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ABSTRACT Optimizing traffic dynamics in an evolving transportation landscape is crucial, particularly in
scenarios where autonomous vehicles (AVs) with varying levels of autonomy coexist with human-driven
cars. While optimizing Reinforcement Learning (RL) policies for such scenarios is becoming more and
more common, little has been said about realistic evaluations of such trained policies. This paper presents an
evaluation of the effects of AVs penetration among human drivers in a roundabout scenario, considering both
quantitative and qualitative aspects. In particular, we learn a policy to minimize traffic jams (i.e., minimize
the time to cross the scenario) and to minimize pollution in a roundabout in Milan, Italy. Through empirical
analysis, we demonstrate that the presence of AVs can reduce time and pollution levels. Furthermore,
we qualitatively evaluate the learned policy using a cutting-edge cockpit to assess its performance in near-
real-world conditions. To gauge the practicality and acceptability of the policy, we conduct evaluations with
human participants using the simulator, focusing on a range of metrics like traffic smoothness and safety
perception. In general, our findings show that human-driven vehicles benefit from optimizing AVs dynamics.
Also, participants in the study highlight that the scenario with 80%AVs is perceived as safer than the scenario
with 20%. The same result is obtained for traffic smoothness perception.

INDEX TERMS Transportation, autonomous vehicles, urban mobility, reinforcement learning.

I. INTRODUCTION
Modern society grapples with a large amount of societal
challenges. Among the most pressing is the constant increase
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in levels of pollution and related traffic congestions [1], both
of which threaten the sustainability and livability of our urban
environments [2], [3]. At the same time, at the forefront of
the technological revolution are autonomous vehicles (AVs).
These vehicles, driven by advanced algorithms and sensors,
promise to redefine how we perceive transportation [4],
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[5], [6]. They can potentially alleviate some of the most
persistent issues of modern urban transportation, from
increasing safety [7], [8], [9], [10], [11] to optimizing
traffic flow [12], [13], [14], [15]. However, as with any
nascent technology, the real-world implementation of AVs
is laden with challenges. Among the most significant are
the safety, and prohibitive costs associated with testing and
validating the efficiency of these vehicles in real conditions.
One aspect that is fundamental to address these challenges
is the evaluation of driving scenarios in which AVs are
present together with human drivers, in order to assess
not only the performance attained by the AVs, but the
behavior of the whole hybrid multi-agent system of drivers,
together with the perception of driving comfort and safety
experienced by the human drivers involved. In our paper, in
order to conduct such analysis conjugating both safety and
realistic conditions, we bypass the logistical and financial
constraints of real-world testing by harnessing the power of
state-of-the-art simulation tools. Our primary focus is on a
small-scale yet intricately complex scenario: a roundabout
in Milan, Italy. Utilizing Simulation of Urban MObility
(SUMO) [16], a cutting-edge traffic simulator, we create
a realistic environment where both AVs and human-driven
vehicles (HVs) coexist, navigating the roundabout under
realistic traffic loads. Also, we bridge the gap between
static simulation and real-world experience by integrating
SUMO with VI-WorldSim1 [17]. This user-friendly, fully
integrated graphic environment not only accelerates vehicle
development offline but also facilitates a more immersive
experience on driving simulators. To enhance the realism of
our study, we leverage a high-fidelity cockpit that replicates
real-world driving conditions installed at the DrisMi Lab at
the Polytechnic University ofMilan,2 enabling us to evaluate,
to the best of our knowledge for the first time, the scenario
from a qualitative perspective. In our simulation, HVs adhere
to realistic dynamics as simulated by SUMO, while AVs
actions are dictated by a policy learned via Reinforcement
Learning (RL).

In general, the integration of microscopic traffic simulators
with driving simulators is not a novel concept [18], [19].
However, previous studies have presented certain challenges,
which our paper addresses and resolves [20], [21], [22],
[23]. Specifically, our approach ensures synchronized co-
simulation in real-time, utilizing the same road network
in both simulators and achieving an impressively low
delay of 5 ms.

