
POPNASv2: An Efficient Multi-Objective Neural
Architecture Search Technique

Andrea Falanti
DEIB, Politecnico di Milano

Milan, Italy
andrea.falanti@polimi.it

Eugenio Lomurno
DEIB, Politecnico di Milano

Milan, Italy
eugenio.lomurno@polimi.it

Stefano Samele
DEIB, Politecnico di Milano

Milan, Italy
stefano.samele@polimi.it

Danilo Ardagna
DEIB, Politecnico di Milano

Milan, Italy
danilo.ardagna@polimi.it

Matteo Matteucci
DEIB, Politecnico di Milano

Milan, Italy
matteo.matteucci@polimi.it

Abstract—Automating the research for the best neural network
model is a task that has gained more and more relevance in
the last few years. In this context, Neural Architecture Search
(NAS) represents the most effective technique whose results
rival the state of the art hand-crafted architectures. However,
this approach requires a lot of computational capabilities as
well as research time, which make prohibitive its usage in
many real-world scenarios. With its sequential model-based
optimization strategy, Progressive Neural Architecture Search
(PNAS) represents a possible step forward to face this resources
issue. Despite the quality of the found network architectures, this
technique is still limited in research time. A significant step in this
direction has been done by Pareto-Optimal Progressive Neural
Architecture Search (POPNAS), which expand PNAS with a time
predictor to enable a trade-off between search time and accuracy,
considering a multi-objective optimization problem.
This paper proposes a new version of the Pareto-Optimal
Progressive Neural Architecture Search, called POPNASv2. Our
approach enhances its first version and improves its performance.
We expanded the search space by adding new operators and
improved the quality of both predictors to build more accurate
Pareto fronts. Moreover, we introduced cell equivalence checks
and enriched the search strategy with an adaptive greedy
exploration step. Our efforts allow POPNASv2 to achieve PNAS-
like performance with an average 4x factor search time speed-up.
Code: https://doi.org/10.5281/zenodo.6574040

Index Terms—Neural Architecture Search, Time Predictor,
Image Classification, Pareto Optimality

INTRODUCTION

Nowadays, deep neural networks represent the state of
the art in solving complex tasks, like image classification,
object recognition and text processing. Their strength relies on
automatically extracting patterns and rules from enormous data
amounts thanks to the GPU-based computation acceleration.
Usually, deep neural networks are hand-crafted following
intuition and empirical rules that lead to performance boosts
in similar tasks. However, despite design skills, human efforts
are not always translated into good models. In fact, searching
an effective architecture for a specific domain is a challenging
task, which can be very time consuming and not consistently
achieves the desired performance requirements.

Many of the latest researches are focused on the automa-
tion of neural architecture engineering, i.e., the process of
algorithmically designing deep neural networks to optimize
their performance on a given dataset. Zoph et al. [1] have
been among the first to formalize this task under the name
of Neural Architecture Search (NAS). In their version, the
algorithm relies on the presence of three main components,
namely, the search space, the search strategy and the per-
formance estimation strategy. The goal is to build a cell, a
basic unit constituted by different operations named blocks.
The successive repetition of these units creates the network
architecture.

Despite the high quality of the neural networks obtained
by exploiting the NAS technique, the enormous amount of
time and computational resources required do not allow a
widespread use of this approach. Progressive Neural Archi-
tecture Search (PNAS) [2] came as an effective solution to
this issue. With its sequential model-based optimization search
strategy, this algorithm iteratively increases the researched
neural networks complexity. The progressive exploration starts
from the simplest cells of the search space, and then progres-
sively expands them with new blocks, based on their quality
estimated by an auxiliary model called predictor.

Pareto-Optimal Progressive Neural Architecture Search
(POPNAS) [3] introduces a new time regressor to further
improve the search speed. Between cells with the same ac-
curacy, those generating slow networks are removed from the
exploration step. POPNAS doubles the speed of the search at
the cost of a 10% reduced accuracy.

This paper presents a new version of Pareto-optimal
Progressive Neural Architecture Search (POPNASv2). Our
method solves the tradeoff introduced by POPNAS, reducing
the total search and training time without any loss in accuracy.
POPNASv2 best models rival the ones found by PNAS, but
they are produced with almost 4 times less the amount of GPU
hours.

https://doi.org/10.5281/zenodo.6574040

RELATED WORKS

Recently, Neural Architecture Search has become a
widespread topic in different data science fields [4]–[7]. Many
works have defined the basis and the methodology of neural
architecture search, most of them starting from the work of
Zoph et al. [1] based on reinforcement learning. Further works
refined the methodology and explored other solutions concern-
ing the search strategy: DARTS [8] exploited gradient-based
search, AmoebaNet [9] instead was based on evolutionary
algorithms, while NASNet [10] enhanced the reinforcement
learning strategy.

