α(τ )β(τ ) exp
(∫ T

s
β(r)dr

)
dτ ≤ α(t)(1 + C3(μ)t exp(C3t)).

Then, equation (A2) can be found denoting by C1 := 1 + C3(μ)T exp(C3T ).
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