Our findings, as detailed in this paper, shed light on the
multifaceted impact of AV integration. While the benefits
of AVs in reducing pollution and alleviating congestion
are evident, interestingly enough, the presence of AVs also
augments the efficiency of human-driven vehicles. As we
show in the Tables in Section V-B, as the AV penetration rate
increases, the ripple effects are felt across the entire traffic

1https://www.vi-grade.com/en/products/vi-worldsim/
2https://www.drismi.polimi.it/drismi/

ecosystem, offering insights into a future where harmonious
coexistence between AVs and HVs might redefine urban
transportation. More precisely, we evaluate the learned policy
and the interaction between AVs and HVs qualitatively
using traffic smoothness perception and safety perception as
metrics. The evaluation is carried by surveying the perception
of individuals who use the cockpit installed at the DrisMi Lab.
While a number of participants felt a difference between the
presence of 20% and 80% of AVs on the streets, most of the
people preferred the scenario with an 80% penetration rate of
AVs both in terms of safety and smoothness as highlighted in
the Tables of Section V-B.

The advances presented in our study can be summarized as
follows:

• We propose a framework that consists of the integration
of three realistic simulators: SUMO, VI-WorldSim, and
a cockpit. This framework enables quantitative and
qualitative evaluation of AVs and HVs interactions.

• We employ RL to learn AVs behaviors in a real-world
scenario (i.e., a roundabout in Milan, Italy) with realistic
traffic loads.

• We measure the reduction of crossing time (up to
−10,72% for AVs and −8,52% for HVs), emissions
(up to -38,98% for AVs and −39,13% for HVs) and
consumption (up to −35,82% for AVs and −35,15% for
HVs) as a quantitative metric for policy evaluation, and
traffic smoothness perception and safety perception as
qualitative metrics.

The rest of the paper is structured as follows. In Section II,
we briefly introduce SUMO, VI-WorldSim, the cockpit and
RL concepts as background notions. We then conduct a
literature review of works that study mixed-traffic scenarios,
and of works leveraging RL for AV and traffic simulation
in Section III. In Section IV, we first discuss how we
turn SUMO into an RL environment, the algorithm we use,
namely Proximal Policy Optimization (PPO) [24], how the
test environment (i.e., the roundabout in Milan) is designed,
and how the data for policy fine-tuning and traffic loads are
collected. In Section V, we present both the quantitative and
qualitative results, and we comment on some of the findings.
In Section VI, we summarize the paper and present some
interesting future directions to follow.

II. BACKGROUND
A. SIMULATIONS IN SUMO
Simulations are extensively used in a variety of fields
such as urban planning [25], transportation [26], [27], [28],
robotics [29], epidemiology [30], gaming [31], and others.
Experiments in the real world are often costly, dangerous, and
infeasible. Thus, simulators provide a solution for evaluating
hypotheses and methodologies in silicowhere certain aspects
of the behavior faithfully mirror the real world.

SUMO [16] is a state-of-the-art multi-agent simulator for
transportation systems that reproduce realistic behaviors of
drivers. In SUMO, it is possible to deploy multiple agents
that use different transportation means (e.g., cars, public
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transit, bicycles) to reach different goals. The agents can
move within a street network that defines the environment in
which they can operate. Interestingly enough, SUMO is also
a microscopic traffic simulator, i.e., each agent is modeled as
an individual based on separate and different car-following
and lane-changing models.

SUMO’s workflow to simulate realistic traffic is organized
as follows. First, the road network is defined to match
the real world, and road loads (e.g., a realistic number of
agents using a specific street) are specified. Second, the
agents are executed in the road network through high-fidelity
simulations and scored according to a cost function that
measures if certain goals have been reached. Next, as in
this work we use a learned Reinforcement Learning policy
trained in collaboration among all the AVs involved, SUMO
re-plans, re-executes, and re-scores the actions taken by the
agents using a co-evolutionary algorithm until nobody can
unilaterally improve their trips. At that point, the system has
an equilibrium, and we can inspect the individuals’ typical
behaviors.

B. VI-WorldSim
VI-WorldSim is an innovative software solution designed
to facilitate creating and testing lifelike driving scenarios.
These scenarios include traffic flow, pedestrians, weather
conditions, and sensor feedback. By utilizing VI-WorldSim,
individuals can immerse themselves in many realistic envi-
ronments, from bustling urban streets to expansive highways
and specialized test sites. This versatility allows for an
in-depth evaluation of how a vehicle model responds to
many situations, ensuring that every potential challenge is
addressed during development. Also, the realism of the
simulations combined with the integration with realistic
cockpits can be used to evaluate scenarios qualitatively safely
and relatively cheaply. An example of what a VI-WorldSim
simulation looks like can be seen in Figure 1 B.