DARTS inspired a new branch of works using one-shot
models [11], also referred to as supernets. These are huge
single model networks that embed all possible architectures in
the search space as individual paths of it. One-shot models
enable the exploration of the search space very efficiently
through weight sharing. The performance of any network
selected by the search strategy can be evaluated on the
weights of the supernet, pruning the other paths not involved
in the architecture. However, this methodology introduces
new challenges since training these huge networks composed
of multiple paths and layers, easily introduces weight co-
adaptation and bad out-of-the-box accuracy without retraining
the architectures. Examples of works using one-shot models
are SMASH [12] and ProxylessNAS [13].

Progressive Neural Architecture Search (PNAS) [2] is a
more efficient version of NASNet [10] algorithm, based on
sequential model-based optimization (SMBO) [14]. PNAS
defines its cells as Direct Acyclic Graphs (DAGs) composed
of blocks. Blocks are micro level units composed of two
operations selected from a list, and a reduction function.
The algorithm defines two types of cells: normal cells and
reduction cells. Normal cells keep the same dimensionality
between inputs and outputs, while reduction cells halve the
spatial dimension and double the output depth compared to the
input. The main difference between PNAS and NASNet is that
the first algorithm searches a single cell structure instead of
two distinct ones for normal and reduction cells. This change
did not affect the accuracy results but drastically improved the
search efficiency.

The progressive exploration starts from the simplest mod-
els of the search space, i.e., the cells containing only a
single block. The models are progressively expanded with
new blocks, based on their quality, which is estimated by
a surrogate model, referred to as predictor. The predictor is
trained on the results obtained by the child networks, and it is
used to estimate the accuracy that an expanded cell will reach
after training. The predictor chosen by PNAS is an ensemble
of 5 LSTM [15] models. The networks contained in each
expansion are limited, and the process repeats cyclically until
the cells are expanded to a target amount of blocks.

Pareto-Optimal Progressive Neural Architecture Search
(POPNAS) [3] expanded PNAS by addressing the search as
a multi-objective optimization problem, trying to achieve a
trade-off between training time and accuracy. POPNAS oper-

ations are ordered and weighted based on the required time
to perform them. The information are fed to a new surrogate
model to estimate the training time of the cell expansions. This
time predictor is implemented as a linear regression with non-
negative least square (NNLS) model. The accuracy predictor
is based on LSTM, similar to PNAS. Through the combined
usage of the time and accuracy predictors, it is possible to
estimate the objectives of the optimization problem and build
a Pareto front through a domination rule. The Pareto front
built identifies the top K cells to be trained in the next step.
Compared to PNAS, the search process efficiency increases
by a 2x factor. However, the top networks are characterized
by a noticeable negative accuracy gap.

METHOD

In this section we introduce the POPNASv2 method by
describing its three main components. In particular, Section -A
describes the search space explored by the algorithm. Sec-
tion -B defines the main steps of the search strategy and how
they are interconnected. Section -C provides more information
about the implemented predictors, used to evaluate the quality
of the cells.

A. Search space

POPNASv2 extends the original search space defined for
PNAS. The goal of the algorithm is to find the optimal cell
structure for the given task, so that it can be stacked to
compose the best network architecture.

Cells are composed of micro-level units called blocks. Each
block is specified as a 4 elements tuple (i1, o1, i2, o2), where
i1 is the input of the operator o1 and i2 is the input of the
operator o2. The outputs of the two operators are joined via an
addition operation. The search space defines the set of possible
operators, as well as their inputs.

Since limiting the search to the Pareto front provides major
speed-ups in the search process, as demonstrated by POPNAS,
we adopt a more extensive set of operations.

The chosen operator set O consists of the 12 operators:

• 3x3 depthwise sep conv
• 5x5 depthwise sep conv
• 7x7 depthwise sep conv
• 1x3-3x1 stacked conv
• 1x5-5x1 stacked conv
• 1x7-7x1 stacked conv

• identity
• 1x1 conv
• 3x3 conv
• 5x5 conv
• 2x2 maxpool
• 2x2 avgpool

Inside a cell, each block is enumerated by the index value
1 ≤ c ≤ b, where b is the current number of blocks inside
the cell. We define with Ic the set of all the possible inputs
of a generic block in position c. For b = 1, only the inputs
values coming from the previous cell output are available.
We name this cells distance as lookback. From a network
configuration point of view, a lookback equal to -1 represents a
sequential connection between two consecutive cells. Instead,
a lookback equal to -2 represents a skip-connection that jumps
one intermediate cell. We constraint the search space to have

at most a lookback equal to -2. The input set progressively
expands with the amount of blocks b, since a block in position
c can use any block in previous positions as input.

