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ABSTRACT: The coupling of the electron system to lattice vibrations and
their time-dependent control and detection provide unique insight into the
nonequilibrium physics of semiconductors. Here, we investigate the
ultrafast transient response of semiconducting monolayer 2H-MoTe2
encapsulated with hBN using broadband optical pump−probe microscopy.
The sub-40 fs pump pulse triggers extremely intense and long-lived
coherent oscillations in the spectral region of the A′ and B′ exciton
resonances, up to ∼20% of the maximum transient signal, due to the
displacive excitation of the out-of-plane A1g phonon. Ab initio calculations
reveal a dramatic rearrangement of the optical absorption of monolayer
MoTe2 induced by an out-of-plane stretching and compression of the
crystal lattice, consistent with an A1g -type oscillation. Our results highlight
the extreme sensitivity of the optical properties of monolayer TMDs to
small structural modifications and their manipulation with light.
KEYWORDS: Coherent phonons, excitons, ultrafast spectroscopy, transition metal dichalcogenides, two-dimensional materials, monolayer,
MoTe2

Electron−phonon coupling is crucially important to many
phenomena in condensed matter, such as carrier

scattering in transport,1−3 the relaxation of photoinduced
nonequilibrium quasiparticle populations,4−10 and electronic
order emerging at low temperatures.11−14 Photoexcitation of
coherent phonons (CPs) using ultrashort light pulses enables
fundamental insight into electron−phonon interactions via
their excitation and detection mechanisms,15−17 which has led
to discoveries such as elucidating the role of vibrational
coherence in the primary event of vision,18 detecting coherent
Bloch oscillations in coupled semiconductor quantum wells,19

and demonstrating THz radiation emission due to the
macroscopic polarization originating from CPs.20 There is
potential for applications in sensors, actuators, and trans-
ducers21−24 operating at frequencies up to several THz.25 In
semiconductors with large exciton binding energies, photo-
excitation of CPs has provided vital information about
exciton−phonon coupling.26−29

Two-dimensional semiconductors such as monolayer
transition-metal dichalcogenides (TMDs) combine strong
light-matter interaction and multifaceted exciton and valley
physics with a great potential for applications in energy
harvesting and information processing.30−35 An important tool
in the investigation of exciton-coherent phonon coupling in
these materials is femtosecond transient absorption (TA)

spectroscopy. Here, an initial ultrashort pump pulse photo-
excites the sample, while a second delayed probe pulse is used
to measure the transient change in the optical response. This
allows for tracking the temporal evolution of the non-
equilibrium quasiparticle populations, which manifests as the
characteristic decay time of the TA signal. In WSe2, it has
previously been shown that coherent oscillations of the out-of-
plane A1g phonon mode introduce a small modulation (∼10−3

of the transient signal) on the electronic relaxation at the
optical bandgap.36 Similarly, in monolayer MoS2, the
oscillatory modulation of the TA signal has also been ascribed
to CPs belonging to the A1g mode, which exhibit a relatively
small amplitude across the spectral region of the A and B
exciton resonances,36 but a significant modulation of ∼2% of
the maximum signal around the C exciton.28

MoTe2 is a TMD with two well-known thermodynamically
stable polymorphs with distinct electronic properties. Its
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semimetallic phase,37,38 (1T′ above and Td below 240 K)
exhibits large magnetoresistance,39 ferroelectricity,40 and
superconductivity.41 The semiconducting 2H phase, on the
other hand, has an indirect bandgap in the bulk which becomes
direct (∼1.1 eV) toward the monolayer limit,42,43 thus
expanding the potential functionality of TMDs into the near-
infrared (NIR). Furthermore, a high carrier mobility,44 strong
spin−orbit coupling,45 valley selectivity,46 and ambipolar
transistor behavior,47 make it a promising candidate for NIR
optoelectronics, photovoltaics, and unconventional informa-
tion encoding such as spintronics or valleytronics. However,
since its lower chemical stability has been overcome only
recently by encapsulation using few-layer hBN,48 MoTe2 is
significantly less studied than its sulfur and selenium analogues.
Previous TA experiments on 2H-MoTe2 with various probe
energies, ranging from 1.0 eV to 2.6 eV, have elucidated the
dynamics of several excitonic transitions, but without detecting
any CP signature thus far.49−51 Optical pump-core level
(XUV) probe spectroscopy, on the other hand, has revealed a
strong oscillatory signal contribution dominated by the out-of-
plane A1g mode with a smaller E1g component,52 where the
greatest oscillation amplitude was observed for transitions from
the Te-4d5/2 levels to the conduction band.
Here, we employ broadband TA microscopy to study the