C. VI-WorldSim AND SUMO INTERACTION
The traffic scenario is generated thanks to a co-simulation
between SUMO, which is used as a traffic engine, and VI-
WorldSim, which simulates the vehicle’s motion driven by
the human in the loop and allows a graphical representation
of the traffic scenario. SUMO is in charge of simulating
all virtual vehicles in the roundabout, comprising HVs and
AVs. In particular, SUMO receives the data about the car
driven by the human in the loop (ego-vehicle) from the
driving simulator through VI-WorldSim. The current position
of all simulated vehicles is fed to VI-WorldSim which is
in charge of all the graphical environment of the driving
simulator, of the interface with the human in the loop and of
the simulation of the motion of the ego-vehicle according to
the request of the real human driver. All these simulations are
performed in real-time and the corresponding data are stored
in a real-time database. Additional information about the
communication schema between SUMO and VI-WorldSim
can be found in [17]

FIGURE 1. A) The cockpit was installed at DrisMi laboratory of the
polytechnic university of Milan. B) An example of the output of
VI-WorldSim after the integration with SUMO.

TABLE 1. A summary of the physical characteristics of the driving
simulator (cockpit).

D. THE COCKPIT
The human in the loop drives the vehicle from the cockpit
of the driving simulator, which moves accordingly to the
simulated motion of the ego vehicle. The cockpit can be seen
in Figure 1 A. The cockpit is equipped with a telematic box,
which is connected to the Controller Area Network bus of the
cockpit, reads the dynamic data of the car, and transmits them
to a 5G radio platform. The 5G radio platform transmits the
data to and from an edge server and is controlled by a Next
Unit of Computing (NUC) where the services (e.g., learned
policy) are installed. Finally, the edge server hosts the RL
infrastructure, including the policy, which is used to control
the connected automated vehicles simulated by SUMO. The
characteristics of the cockpit are summarized in Table 1.

E. REINFORCEMENT LEARNING
Reinforcement Learning (RL) constitutes a branch within
the domains of Artificial Intelligence and Machine Learning
that draws its initial inspiration from the Pavlovian paradigm
of conditioning, wherein organisms adapt their behavioral
choices based on the gratifications (rewards) and aversions
(punishments) received. Analogously, in the classic RL
setup an artificial agent (sometimes referred to as an actor)
is engaged in dynamic interactions with its environment,
thereby selecting at discrete time intervals its course of action.
RL algorithms aim at training the agent, enabling it to inde-
pendently attain optimal behaviors within a designated envi-
ronment, in alignment with contextually defined objectives
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inherent to the specific problem at hand. The remaining part
of this section summarises the fundamental RL definitions
(see for a more detailed introduction [32], [33], [34]). The
RL problem can be mathematically formalized as a Markov
Decision Process, by considering a tuple (S, A, p, r) such
that S and A are the sets of possible agent’ states and actions,
respectively, while p : S × A × S −→ [0, 1] indicates the
probability to transition from state s to state s′ by acting a,
i.e. p(s, a, s′) = P(st+1 = s′|st = s, at = a). The reward
function r : S×A −→ R+

0 maps a state-action couple with its
immediate, intrinsic desirability in relation to the agent’s task
at hand. In this context, the agent’s decision-making process
is modeled as a policy function π : S × A −→ [0, 1],
such that π (s, a) represents the probability of acting a while
in state s, determining de facto the agent’s behavior. It is
possible to define a value function Vπ : S −→ R+

0 associated
with any policyπ , that represents the expectationwith respect
to p of the cumulative discounted rewards obtained by π

over time from each state, considering γ ∈ (0, 1] as
discounting factor penalizing rewards obtained further on in
time, i.e.,

Vπ (s) = Est+1∼pt ,
at∼πt

[ ∞∑
t=0

γ tr(st , at ) | s0 = s
]
,

where we define per each step t the distributions pt =

p(st , at , · ) and πt = π(st ). It is sometimes useful to consider
the action-value functionQπ : S×A −→ R+

0 associated to π ,
whereQπ (s, a) indicates the expected cumulative discounted
rewards obtained by following policy π over an infinite
horizon, starting from state s and performing as a first action
a, i.e.