The amount of unique blocks generated in each training step
depends only on the cardinality of the inputs and operators
sets. Initially, for b = 1, there are 300 unique blocks. The
search space cardinality is the number of possible cells struc-
tures contained in the search space. In our configuration, the
upper bound not considering cell equivalences is around 1015

architectures. The main challenge of POPNASv2 is to search
through this vast space efficiently, training neural network
models which are pretty variegate in the results since it aims to
find a Pareto front of the time-accuracy optimization problem.

During the search, all the cells relevant for the current
training step are stored in an encoded form, from which the
CNN can be built. When a cell is selected for training, the
model generator builds the network from scratch, using the
cell specification info. We implement normal and reduction
cells as defined in PNAS. In POPNASv2 the network is a
sequence of M motifs composed by N normal cells followed
by a single reduction cell. The last motif has no reduction cell
and is followed by GAP and Softmax layers to compute the
final output.

B. Search strategy

POPNASv2 search strategy is articulated in the following
phases:

• the initial thrust, which is the training of an empty cell.
• the training step, in which the selected cells are built and

trained.
• the expansion step, which is aided by two predictors and

estimates the quality of all possible expansions of the
cells trained in the training step. A Pareto front is built
from these estimates, reducing drastically the number of
cells considered.

• the exploration step, which is a conditional step with the
goal of exploring inputs and operators underused in the
selected Pareto front.

Algorithm 1 provides the pseudo-code of the search strategy.
POPNASv2 starts by training the empty cell (lines 1, 2 in

Algorithm 1), a straightforward model composed only by a
GAP layer followed by Softmax. This step is referred to as
“initial thrust” and is necessary to set up the features used
by the predictors. In fact, the measured training time t0 and
accuracy a0 reached by this network can be considered as a
common bias of all neural networks trained. The difference
between the considered cell results (t, a) and the bias (t0, a0)
gives a better estimate of the impact of the inputs and operators
used on both metrics.

After the initial thrust, all possible unique cells with a single
block are trained on the target number of epochs E. When the
training is complete, POPNASv2 saves the training time t and
the best validation accuracy a reached by each cell since these
metrics are required for training the predictors (line 4). This
concludes the training step of the cells with b = 1. For all the

Algorithm 1 POPNASv2 search strategy
Inputs: B (max num blocks), E (epochs), K (beam size),

J (exploration beam size), T (time constraint),
CNN-hp (networks hyperparameters), dataset.

1: S0 = empty cell
2: A0, T0 = train-cells(S0,CNN-hp, dataset)
3: S1 = B1

4: A1, T1 = train-cells(S1,CNN-hp, dataset)
5: dynamic-reindex = initialize-reindex(A0, T0,A1, T1)
6: for b = 2 : B do
7: Pacc = fit(A0→b−1, S0→b−1)
8: Fb−1 = extract-features(Sb−1)
9: Ptime = fit(T0→b−1,F0→b−1)

10: S′
b = expand-cells(Sb−1)

11: A′
b = predict(S′

b,Pacc)
12: T ′

b = predict(S′
b,Ptime)

13: S′′
b ,A′′

b , T ′′
b = apply-time-constraint(S′

b,A′
b, T ′

b , T)
14: Sb = build-pareto-front(S′′

b ,A′′
b , T ′′

b ,K)
15: Õ, Ĩb = build-exploration-sets(Sb)
16: if |Õ| > 0 ∨ |Ĩb| > 0 then
17: Sb,exp = build-epf(S′′

b ,A′
b, T ′

b , Sb, J)
18: else
19: Sb,exp = {}
20: end if
21: Ab, Tb = train-cells(Sb ∪ Sb,exp,CNN-hp, dataset)
22: end for

following training steps (b > 1), the search process will repeat
cyclically until the target b = B is reached.

Both time and accuracy predictors are trained on the data
related to all networks trained during the search (lines 7, 8,
9). After the predictors have been fully trained, they are used
to estimate the training time t̂ and the validation accuracy â
of all the possible expansions (line 10) of the cells trained in
the previous step (lines 11, 12). The expansion of a cell adds
any valid block into an existing cell.

As a first step, if the parameter T , a time constraint that can
be optionally defined to restrict the search on less demanding
networks, is provided, POPNASv2 discards all the expanded
cells that have t̂ > T (line 13).

POPNASv2 looks for the best cells in the so-called expan-
sion step by identifying the Pareto front (line 14) of the time-
accuracy optimization problem, using â and t̂ estimated by the
predictors. We implemented a mechanism to identify equiva-
lent models to maximize the run efficiency. This technique
avoids training multiple cell encodings corresponding to the
same neural network architecture.

Two blocks are defined as equivalent if (i1, o1) and (i2, o2)
are specular since the join operator (add) is commutative.
In this case, only one of the two blocks is kept. Two cells
are equivalent if the list of blocks contained in one cell is a
permutation of the other cell blocks. The algorithm checks for
cell equivalences when building the Pareto front, avoiding the
insertion of equivalent cells.