coupling of the out-of-plane A1g vibrational mode in semi-
conducting monolayer 2H-MoTe2 to several excitonic
resonances. Our work is supported by ab initio simulations,
which combine density functional and perturbation theory
(DFT/DFPT) with many-body perturbation theory (GW
+BSE). We find an exceptionally strong and long-lived
oscillatory signal contribution, which is rarely observed in
semiconducting TMDs. Our broadband probe combined with
an excellent temporal resolution of ≤40 fs reveals the spectral
dependence of the amplitude and phase of CPs with
exceptional clarity. Our simulations confirm a strong
modulation of the electronic band structure and, consequently,
the absorption spectrum by out-of-plane atomic motion,
allowing the theoretical prediction of the spectral profile of
the oscillation amplitude in excellent agreement with the
experimental observations. Our results demonstrate how the
optical properties of monolayer MoTe2 in the visible and NIR
range are highly susceptible to manipulation via small
structural modifications and how these can be controlled
optically using ultrashort light pulses.
Samples of MoTe2 were synthesized by chemical vapor

deposition on Si/SiO2 and encapsulated with few-layer hBN
according to the methods in ref 48. The procedure yields flakes
of both polymorphs, which are easily distinguished by their
shape; elongated for 1T′, or hexagonal for 2H. Since the 2H
flakes have a lateral size of only a few micrometers, we
employed a broadband optical pump−probe microscope53

whereby pump and probe are focused onto the sample using an
objective lens, as illustrated in Figure 1a, providing a spatial
resolution of ∼3 μm. The Raman spectrum measured on the
same flake, shown in Figure 1b, confirms the semiconducting
2H polymorph, with the most prominent peak at 235 cm−1

originating from the in-plane E2g phonon. A further peak, seen
here at 170 cm−1, is associated with the out-of-plane A1g
phonon and has been shown in previous studies to be clearly
visible for excitation at 633 nm (1.96 eV), but much weaker for
excitation at 532 nm (2.33 eV).42 The absence of modes at 120
and 290 cm−1 confirms the flake to be monolayer.42,54 The
calculated absorption spectrum of monolayer 2H-MoTe2,

shown in Figure 1c, exhibits a series of excitonic resonances,
whose energies and relative intensities match closely with
previously measured spectra.42,55

We now investigate the transient dynamics of monolayer
MoTe2 at T = 10 K after photoexcitation with a pump centered
at ∼2.36 eV. We measure the differential reflectance, ΔR/R
with a broadband probe in the range ∼1.7−2.6 eV at variable
delay after excitation. The pump and probe beams are focused
and spatially overlapped on the sample, as indicated in Figure
1a. The probe is detected in backscattering geometry after
interaction with the hBN-MoTe2−Si/SiO2 sample stack. The
dominant effect of photoexcitation is a change in the
absorption spectrum of the MoTe2 layer, and, hence, we
assume the measured differential reflectance, ΔR/R to be
proportional to ΔA, i.e., the change in absorbance of MoTe2.
Further details are provided in the Methods section of the
Supporting Information.
The transient ΔR/R spectra, shown over the first 5 ps in