Qπ (s, a) = Est+1∼pt ,
at∼πt

[ ∞∑
t=0

γ tr(st , at ) | s0 = s, a0 = a
]
,

keeping in mind that the following property holds

Qπ (s, a) = Es′∼p(s,a, · )

[
r(s, a) + γ Vπ (s′)

]
.

The agent’s overall goal is to learn a policy π∗ that maximizes
the expected long-term desirability of each state, i.e., such
that for each s ∈ S

π∗(s) = argmax
π

Vπ (s). (1)

In many cases it is common to model r as a function
linking states and actions with an associated cost (instead
of a reward), without loss of generality, and substitute the
maximization with a minimization in (1).

III. LITERATURE REVIEW
This section reviews significant contributions in the literature
regarding the study of mixed-traffic scenarios and the design
of RL policies for AVs. In this work we do not focus on the
development of new RL algorithms for AVs training. On the
contrary, in order to realistically study the interaction and
coexistence ofAVs andHVs, we findmore sensible to employ

established and, hence, more reliable RL techniques, closer to
the deployment phase, than extremely recent methods. Hence
we introduce the related literature not from the algorithmic
point of view, but summarizing some of the most common
problem design choices.

A. AVs-HVs INTERACTION
Predictions suggest a gradual market integration of AVs,
with estimates ranging from 24% to 87% market share
by 2045 [35], [36]. Most of the studies about the role of
AV integration explore how such vehicles will lead to a
fundamental transformation in mobility [37], [38], [39], [40],
[41]. A number of research papers have delved into the
advantages of AVs, and in particular Connected AVs (CAVs),
concluding that they can notably decrease traffic incidents,
alleviate congestion, lower fuel use, and offer essential
mobility options [37], [38], [39], [42], [43], [44], [45], [46],
[47]. Researchers highlighted that even a small penetration
of AVs may significantly impact, for example, the number
of parking requirements and the number of accidents [38],
[42]. Other researchers also investigated how street features
like Variable Speed Limits and road capacities impact urban
scenarios under different levels of AV integration [40], [41].
Focusing on the interaction between HVs and AVs, in [48]
researchers propose considerations on the design of AVs
that can safely and intuitively interact with other traffic
participants, based on common human interaction strategies.
A driving simulator experiment was conducted in [49] on
34 individuals, to investigate the behavior of HVs exposed to
different road design of lanes dedicated toAVs onmotorways.
The coexistence and interaction of AVs and HVs was
investigated as well in [50], through a field test conducted on
18 participants, focusing on gap acceptance, car-following,
and overtaking behaviors, showing that drivers interacting
with recognizable AVs adopt smaller critical gaps, and after
overtaking, merge closer in front of those. The work in [51] is
devoted to understandingHVs behavior inmixed traffic at un-
signaled priority T-intersections, through a driving simulator
experiment on 95 human drivers, whose findings suggest
that human drivers change their gap acceptance behavior in
mixed traffic depending on AVs recognizability and driving
style. Finally, the authors of [52] aimed at quantifying the
behavioral changes caused by human drivers following either
an AV or an HV, and their impact on safety, fuel consumption
and pollution, by analyzing data from a field experiment
on 9 drivers. Their work shows that, when human drivers
follow AVs, lower driving volatility in terms of speed and
acceleration can be achieved, and consequently more stable
traffic flow behavior, lower crash risk, less fuel consumption
and emission production are experienced. However, to the
best of our knowledge, there is no study that evaluates how
the penetration rate of AVs may impact the human driver’s
perception of traffic smoothness, safety and comfort in a
scenario in which AVs and HVs coexist. Such evaluation is
the main goal of our study.
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B. RL DESIGN FOR AVs
In the context of RL policies training for AVs, literature can
be found detailing the most common choices related to the
design of the RL problem to be solved, in particular regarding
states, actions and rewards design for AVs training. It is
frequent to consider a states space that includes the position,
heading, velocity of the vehicle, and the presence of obstacles
within the sensor’s view, possibly employing a Cartesian or
Polar occupancy grid centered around the vehicle. This grid is
often enhanced with lane-related details such as lane number,
path curvature, historical and predicted trajectory of the
vehicle, longitudinal measures such as time-to-collision, and
broader scene-related information such as traffic regulations
and the locations of traffic signals [53], [54]. The action space
instead is by definition related to the actuators present on
the vehicle and devised to the vehicle control task. Multiple
actuators come into play, both continuous (as for instance
steering angle, throttle, and brake) and discrete (i.e., gear
changes). A framework incorporating temporal abstractions,
such as options (sub-policies that extend primitive actions
over multiple time steps, to be chosen instead of low-
level actions), can simplify action selection [55]. Concerning
the design of suitable reward functions for RL agents in
the context of autonomous driving, researchers follow a
variety of approaches, in order to tackle the many different
sub-skills that all together characterize the general goal of
autonomously driving a vehicle. Examples include measures
such as distance traveled towards a destination [56], speed
of the vehicle [56], [57], [58], maintaining the ego vehicle
at a standstill [59], avoiding collisions with other road users
or scene objects [56], [57], adherence to sidewalk rules [56],
staying in the lane, ensuring comfort and stability while
avoiding extreme acceleration, braking, or steering [58], [59],
and adherence to traffic regulations [57].

