
Drag reduction on a transonic airfoil

How does reducing friction drag reduce drag?

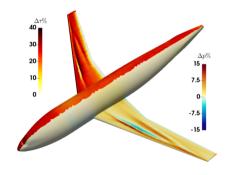
M. Quadrio¹, A. Chiarini¹, J. Banchetti¹, D. Gatti², A. Memmolo³ & S. Pirozzoli⁴

EDRFCM 2022, Paris, Sept. 7

¹Politecnico di Milano, ²Karlsruhe Institute of Technology, ³CINECA Interuniversity Consortium, ⁴La Sapienza Università di Roma

A simple question for the drag reduction community

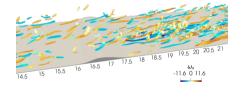
- Skin-friction drag reduction (DR) is often studied for low-Re flows in simple geometries
- For a complex body, skin-friction DR should be extrapolated to total DR
- The standard answer is: in proportion!


We answer differently, with a story told through EDRFCMs 2017-2022

Chap.1: EDRFCM 2017, Rome

Asking the question

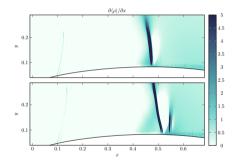
- Preliminary study (coarse RANS, wall functions, DR model)
- Suggests that pressure distribution is affected
- Resemblance with similar studies for riblets


EDRFCM 2017: Drag reduction of a wing-body configuration via spanwise forcing, J.Banchetti, A.Gadda, G.Romanelli & M.Quadrio

Chap.2: EDRFCM 2019, Bad Herrenhalb

First answer, simple physics

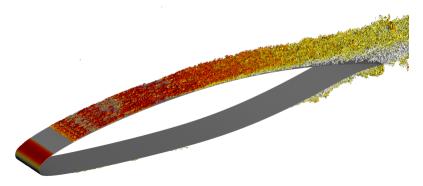
- Reliable modelling (DNS, DR accounted for directly)
- Still simple physics
- Confirmation that skin-friction DR may led to pressure DR too


EDRFCM 2019: Turbulent drag reduction for a wall with a bump, J.Banchetti & M.Quadrio Paper: J.Banchetti et al: Turbulent drag reduction over curved walls. J. Fluid Mech. 2020, **896** A10.

Chap.3: EDRFCM 2022, Paris

Final answer, richer physics

- Reliable modelling (DNS, DR accounted for directly)
- Richer physics (compressible flow over a transonic wing with shock wave)
- · Extrapolation to the entire airplane



EDRFCM 2022: This talk

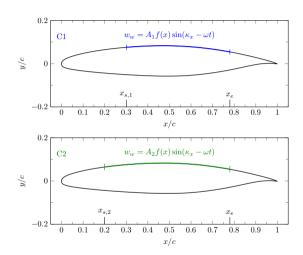
Paper: M.Quadrio et al: Drag reduction on a transonic airfoil. J. Fluid Mech. 2022, 942 R2.

Turbulent flow over a transonic airfoil

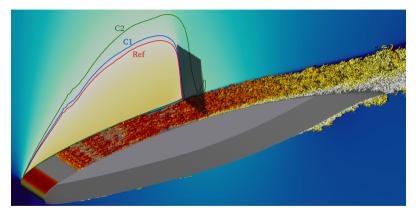
- Direct Numerical Simulation (up to 1.8 billions cells)
- Supercritical V2C airfoil
- $Re_{\infty} = 3 \times 10^5$, $M_{\infty} = 0.7$, $\alpha = 4^{\circ}$
- Control by spanwise forcing (steady StTW)
- · Only a portion of the suction side is controlled

Two control layouts

For C1:


•
$$A_1 = 0.5$$
, $\omega = 11.3$, $\kappa_X = 161$

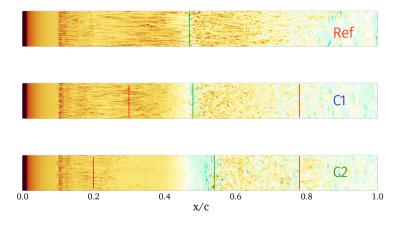
•
$$x_{s,1} = 0.3c$$
, $x_{e,1} = 0.78c$