Figure 2a, exhibit two positive bands of increased reflectivity
upon photoexcitation and two negative bands of decreased
reflectivity. The positive ΔR/R signal is ascribed to the
photobleaching (PB) of the excitonic transitions. The PB peaks
from 1.75 eV to 2.2 eV and above 2.4 eV match the positions
of the A′, B′, and C excitonic resonances according to ref 42
(see also Figure 2b), suggesting a reduced absorption due to
Pauli blocking. The negative ΔR/R signal instead originates
from exciton energy renormalization, which causes a shift of

Figure 1. Optical properties of monolayer 2H-MoTe2. (a) Micro-
scope image of hBN encapsulated monolayer MoTe2 samples on Si/
SiO2 (left). Optical pump−probe microscopy experiments were
performed on the 2H region with pump (∼5 μm) and probe (∼3 μm)
beam diameters, as illustrated. The optical pulse launches an intense
out-of-plane (c-axis) vibration of the lattice (right). (b) Raman
spectrum of the MoTe2 sample measured with 532 nm (∼2.33 eV)
excitation. The out-of-plane vibration with A1g symmetry is high-
lighted. (c) Optical absorption spectrum for the equilibrium structure
from ab initio calculations. Optical transitions are labeled according to
the convention of ref 55.
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the transition and induces a change of sign in the pump−probe
signal, from 2.2 eV to 2.4 eV and below 1.75 eV.56,57

Immediately after photoexcitation, an increase of the electronic
temperature broadens the exciton line shape, which sub-
sequently narrows at longer delay times. The extracted exciton
dynamics are shown in Figure 2c. After a nearly instantaneous
rise time, i.e., limited by the temporal resolution of the
experiment, the PB signal related to the A′ and B′ resonances
decays with time constants of the order τfast = 0.7−0.8 ps and
τslow = 6.0−8.0 ps (see Figure S1 in the Supporting
Information), without further significant changes of spectral
shape.
We now turn our attention to the oscillations, clearly visible

in the spectral region from 1.7 eV to 2.3 eV (see Figures 2a and
2c), which we assign to photoexcited CPs.28 Such oscillations
have not been observed in previous work on MoTe2 for a
probe in the visible range.49−51 Here, however, we find an
exceptionally strong coherent (oscillatory) component with a
magnitude of up to 20% of the maximum ΔR/R signal, which
is an order of magnitude greater than the CP amplitude (2%)
found in monolayer MoS2.

28 The isolated oscillatory
component, shown in Figure 2d, obtained by subtracting the
incoherent (nonoscillatory) signal contribution with a
biexponential decay, can be fitted with a single damped cosine
term (see Figure S2 in the Supporting Information). The CP
mode, measured at 10 K, has a period of 194 fs, which
corresponds to a frequency of 5.15 THz (∼172 cm−1), and an
energy of 21 meV. The A1g Raman mode frequency in Figure
1b, measured instead at 295 K, is 5.10 THz (∼170 cm−1),
consistent with our observations of the CP mode at 295 K (see
Figure S3 in the Supporting Information) and the expected
temperature-induced mode softening. Therefore, based on this
agreement, and previous observations in pump−probe studies
of TMDs,14,28 we assign the CP mode to the out-of-plane A1g

vibration. The CP component lasts for tens of picoseconds and
exhibits a damping time of τdamp = (6.25 ± 0.25) ps, suggesting
that vibrational dephasing is weak. Interestingly, we find that
the phonon lifetime is almost independent of temperature
between 10 K and 295 K (see Figure S3), which has also been
noted in Raman spectroscopy studies,58 implying an extremely
weak phonon decay, for example, via phonon−phonon
scattering, consistent with both the long-lived CP signal
observed here and its negligible anharmonicity (constant
frequency over 10 ps). Finally, by performing a Gaussian fitting
procedure for the positive PB signal corresponding to the A′
and B′ contributions, as shown in Figure 2e, we can obtain the
temporal dynamics of the peak energies (Figure 2f). Both PB
peaks are initially red-shifted by the photoexcitation and follow
similar recovery dynamics. We find that the peak energies of
both A′ and B′ resonances are also modulated (with matching
phase) by the A1g vibration with an amplitude of ∼2.5 meV or
5 meV peak-to-peak, as highlighted in the inset of Figure 2f.
For the excitation mechanism of CPs, two main processes