After this preprocessing step, the Pareto front is built (line

14). The cell with the highest predicted accuracy â is inserted
as the Pareto front first element to initialize the process. Then a
domination rule is applied to build the rest of the Pareto front.
In detail, for each accuracy score achieved by the expanded
cells, we define as dominant the cell with the lowest training
time. The Pareto front is thus composed only of dominant cells
and is limited in cardinality up to K elements.

POPNASv2 introduces a new step in the search method,
called exploration step. This step aims to train a small sup-
plementary set of architectures that contains different char-
acteristics from the ones prevalent in the Pareto front. The
Pareto front heavily exploits the information about the metrics
retrieved during the previous training steps. However, the
expanded cells could potentially benefit more from operators
and inputs that did not perform well in previous iterations.
Since the complexity of the models progressively increases
with the number of blocks, exploring these underused elements
of the search space can lead to potentially different results with
a minimal impact on the search efficiency.

The exploration step is performed right after the expansion
step until the last but one iteration. Initially, POPNASv2
creates the set of inputs and operators to explore (line 15). It
begins by computing the utilization percentages of all inputs
and operators in the Pareto front.

An operator o ∈ O is inserted in the operator exploration set
Õ if its frequency inside the Pareto front cells is less than 1

5|O| .
Similarly an input i ∈ Ic is inserted in the input exploration
set Ĩc if its frequency inside the Pareto front cells is less than

1
5|Ic| .

After defining both Õ and Ĩc, the Exploration Pareto Front
(EPF) is computed if at least one of these sets is not empty
(line 17). Each selected cell is associated with an exploration
score, which adapts over time while the EPF is built. The
reason for dynamically changing the score is to balance the
exploration of both inputs and operators sets, also trying to
encourage the usage of all the values of an exploration set,
if t̂ and â are good enough to fit the Pareto front. Then, the
algorithm counts the total usage in the EPF of exploration
inputs, namely |iexp|, and exploration operators, namely |oexp|.
The frequencies of each exploration input and exploration
operator is respectively referred as iperc and operc.

The rules that attributes exploration points to a cell are
described as follows:

• +1 for each input i ∈ Ĩc, with bonus:
– +2 if iperc ≤ 1

|Ĩc|
– +1 if |iexp| ≤ |oexp|

• +1 for each operator o ∈ Õ, with bonus:
– +2 if operc ≤ 1

|Õ|
– +1 if |iexp| ≥ |oexp|

If the score is > 0, further points can be assigned based
on the difference between the predicted time and predicted
accuracy of the considered cell and the ones of the last element
of the EPF. In particular, one point is added for each 4% of
relative accuracy difference and for each 10% of relative time
difference.

To be accepted for the insertion in the EPF, a cell must have
a score ≥ 8 if both Õ and Ĩc sets are populated, ≥ 4 instead
if one of them is empty. Since initially the EPF is empty, the
two additional rules are not used, but they are activated from
the evaluation of the second element.

The total number of elements of the EPF is capped by the
J parameter. When the exploration step ends, networks built
using cells coming from both the standard Pareto front and the
EPF are trained (line 21). The process repeats until the target
amount of blocks B is reached.

C. Performance estimation strategy

Given the enormous size of the search space, we argue that
networks time and accuracy forecasts must be estimated as
accurately as possible. As in POPNAS, in POPNASv2 we have
implemented two additional agents, referred to as accuracy
predictor and time predictor, to estimate respectively cells
accuracy â and time t̂ with which populate the Pareto front.
At each step, both predictors are trained with the results of all
the cells trained during all the previous searches. When the
predictors are ready, the expansion step can start.

1) Accuracy predictor: The accuracy predictor is inspired
by PNAS, which used an ensemble of 5 LSTM models. In
our algorithm, the LSTM-based model receives two inputs,
based on the cell encoding: a tensor with the blocks inputs,
grouped per block, and a tensor with the blocks operators, also
grouped per block. Both tensors have dimension (B, 2), since
each block has 2 inputs and 2 operators and the maximum
amount of blocks present in a cell is equal to B, the target
amount of blocks of the search run. Both input and operator
values are encoded as 1-indexed categorical. If the considered
cell has fewer blocks than B, both tensors are padded with (0,
0) for each missing block.

The two tensors are then processed separately with an
embedding layer and finally concatenated together. This new
tensor is then processed by two different Conv1D layers, which
produce the Q and K tensors of an attention layer that follows
the convolutions. The output of the Attention is finally used
as input for a bidirectional LSTM, which produces the final
hidden layer used by the sigmoid unit to predict the final
value, the estimated accuracy â of the cell. POPNASv2 creates
5 models with this structure, trains them via 5-fold cross-
validation and finally builds up an ensemble by averaging
models predictions.