IV. METHODOLOGY
This section describes all the steps and experimental setups
adopted to carry out the study. First, we describe how
SUMO can be turned into a realistic RL environment using
Python libraries like Flow [60], Ray RLlib [61] and OpenAI
Gym [31].

A. TURNING SUMO INTO A REALISTIC REINFORCEMENT
LEARNING-BASED ENVIRONMENT
In this work, we transform SUMO, a high-fidelity multi-
agent transportation simulator, into a realistic Reinforcement
Learning environment to optimize and evaluate policies for
AVs. The ultimate goal is to use SUMO to learn policies in
which AVs take optimal actions to reduce emissions and to
minimize the time to cross a real roundabout in Milan, Italy.

To transform SUMO into a Reinforcement Learning
environment, we integrate Flow [60], an open-source Python
package that can be used to create a communication layer
between SUMO and Ray RLlib [61]. Remarkably, Flow can
be used to investigate the so-calledmixed autonomy scenarios

where only a portion of the deployed cars are AVs, and the
others are controlled by car followingmodels (CFMs), a set of
ordinary differential equations that realistically mimic basic
traffic dynamics on single-lane roads. This ability to study
mixed autonomy scenarios is paramount for policymakers
and traffic engineers as it represents a more realistic short-
term scenario. In Flow, SUMO is connected with Ray RLlib
and OpenAI Gym [31] through TraCI, a package to control
communication over network protocols. The environment
in which agents operate consists of a realistic network
representing a physical road layout (e.g., speed limits, lanes,
length, shape). The actors are the deployed cars. Some of
them (marked with ‘‘rl_agent’’) are controlled by a learned
policy and make decisions according to a specific goal they
have to minimize. Other cars (marked with ‘‘human_agent’’)
base their decision on pre-defined driver models.

Flow allows to rely on observer functions to map the set
of states S to the observations O. This permits to tailor the
information provided to the controller, choosing a subset of
the SUMO states of the vehicle. We structure the observation
vector ont ∈ O available at instant t to vehicle n so
that it contains the last measured value of position xnt and
acceleration ẍnt of the vehicle. Moreover, we include in
ont information obtained from the estimated position and
acceleration of its front (F), back (B), left (L) and right (R)
neighbors in the scenario, indicated respectively as {xkt , ẍ

k
t }k

with k = F,B,L,R, if such vehicles are present at instant t
around vehicle n. The values associated with the neighbors
that are missing at time t are replaced by an opportune
placeholder. The described components of the observations
vector are divided by quantities that are characteristic of the
chosen scenario, such as the scenario’s dimension xmax and
the maximum acceleration ẍmax. Summarizing, we consider
as observation ont the vector

ont =



xnt /xmax
ẍnt /ẍmax
xFt /xmax

(ẍFt − ẍnt )/ẍmax
xBt /xmax

(ẍBt − ẍnt )/ẍmax
xLt /xmax

(ẍLt − ẍnt )/ẍmax
xRt /xmax

(ẍRt − ẍnt )/ẍmax


. (2)

The action ant ∈ A decided by agent n at time t , instead,
consists of the next acceleration value ẍnt+1 to actuate, and of
a discrete decision cnt+1 ∈ {0, 1}, corresponding to changing
the line/maintaining the current one, that is

ant =

[
ẍnt+1
cnt+1

]
(3)