are customarily invoked: impulsive stimulated Raman scatter-
ing (ISRS),59 and displacive excitation of coherent phonons
(DECP).60 In ISRS, the CPs have a pump energy dependence
that follows the excitation profile of the Raman tensor. The
pump pulse transmits kinetic energy to the lattice atoms during
a time interval much shorter than the oscillation period. At t =
0, the atoms are in a quasi-equilibrium position, resulting in a
sine oscillation. In DECP, on the other hand, the population of
excited states changes the potential energy surface and thus the
quasi-equilibrium position of the lattice. Therefore, at t = 0, the
lattice is at a maximum or minimum of the oscillating nuclear
coordinate, resulting in cosine oscillation. The high time
resolution of our experiment allows a precise determination of
the phase of the oscillatory ΔR/R component and the
identification of the cosine oscillation characteristic of DECP

Figure 2. Transient optical response of monolayer 2H-MoTe2. (a) Broadband differential reflectance (ΔR/R) maps following excitation with a
pump photon energy of 2.36 eV and a fluence of 500 μJ cm−2. The sample temperature was 10 K. (b) Transient ΔR/R spectrum (right axis) at 1 ps
delay compared to the calculated optical absorbance of the equilibrium structure (left axis). (c) Dynamics extracted at various probe photon
energies, as indicated. (d) Isolated coherent component of the ΔR/R signal after subtraction of a biexponential fit to the incoherent dynamics in
panel (c). Data are offset for clarity. (e) ΔR/R spectra at early times (20 and 200 fs) showing two positive peaks related to the A′ and B′ transitions.
The bold solid lines are fits to the data using a multiple Gaussian procedure, where the shaded areas show the two individual components for the A′
(purple) and B′ (orange) peaks. (f) Temporal evolution of the peak center energies, EA′ and EB′ obtained from the fitting in panel (e). The inset
shows the energy modulation of the EA′ peak after subtraction of a biexponential. The shaded areas are the associated fitting errors.
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(see Figure S4 in the Supporting Information). Moreover, we
find that the oscillations in MoTe2 have similar magnitudes, or
are slightly enhanced, for excitation at 2.36 eV, compared to
1.91 eV (see Figure S5 in the Supporting Information), while
the Raman peak at 170 cm−1 is much weaker for excitation
energy at 2.33 eV, corroborating the identification of different
excitation mechanisms for Raman scattering and CPs.
The spectral window where CP modulation of ΔR/R is

visible, as seen in Figures 3a and 3b, can be divided into two
regions: above and below 1.89 eV, where the oscillations have
opposite sign equivalent to a phase difference of π. The Fourier
transform of the CP in Figures 3b and 3c shows a single
prominent mode with a constant frequency of 5.15 THz over
the entire probe window. Its amplitude, however, as shown in
Figure 3f, changes dramatically over the range of 1.7−2.3 eV,
with a maximum at or below the lowest probe energy (1.72
eV), and a zero at ∼1.89 eV associated with a π-phase flip
occurring at this energy, which is directly visible in the data in
Figure 3d, and confirmed by Fourier analysis in Figure 3e.
To gain further insight into the probe energy dependence of

the amplitude and phase of the 5.15 THz vibration, we
calculated the change in the absorption spectrum caused by
out-of-plane displacement of the Te atoms around the central
Mo along the c-axis, mimicking an A1g -type oscillation
launched by the pulse. Starting from the result of the BSE
calculations, as described in the Methods section of the
Supporting Information, we obtain the polarizability per unit
area, α2D(ω), and define an effective dielectric tensor, ϵ2D(ω)
which takes into account the effects of quantum confinement
in two dimensions:61

z
( ) 1

4 ( )
2D

2D= +

where Δz is the material thickness. In the case of monolayer
MoTe2, the theoretical value is Δz = 7.66 Å. The dielectric
tensor is used to compute the absorbance, according to the
expression62

A
c

z( ) Im ( )2D= [ ]