For C2:

•
$$A_2 = 0.68$$
, $\omega = 11.3$, $\kappa_X = 161$

•
$$x_{s,2} = 0.2c$$
, $x_{e,2} = 0.78c$

The mean flow



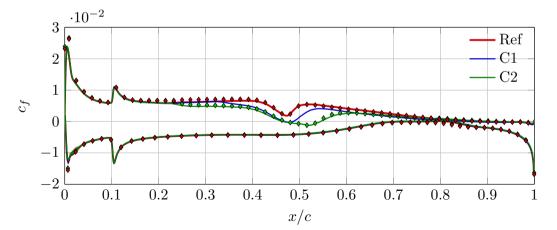
$$--- M = 1 (Ref)$$

 $--- M = 1 (C1)$
 $--- M = 1 (C2)$

$$- M = 1 (C1)$$

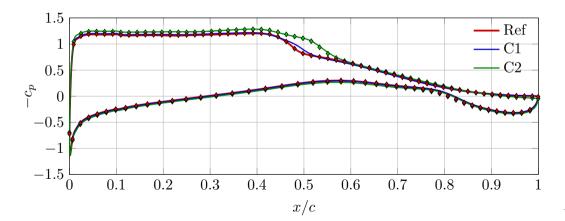
$$- M = 1 (C2)$$

Instantaneous flow: near-wall fluctuations



— shock position

 $--- x_s$ and x_e


Friction coefficient

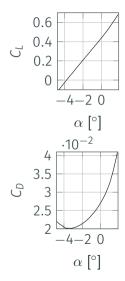
$$c_f = \frac{2\tau_w}{\rho_\infty U_\infty^2}$$

Pressure coefficient

$$c_p = \frac{2(p_w - p_\infty)}{\rho_\infty U_\infty^2}$$

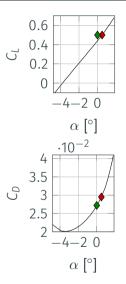
At the same incidence angle $\alpha=4^{\circ}$

	Reference	C2	Δ_2	C2 ($\alpha = 3.45^{\circ}$)	Δ_2
C_{ℓ}	0.740	0.825	+11.3%	0.730	-1.3%
C_d	0.0247	0.0245	-0.8%	0.0210	-15.0%
$C_{d,f}$	0.0082	0.0071	-13.4%	0.0074	-9.7%
$C_{d,p}$	0.0165	0.0174	+5.5%	0.0136	-17.6%
C_{ℓ}/C_{d}	29.7	33.7	+13.5%	34.8	+17.2%


Approximately at the same C_{ℓ}

	Reference	C2	Δ_2	C2 ($\alpha = 3.45^{\circ}$)	Δ_2
C_{ℓ}	0.740	0.825	+11.3%	0.730	-1.3%
C_d	0.0247	0.0245	-0.8%	0.0210	-15.0%
$C_{d,f}$	0.0082	0.0071	-13.4%	0.0074	-9.7%
$C_{d,p}$	0.0165	0.0174	+5.5%	0.0136	-17.6%
C_{ℓ}/C_{d}	29.7	33.7	+13.5%	34.8	+17.2%

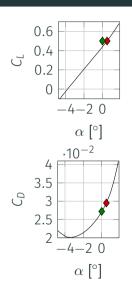
Assumptions:


- The wing is responsible for the entire lift and 1/3 of the non-lift-induced drag
- · ΔC_{ℓ} and ΔC_{d} induced by control do not change along the wing span
- · ΔC_ℓ and ΔC_d induced by control do not change with α , Re_∞ and M_∞

- · DLR-F6 (Second AIAA CFD drag prediction workshop)
- Data from https://aiaa-dpw.larc.nasa.gov
- Control C2 in flight conditions: $M_{\infty}=0.75$, $Re_{\infty}=3\times 10^6$