Our work aims at leveraging the presented infrastructure
to allow AVs to learn via RL techniques the optimal control
law to cross a roundabout as fast as possible. In this sense,
we design a stage-cost function r : O×A → R≥0 measuring
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the deviation d of the AVs velocity ẋnt from a user-defined
desired velocity v. In order to penalize the early termination of
roll-outs due to collisions or other failures, we subtract such
deviation from the peak allowable deviation dmax(v). Finally,
to ensure non-negativity, the cost is then bounded below by
0, i.e.,

rv( ont , a
n
t ) = max( 0, || d( ẋnt , v ) − dmax(v) || ). (4)

Simultaneously, we are interested in reducing polluting
emissions. Hence, we leverage the previously described
velocity-based stage-cost with an analogous one, punishing
the deviation from a target level of pollution P, i.e.,
d(pnt ,P), where the pollution levels pnt are measured in
function of the actuated decisions ant , and P is estimated
by considering a single vehicle in the scenario, running
at constant velocity. The two components of the cost are
summed and normalized, and then assigned as a stage-
cost to the AV. We use the well-known Proximal Policy
Optimization [24] algorithm (see Section IV-B for more
details) to learn a policy allowing the AVs to decide at each
instant which action to take, based on the agent’s individual
observations’ vector ont ∈ O. All the AVs involved in
the roundabout scenario collaborate in training a central
policy by providing their simulated experience in order to
update the policy parameters. Moreover, during training
and deployment, when interrogated, the policy exploits both
the local observations of the agent taking the decision and
information related to the position and acceleration of other
vehicles in the roundabout that are received through a central
communication scheme.

Differently from the state-of-the-art studies, we evaluate
the learned policy quantitatively and qualitatively, analyzing
results obtained through tests carried out at the DriSMi Labo-
ratory of Polytechnic University ofMilan. This laboratory has
a high-fidelity last-generation cable-driven driving simulator
(see Figure 1 and [62], [63]). The traffic scenario is generated
thanks to a co-simulation between SUMO (traffic engine),
and VI-WorldSim,3 that simulates the motion of the vehicle
driven by the human in the loop and allows to have a graphical
representation of the traffic scenario. The combination of
SUMO and VI-WorldSim allows us to evaluate the learned
policy in terms of the traffic smoothness and safety perception
of the passengers (i.e., real humans who agreed to participate
in the experiments in our case). Further details about the
evaluation procedure are shared in Sections V-A and V-B.

B. PROXIMAL POLICY OPTIMIZATION
To learn the policy parameters, we employ the Proxi-
mal Policy Optimization (PPO) method [24]. PPO is a
prominent policy-optimization algorithm, deriving from the
Trust Region Policy Optimization (TRPO) algorithm [64],
and improving it from the flexibility and computational
complexity point of view. Both PPO and TRPO are designed
to stably and efficiently optimize decision policies, focusing

3https://www.vi-grade.com/en/products/vi-worldsim/

on refining policies by iteratively adjusting their parameters
while limiting the extent of these updates in order to maintain
stability during learning. This is realized by PPO within a
dual-step process: policy evaluation and policy improvement.
During policy evaluation, data are gathered by executing
the current policy within the environment. Subsequently, the
advantages

Aπθ (s, a) = Qπθ (s, a) − Vπθ (s)

of actions taken with respect to expected returns are
computed. The advantages serve as a measure of how
favorable the chosen actions were, with respect to expected
outcomes. Following policy evaluation, policy improvement
is performed through several epochs of optimization. In each
epoch, PPO computes surrogate objectives that quantify
the change in the policy’s performance with respect to the
previously considered set of policy parameters θold, guided
by the advantage values, i.e.,

Lθ (s, a) = min
(

πθ (a|s)
πθold (a|s)

Aπθ (s, a), CAπθ (s, a)
)

,

with

C = clip
(

πθ (a|s)
πθold(a|s)

, 1 − ϵ, 1 + ϵ

)
.