2) Time predictor: As in POPNAS, the time predictor is
the agent responsible for estimating the training time t̂ that a
cell would require to train for E epochs.

The features set used to train the time predictor is described
below:

• number of blocks
• number of cells
• the sum of the dynamic reindex value of each cell block

operator (OP score)
• number of concatenated tensors in cell output
• usage of multiple lookbacks (boolean)
• cell DAG depth (in blocks)

• number of block dependencies
• % of the total cell OP score related to the heaviest cell

path
• % of the total cell OP score related to the blocks using

lookbacks as input.

The dynamic reindex is a metric introduced in POPNAS
to evaluate and rank single operators impact with respect to
their training time. In order to achieve this goal, a preliminary
evaluation is carried out on cells composed of single blocks
containing two identical operators.

In our work we implemented a revised version of dynamic
reindex which takes into account time biases due to neural net-
work components present in all the generated configurations.
In detail, the time t0 is due solely to GAP and Softmax layers
and to the data augmentation process, which are common to
all architectures, therefore excluding t0 provides a more fair
estimation of the impact of the operators on the training time.
For each operator o ∈ O, considering to ∈ T the time taken
to train the symmetric flat cell with encoding [(-1, o, -1, o)],
the corresponding dynamic reindex value is computed as:

indexo =
to − t0

max(T)− t0

In order to select the best time predictor, we tested the
same models investigated in POPNAS, i.e., Non-Negative
Least Square (NNLS), Ridge Regression and XGBoost, and
we extended the analysis to CatBoost [16], considered among
the most advanced gradient boosted techniques.

Each of these machine learning models has been trained
using random search for model hyperparameters tuning. This
optimization step performs multiple trainings on 5-folds, using
early stopping to preventively terminate the runs with bad
hyperparameters, making the process more time-efficient. We
conducted all these ablation studies over CIFAR10 dataset [17]
which results are displayed in Tab. I.

POPNASv2 relies on the estimations made by the predictors
to build an effective Pareto front. The domination rule com-
pares the estimated accuracy and time of two cells; therefore,
it is essential to rank precisely the estimated values. We use
Spearman’s rank correlation coefficient (ρ) to measure the
quality of the ranking of a predictor. The accuracy of the
predictors (measured with Mean Absolute Percentage Error
- MAPE) is less relevant than high-quality ranking. However,
it is preferred to enable the time constraint T .

From both the considered metrics perspectives, we notice
CatBoost is outperforming all the other proposed methods.
In particular, we observe evident benefits which are visually
observable in Fig. 1 concerning the estimations qualities for
the higher values of b. This behavior is due to the increased
amount of data, which CatBoost exploits to learn the correct
time forecast for the cells explored during the search.

With CatBoost we have low MAPE, furthermore the Spear-
man coefficient is next to 1 in all steps, proving that the
predictor is ranking the architectures correctly. Since ranking is
the most desirable quality for accurately pruning in the Pareto

TABLE I
COMPARISON BETWEEN THE TESTED MACHINE LEARNING MODELS

CANDIDATE AS TIME PREDICTORS. ALL THE ALGORITHMS ARE
EVALUATED OVER CIFAR10 DATASET.

Model MAPE(%) Spearman(ρ)
b=2 b=3 b=4 b=5 b=2 b=3 b=4 b=5

NNLS 24.525 16.168 12.712 13.531 0.776 0.984 0.990 0.989
Ridge 26.852 23.648 7.793 6.326 0.827 0.993 0.991 0.987

XGBoost 24.419 9.073 9.797 5.554 0.977 0.996 0.953 0.986
CatBoost 23.571 6.298 7.668 2.852 0.988 0.996 0.99 0.992

200 400 600 800
Real time(seconds)

200

400

600

800

Pr
ed

ict
ed

 ti
m

e(
se

co
nd

s)

B2 (MAPE: 23.571%, ρ: 0.988)
B3 (MAPE: 6.298%, ρ: 0.996)
B4 (MAPE: 7.668%, ρ: 0.990)
B5 (MAPE: 2.852%, ρ: 0.992)

Fig. 1. Results of the time predictor on CIFAR10 dataset. The x axis indicates
the training time required for training the cells, while the y axis indicates the
training time estimated by the predictor.

front, we decided to use CatBoost as a time predictor in all
the following experiments.

EXPERIMENTS AND RESULTS

This section presents the experiments conducted to evaluate
POPNASv2 and compare it with PNAS. In order to achieve a
fair performance comparison, both the algorithms have been
set up with the same search space. Since there is no open-
source version of PNAS search method, the tested version is
derived by stripping the time predictor, Pareto front generation
and exploration step from POPNASv2 method. The control
step for pruning equivalent models is instead maintained. The
hyperparameters common to both POPNASv2 and PNAS have
the same values. The experiments have been carried out on a
NVIDIA A100 GPU, using MIG 3g.20gb profile.