The differential absorbance, ΔA was then calculated by
subtracting the absorbance of the equilibrium structure, Aeq

from the absorbance, Aξ(α) with atoms displaced by a fixed
amount, α along the A1g phonon mode, ξ. The differential
absorbance measured experimentally is small enough to be
described in terms of a linear dependence on the atomic
displacement α, i.e., Aξ(α) ≃ Aeq + ∂αAξα. In the numerical
simulations, α was fixed to obtain a stretching along the c-axis
equivalent to 0.5% of the Mo−Te bond length, measured from
the center of the atoms.
The result, shown in Figure 3g, reproduces both the Fourier

spectrum and the phase flip remarkably across the
experimental energy window (gray-shaded area). The calcu-
lated spectrum reveals a rich structure consisting of multiple
optical transitions, where the peak widths have been inferred.
Most notably, the spectrum is dominated by a large
contribution centered at ∼2 eV, which corresponds to the B′
exciton absorption, suggesting a particularly strong coupling of
this transition with the A1g mode. The theoretical phase flip
energy was found to be 1.90 eV, in almost perfect agreement
with that observed experimentally.
We now inspect the effects of the A1g mode atomic

displacement on the electronic and optical properties of
MoTe2 in more detail. Figure 4a shows calculations of the
optical absorption of a monolayer in equilibrium, including
excitonic effects, compared to stretching (red line) and
compression (blue line) of 0.5% along the c-axis. The main

Figure 3. Frequency analysis of coherent phonon oscillations in monolayer 2H-MoTe2. (a) Coherent component of the transient signal map, ΔR/
R. (b) Fourier transform (FT) map of the data in panel a. (c) FT frequency spectrum extracted at 1.72 eV, showing a peak at ∼5.15 THz (∼172
cm−1). (d) Coherent component map showing the energy range 1.8−2.0 eV near to the phase flip, labeled ϕflip. (e) FT phase spectrum confirming
the phase flip from 0 to π, which occurs at ∼1.89 eV. (f) FT amplitude spectrum extracted at 5.15 THz (vertical dashed area in panel (b)). (g)
Differential absorbance spectrum, Aξ(ω) − Aeq(ω) from ab initio calculations. The vertical dashed line indicates the GW direct bandgap energy,
while the orange shaded area shows the B′ exciton transition. The gray shaded area highlights the experimentally explored energy range.
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features (labeled in Figure 4a) are reproduced with excellent
agreement to previous works42,55 starting from the lowest
energy A exciton at ∼1.1 eV. In particular, we emphasize the
position of the B′ transition at ∼2 eV, which is located within
the continuum beyond the GW direct bandgap, and, hence, a
large number of transitions (orange-shaded area) have been
taken into account to analyze it correctly. The optical
absorption is subtly different except for the spectral region of
1.6−2.1 eV, where there is dramatic rearrangement in both
energy and magnitude. For out-of-plane compression, the A′
and B′ resonances shift to higher energies, with the B′ peak
shifting more significantly, which leads to a larger separation of
the two overlapping peaks, while upon stretching they shift to
lower energies, increasing the overlap and forming a single,
more intense peak. Consistently with our experimental results,
the strongest modulation of the absorption occurs on the low
energy side of the double peak with a relative change of ∼10%
for 0.5% out-of-plane displacement.
The particularly strong coupling of the B′ exciton with the

A1g mode leads to an energy shift of the absorption around the
equilibrium position as the atoms oscillate. Such an energy
modulation was observed in the experiments (Figure 2f), as
discussed previously. In the displacive excitation of coherent
phonons, photoexcitation changes the nuclear quasi-equili-
brium positions, and at t = 0 the nuclei are displaced relative to
this new quasi-equilibrium. Their oscillation results in a
periodic modulation of the absorption spectrum. Following the
oscillatory component at energies below 1.89 eV, we observe a