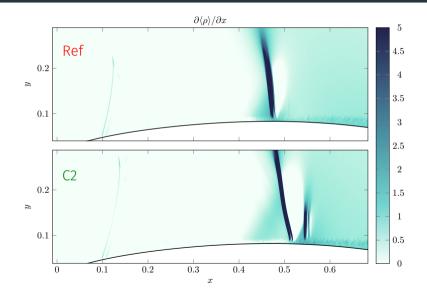
- · DLR-F6 (Second AIAA CFD drag prediction workshop)
- · Data from https://aiaa-dpw.larc.nasa.gov
- Control C2 in flight conditions: $M_{\infty}=0.75$, $Re_{\infty}=3\times 10^6$

	Uncontrolled	Controlled
C_L	0.5	0.5
α	0.52°	0.0125°
C_D	0.0295	0.0272



- DLR-F6 (Second AIAA CFD drag prediction workshop)
- Data from https://aiaa-dpw.larc.nasa.gov
- Control C2 in flight conditions: $M_{\infty}=0.75$, $Re_{\infty}=3\times 10^6$

	Uncontrolled	Controlled
C_L	0.5	0.5
α	0.52°	0.0125°
C_D	0.0295	0.0272


actuation power \approx 1% of the overall power expenditure

Conclusions

- The global aerodynamic performance of the wing is improved by locally reducing skin friction over a portion of the suction side
- We measure $\Delta C_d \approx 15\%$ and $\Delta C_D \approx 9\%$ (but more is possible!)
- Skin-friction drag reduction should be considered as a tool and not only as a goal

Mean flow: downstream shift of the shock

At the same incidence angle $\alpha=4^{\circ}$

						C2 ($\alpha = 3.45^{\circ}$)	
C_{ℓ}	0.740	0.751	+1.5%	0.825	+11.3%	0.730	-1.3%
C_d	0.0247	0.0236	-4.5%	0.0245	-0.8%	0.0210	-15.0%
$C_{d,f}$						0,007	-9.7%
$C_{d,p}$	0.0165	0.0161	-2.4%	0.0174	+5.5%	0.0136	-17.6%
C_{ℓ}/C_{d}	29.7	31.7	+6.8%	33.7	+13.5%	34.8	+17.2%

At the same incidence angle $\alpha=4^{\circ}$

		Reference	C1	Δ_1	C2	Δ_2	C2 ($\alpha = 3.45^{\circ}$)	Δ_2
C_{ℓ}		0.740	0.751	+1.5%	0.825	+11.3%	0.730	-1.3%
C_d	,	0.0247	0.0236	-4.5%	0.0245	-0.8%	0.0210	-15.0%
$C_{d,}$	f	0.0082	0.0076	-7.3%	0.0071	-13.4%	0.0074	-9.7%
C_{d}	р	0.0165	0.0161	-2.4%	0.0174	+5.5%	0.0136	-17.6%
C_{ℓ}/C	C_d	29.7	31.7	+6.8%	33.7	+13.5%	34.8	+17.2%

Approximately at the same C_ℓ

	Reference	C1	\triangle_1	C2	Δ_2	C2 ($\alpha = 3.45^{\circ}$)	Δ_2
C_{ℓ}	0.740	0.751	+1.5%	0.825	+11.3%	0.730	-1.3%
C_d	0.0247	0.0236	-4.5%	0.0245	-0.8%	0.0210	-15.0%
$C_{d,f}$	0.0082	0.0076	-7.3%	0.0071	-13.4%	0.0074	-9.7%
$C_{d,p}$	0.0165	0.0161	-2.4%	0.0174	+5.5%	0.0136	-17.6%
C_{ℓ}/C_{d}	29.7	31.7	+6.8%	33.7	+13.5%	34.8	+17.2%

Computational details

- compressible NS solver for a calorically perfect gas: second-order FV method, with locally 3rd-order WENO numerical flux with Ducros sensor
- · domain with spanwise width 0.1c, mesh radius 25c
- · incoming laminar flow, periodic spanwise boundary conditions
- baseline mesh $4096 \times 512 \times 256$
- resolution after Zauner, De Tullio & Sandham (2019) (but at lower *Re*), then checked a posteriori to obey requirements set forth by Hosseini et al. 2016
- · statistics accumulated for $40c/U_{\infty}$