D. Experiments setting

The experiments conducted to validate the generalization
capabilities of POPNASv2 efficiency improvements have been
carried out on four different datasets for image classification,
i.e., CIFAR10, CIFAR100 [17], Fashion MNIST [18] and

rank

0 10 20 30 40 50 60

time
200

400
600

800

ac
cu

ra
cy

0.5

0.6

0.7

0.8

0.9

Fig. 2. The Pareto front trained for b = 5 in CIFAR10 dataset. The predicted
values â, t̂ are plotted in green, while the blue points represent the actual a, t
retrieved after training. The rank values represent the ordering of these points
in the Pareto front.

EuroSAT [19]. These datasets differ in the number of classes,
the number of channels, and the images dimensions, providing
a robust benchmark for the generalization capabilities of the
search strategy.

All the datasets share the same settings for preprocessing
and data augmentation. In the preprocessing step, all input
channels are normalized in [0, 1] range, and the samples are
split into training-validation sets, respectively containing 90%
and 10% of the total training samples. The default batch size
is 128. We use random horizontal flip and random translation
on both height and width for data augmentation, with a range
of 0.125 as the actual input size.

The configuration of the search algorithm is the same for
all these datasets. We train the architectures on the training
set, keeping the validation to gather a and t, used in the
performance estimation strategy. The architectures are trained
on E = 21 epochs, using AdamW [20] with cosine decay
restart [21], starting learning = 0.01, starting weight decay
= 5e−4, T0 = 3 and Tmul = 2, for a total of 3 restart periods.
Swish [22] activation function is used instead of ReLU since
it provided an accuracy boost to the trained architectures both
in POPNASv2 and PNAS.

Each training step after b = 1 trains at max K = 128
architectures. The maximum number of extra architectures
selected in exploration step J is set to 16. The neural networks
produced starting from each cell are composed as a stack of
3 motifs, with N = 2, for a total of 8 stacked cells. This is
the same structure also used in PNAS and NASNet.

The accuracy predictor is built as an ensemble of 5 LSTM
using Attention. Each LSTM is trained for 30 epochs on 4

5 of
the available data using Adam [23] optimizer, with lr = 4e−3

TABLE II
THE RESULTS OF POPNASV2 ACCURACY PREDICTOR FOR EACH

EVALUATED DATASET.

Dataset MAPE(%) Spearman(ρ)
b=2 b=3 b=4 b=5 b=2 b=3 b=4 b=5

CIFAR10 2.886 3.505 1.374 1.704 0.678 0.95 0.889 0.915
CIFAR100 13.997 3.645 3.382 5.409 0.509 0.75 0.814 0.934

Fashion MNIST 2.296 0.891 1.067 0.861 0.798 0.875 0.84 0.928
EuroSAT 0.446 0.636 0.552 0.564 0.739 0.688 0.823 0.922

TABLE III
THE RESULTS OF POPNASV2 TIME PREDICTOR FOR EACH EVALUATED

DATASET.

Dataset MAPE(%) Spearman(ρ)
b=2 b=3 b=4 b=5 b=2 b=3 b=4 b=5

CIFAR10 23.571 6.298 7.668 2.852 0.988 0.996 0.99 0.992
CIFAR100 21.661 9.202 6.881 3.709 0.964 0.975 0.951 0.989

Fashion MNIST 23.45 11.916 4.884 8.706 0.919 0.983 0.99 0.982
EuroSAT 25.721 9.031 9.913 5.937 0.963 0.974 0.987 0.97

and L2 weight regularization with factor 1e−5. The embedding
size used is composed of 10 units, the Conv1D filters are 16,
and the cells used in each LSTM of the bidirectional are 48.

For each dataset, we used Catboost Regressor as time
predictor, and tuned it via random search hyperparameters
optimization. The search space is defined as follows:

• learning rate: uniform(0.02, 0.2)
• depth: randint(3, 7)
• l2 leaf reg: uniform(0.1, 5)
• random strength: uniform(0.3, 3)
• bagging temperature: uniform(0.3, 3)

We trained each Catboost model for 2500 iterations in a
5-fold fashion, using early stopping with patience set to 50
iterations. The final model is retrained from scratch on the
entire dataset, using the best hyperparameters configuration
found.

E. Predictors results

The results of POPNASv2 predictors over the four datasets
are summarized in Tab. II and Tab. III. MAPE and Spearman
values are computed on the unseen data, e.g., the columns b =
4 refer to the values forecasted starting from the information
related to b < 4.