positive ΔR/R at t = 0. Therefore, at t = 0 the spectrum is blue-
shifted relative to its new quasi-equilibrium, meaning the out-
of-plane positions of the Te atoms are at a minimum. Their
new quasi-equilibrium position is at a larger distance than prior
to photoexcitation. Above 1.89 eV the same blue shift results in
an increase of the absorption and hence an oscillatory
modulation of opposite sign, i.e., a phase shift of π.
To understand why the optical absorption exhibits such a

dramatic change in a specific energy range, we now analyze the
calculated electronic band structures, shown in Figures 4b and
4c, for a larger displacement of 2% in order to emphasize the
effects. The calculations confirm the two valence band maxima
and conduction band minima at the K-point, which give rise to
the lowest energy excitonic transitions A and B, outside the
spectral window of our experiment. The dominant change in
the electronic structure at the K-point is bandgap renormaliza-
tion, which results in a comparatively small energy shift of the
A exciton transition. Instead, the A′ and B′ transitions, which
appear as a broad double PB peak centered at ∼1.9 eV in the
experiment, originate from regions of the band structure along
the K−Γ direction, as illustrated by the shaded areas in Figure
4c. Here, we find that the atomic displacement results in
considerable modification of the bands, especially close to the
local minima and maxima of the conduction band, where
optical transitions related to the A′ and B′ exciton are most
important. The result is a large energy shift and change in the
magnitude of the optical absorption in the spectral range close
to these transitions, as shown in Figure 4a. We note that the A′
and B′ peaks in MoTe2 are much narrower in optical
absorption, compared to high energy transitions present in
other TMDs, such as the C peak in MoS2, where the oscillatory
maximum is found.28 This may partially contribute to the
stronger coherent response, as the transient signal is propor-
tional to the first derivative of the absorption. In addition, by
calculating the orbital character of the projected (PDOS) band
structure, we find that the portion of the conduction band
related to the A′ and B′ transitions is strongly hybridized with
Te orbitals (up to ∼40%), while at the K-point, it is mostly Mo
(see Figure S6 in the Supporting Information). Since the A1g
vibration involves the out-of-plane motion of Te atoms around
the fixed Mo atom, the strongly hybridized regions of band
structure are most sensitive to the change in the interatomic
distance, i.e., variation in Mo−Te orbital proximity, resulting in
a significant energy renormalization. Hence, this explains the
extremely intense coherent oscillations observed in 2H-MoTe2
as the result of a modulation of the optical absorption due to
the out-of-plane atomic displacement launched by the optical
pulse.
In conclusion, we investigated the generation and detection

of coherent phonons in monolayer 2H-MoTe2 using a
combination of femtosecond pump−probe microscopy and
ab initio calculations. In excellent agreement between experi-
ment and theory, we found that photoexcitation stimulates the
out-of-plane A1g vibration, which strongly modulates the
absorption in the visible range, especially around the A′ and
B′ excitons. We identified a displacive excitation mechanism
where photoexcitation shifts the quasi-equilibrium positions of
the Te atoms to a larger out-of-plane distance. Our calculations
also predict modulations of significant magnitude around the A
and B excitons, thus expanding the potential for the coherent
control of optical phonons and excitons via optical excitation
or applied out-of-plane compressive strain into the NIR region
down to ∼1 eV.

Figure 4. Optical and electronic properties of monolayer 2H-MoTe2
from ab initio calculations. (a) Optical absorption spectra for vertical
stretching (red) and compression (blue) along the c-axis direction of
the Mo−Te bond length equivalent to 0.5%. The spectrum of the
equilibrium structure (dashed line), i.e., no stretching or compression,
is shown for comparison. The purple- and orange-shaded areas
indicate the A’ and B’ exciton resonances, respectively. The dashed
vertical line is the GW direct bandgap energy, EGW. The black vertical
bars correspond to the poles of the excitonic matrix, where their
height is proportional to the oscillator strength. (b) Electronic band
structure for 2% stretching (red) and compression (blue). (c)
Selected region around the K-point. The shaded areas represent the
energy-momentum distribution of the optical transitions related to the
A, A′, and B′ excitons for the equilibrium structure, as indicated.
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