In general, both predictors have less accurate results on b =
2 since the data available is fewer and the cells with b =
1 do not exhibit behaviors proper of multi-blocks cells. In
particular, cells constituted of multiple blocks could perform
a concatenation operation followed by pointwise convolution
at the end of the cell, used to join the outputs in case there
are multiple unused block outputs. The presence of this extra
pointwise convolution has a significant impact on the training
time, leading to the error bias seen in the time predictor for b =
2. Moreover, some blocks could use other blocks as hidden
layers to build a multi-level cell DAG, which is not possible in
b = 1. These structural changes can alter the trend exhibited by
time and accuracy metrics in single block cells, making b = 2
the most challenging step for predictors. With the increase of

-1

-2

 concat

2x2

maxpool

5x5

conv

+

3x3

conv

5x5

conv

+

identity identity

+

3x3

conv

5x5

conv

+

out

-1

-2

 concat

2x2

maxpool

1x5-5x1

conv

+

7x7

dconv

1x5-5x1

conv

+

5x5

conv

1x5-5x1

conv

+

7x7

dconv

1x5-5x1

conv

+

2x2

maxpool

2x2

maxpool

+

out

Fig. 3. Top1 cells found by POPNASv2 (on the left) and PNAS (on the right) over CIFAR10 dataset. The comparison shows how the chosen operators and
their interconnections differ significantly between the two algorithms.

b, the average errors of the predictors tend to decrease, also
improving the ranking quality.

The Spearman coefficients of both predictors tend to 1, so
the predictors are ranking correctly the architectures, which
is beneficial for POPNASv2 Pareto front methodology. From
Fig. 2, which represents the Pareto front for b = 5 over CI-
FAR10 dataset, it is possible to notice the quality of predicted
performance with respect to the real ones. We argue that,
despite the low correlation between training time and accuracy
achieved by a neural network, the features we selected for
our predictors successfully allow POPNASv2 to build very
accurate multi-objective rankings.

F. POPNASv2 vs PNAS

Tab. IV shows a summary of the search results. The re-
sults indicate that POPNASv2 is much more efficient than
PNAS: with a 3.88x average time speed-up to complete the
search, our algorithm can achieve the same average top-1
and top-5 accuracy performance concerning datasets differing
in the number of classes, in the number of channels and
in the dimension of the images. Contrarily to PNAS that
always train K architectures in training steps with b > 1,
POPNASv2 exploits the Pareto front pruning to drastically
reduce the number of trained networks up to the 33.14%. Time
optimization performed by POPNASv2 significantly lower the
average training time of the considered networks, leading to
a significant time speed-up also in the case both algorithms
would train an equal amount of networks.

Surprisingly, for CIFAR100 and Fashion MNIST datasets
POPNASv2 can also produce architectures achieving slightly
better accuracy compared with the best ones produced by
PNAS. In general, the accuracy difference is at worse under

TABLE IV
THE COMPARISON BETWEEN POPNASV2 AND PNAS SEARCH

PERFORMANCE OVER THE EVALUATED DATASETS.

Dataset Method # Networks Top1 Top5 Search TimeAccuracy Accuracy

CIFAR10 POPNASv2 543 0.912 0.911 49h24m
PNAS 814 0.922 0.92 176h 30m

CIFAR100 POPNASv2 548 0.685 0.684 53h37m
PNAS 814 0.68 0.679 161h 47m

Fashion MNIST POPNASv2 537 0.947 0.946 49h50m
PNAS 814 0.946 0.945 174h 53m

EuroSAT POPNASv2 549 0.973 0.971 69h35m
PNAS 814 0.973 0.973 350h 16m

one percentage point, confirming that our method can obtain
remarkable gains from the accuracy-time trade-off.

The cell structures found by the two methods have some
significant differences. Fig. 3 provides a visual comparison
among the ones found over CIFAR10 dataset.

POPNASv2 tend to organize cells into graphs composed of
multiple levels, while PNAS cells are generally flat or almost
flat. This behavior is imputable to the exploration step, which
guarantees that the input values related to blocks are used in
at least a small amount of networks, in each training step. The
predictors can then adapt their results in following expansion
steps, considering more these inputs values if they lead to good
networks. PNAS does not guarantee the exploration of these
input values, therefore the accuracy predictor tends to highly
prefer inputs coming from other cells rather than from inner
blocks.

Another difference is in the choice of the operators. POP-
NASv2 tends to discard the operators that heavily impact the
training time on the device hardware, except when they have
the best performance among the entire operator set. Separable
convolutions give a quite counter-intuitive example of this

TABLE V
THE COMPARISON BETWEEN POPNASV2 AND PNAS TOP-1 NETWORKS

PERFORMANCE OVER THE EVALUATED DATASETS.

Dataset Method Params B Accuracy Training Time

CIFAR10 POPNASv2 2.87M 4 0.929 1h52m
PNAS 2.36M 5 0.936 4h 6m

CIFAR100 POPNASv2 2.27M 5 0.718 1h55m
PNAS 3.99M 5 0.711 3h 19m

Fashion MNIST POPNASv2 1.68M 4 0.951 1h56m
PNAS 1.41M 4 0.95 3h 4m

EuroSAT POPNASv2 1.54M 4 0.979 2h47m
PNAS 1.47M 5 0.979 11h 34m

behavior. Even if they have fewer parameters and FLOPS than
normal convolutions, they impacted a lot more on the training
time. The inefficiency in parallelizing these operators could be
the cause of the observed behavior.

Since PNAS is more targeted in finding top accuracy
networks, it tends to choose complex and time-consuming
operators. We further investigated the comparison between
POPNASv2 and PNAS approaches by running an entire
training session for each of their top-1 architecture until
convergence. In detail, we have retrained from scratch the best
cells found by PNAS and POPNASv2 on the same dataset on
which they were found, changing only the number of epochs
E to 254 and reducing cosine decay restart T0 to 2. This
experiment provides accurate results on the performance of
the networks, using the same hyperparameter set used for the
search method.

The results are summarized in Tab. V. Also in this scenario,
POPNASv2 is able to fill the average accuracy GAP with
respect to PNAS. Concerning the top-1 networks training time,
our approach achieved an average speed-up of 2.6x despite
the slightly higher parameters number. We argue that this
behavior is caused by time optimization, which tends to prefer
the operators which can be performed efficiently on the used
hardware. Concerning the number of blocks, we noticed that
POPNASv2 tends to find cells composed by fewer blocks.

We can thus summarize the comparison, asserting that our
approach can solve image classification problems by discov-
ering simpler neural network architectures that achieve com-
parable performance with remarkable searching and training
time speed-ups.

CONCLUSIONS

In this work, we introduced POPNASv2, a sequential
model-based optimization search strategy solving the effi-
ciency problem by building a time-accuracy Pareto front and
exploiting its optimality properties. We used two surrogate
models to estimate the training time and accuracy of the cells
while searching for expansions, allowing to prune suboptimal
results. The adaptive greedy exploration step and the predic-
tors features re-engineerization allowed our approach to find
effective architectures in a more efficient fashion. Comparing
the results with PNAS, one of the most credited methods in
the literature and baseline of our work, we obtained almost a
4x speed-up in the search time and achieved similar accuracy
in the top networks.

ACKNOWLEDGMENT

The European Commission has partially funded this work
under the H2020 grant N. 101016577 AI-SPRINT: AI in
Secure Privacy-pReserving computINg conTinuum.

REFERENCES

[1] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” 2017.

[2] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture
search,” 2018.

[3] E. Lomurno, S. Samele, M. Matteucci, and D. Ardagna, Pareto-Optimal
Progressive Neural Architecture Search. New York, NY, USA:
Association for Computing Machinery, 2021, p. 1726–1734. [Online].
Available: https://doi.org/10.1145/3449726.3463146

[4] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang,
“A comprehensive survey of neural architecture search: Challenges and
solutions,” arXiv preprint arXiv:2006.02903, 2020.

[5] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” The Journal of Machine Learning Research, vol. 20, no. 1, pp.
1997–2017, 2019.

[6] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan, “A survey
on evolutionary neural architecture search,” IEEE transactions on neural
networks and learning systems, 2021.

[7] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang,
“A comprehensive survey of neural architecture search: Challenges and
solutions,” ACM Computing Surveys (CSUR), vol. 54, no. 4, pp. 1–34,
2021.

[8] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” 2019.

[9] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” 2019.

[10] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” 2018.

[11] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le,
“Understanding and simplifying one-shot architecture search,” in
Proceedings of the 35th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, J. Dy and
A. Krause, Eds., vol. 80. PMLR, 10–15 Jul 2018, pp. 550–559.
[Online]. Available: https://proceedings.mlr.press/v80/bender18a.html

[12] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Smash: One-shot
model architecture search through hypernetworks,” 2017.

[13] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” 2019.

[14] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-
based optimization for general algorithm configuration,” in Learning
and Intelligent Optimization, C. A. C. Coello, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 507–523.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[16] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin,
“Catboost: unbiased boosting with categorical features,” 2019.

[17] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, Tech. Rep., 2009.

[18] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” 2017.

[19] P. Helber, B. Bischke, A. Dengel, and D. Borth, “Eurosat: A novel
dataset and deep learning benchmark for land use and land cover
classification,” 2019.

[20] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
2019.

[21] ——, “Sgdr: Stochastic gradient descent with warm restarts,” arXiv
preprint arXiv:1608.03983, 2016.

[22] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” 2017.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

https://doi.org/10.1145/3449726.3463146
https://proceedings.mlr.press/v80/bender18a.html

	Search space
	Search strategy
	Performance estimation strategy
	Accuracy predictor
	Time predictor

	Experiments setting
	Predictors results
	POPNASv2 vs PNAS
	References