These surrogate objectives facilitate the optimization of the
policy in a manner that promotes positive action shifts
while maintaining a threshold ϵ on the magnitude of policy
updates. This threshold, referred to as the ‘‘clip parameter,’’
curbs policy updates from straying too far from the original
distribution, ensuring a measure of stability and preventing
drastic policy shifts that could lead to instability. PPO’s
distinctive feature lies in its capacity to strike a balance
between exploiting the advantages of updated policies and
maintaining a controlled adjustment process. By constraining
policy updates and employing the surrogate objective,
PPO achieves stable and incremental policy improvements,
contributing to efficient and reliable RL.

These characteristics, together with the performance
attained by PPO in many benchmark examples and appli-
cations [65], motivated us to choose PPO as the learning
algorithm for AVs policy optimization. Moreover, in order
to conduct an objective evaluation of the effects of
deploying AVs on realistic scenarios in the presence of
human drivers, technologies that are both well-performing
and well established, as for instance PPO, should be
preferred to algorithms that, although cutting-edge, are not
at maturity, and hence are less commonly deployed in real
applications.

C. ROUNDABOUT DESIGN AND DATA COLLECTION
To operate in an environment that is as realistic as possible,
we designed a roundabout inspired by a real-world one
in Milan, Italy. In Figure 2 A), we can see how the
roundabout looks in the real world, while in panel B),
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we can see the SUMO’s roundabout. It is a four-leg mini-
roundabout, showing medium-high traffic and, therefore,
being a challenging environment for theAVpolicy.Moreover,
it has some important details, which make this particular
scenario of general interest, specifically:

• every leg has pedestrian crosswalks immediately before
the entrance of vehicles inside the circulatory roadway.

• Two of the legs are central arteries of the city, greatly
increasing traffic on the roundabout.

• The roundabout has a standard configuration widely
distributed in European urban areas [66] with significant
flows.

A calibration procedure was conducted to replicate
the number of vehicles approaching the intersection and
their positions during the simulation. Firstly, measurements
were taken for the maximum queue length, upstream and
downstream flows for each leg, considering road vehicles,
pedestrians, and bicycles on the actual roundabout. This
process was repeated for six consecutive time slots, each
lasting 10 minutes.

Subsequently, the results of these measurements were
compared with simulations conducted in SUMO to calibrate
the seven most relevant parameters that define the traffic
conditions in the considered scenario. The parameters under
consideration include the distance at which a pedestrian is
considered, the minimum time interval to cross the path
of another vehicle when entering the roundabout, the time
before a driver enters the roundabout even if obstructing
the way of an incoming vehicle, the maximum acceleration
and deceleration of the vehicles, the time interval between
vehicles, and the drivers’ reaction time. For each simulation
run, a cost function was constructed to compare the mean
and maximum queue lengths between the measured and
simulated data. The calibrated parameters are those that
minimize the differences between the two sets of data.
Specifically, Table 2 lists the SUMO parameters detailed
below and their values:

• jmCrossingGap: minimum distance between the vehi-
cle and the pedestrian that is heading toward the point of
conflict of its trajectory with that of the vehicle;

• jmTimegapMinor: minimum time interval for a vehicle
to enter an intersection where it does not have the right-
of-way, before a vehicle with right-of-way;

• impatience: driver’s intent to obstruct a vehicle with the
right of way;

• accel: maximum acceleration for the selected vehicle
type;

• decel: maximum deceleration for the selected vehicle
type;

• tau: minimum time interval between consecutive
vehicles;

• actionStepLength: driver reaction time.
As can be noted from 2 B), although present in the real

roundabout, in the final network there are no restricted lanes
or pedestrian crosswalks. Such elements have been removed,
after the calibration process, as they are not within the scope

TABLE 2. SUMO calibrated parameters.

FIGURE 2. A) The selected roundabout in Milan observed from
OpenStreetMap; and in B), the corresponding design of the roundabout in
SUMO. Also, realistic traffic loads for fine-tuning have been measured
through field measurements.

of the AI@EDGE project. Correction coefficients, taken from
the literature, have been used to take these elements into
account in the modifiedmodel. For the same reason, only cars
are considered; other vehicles and pedestrians are considered
via equivalent coefficients [67].

V. RESULTS AND DISCUSSION
A. QUANTITATIVE EVALUATION
In our work, we focus on evaluating the efficacy of the
learned policy in reducing the time AVs need to cross the
roundabout and emission and fuel consumption. Concerning
the former, given a simulation S of 3600 seconds (i.e., 1 hour)
with a given percentage of AVs and a total of n vehicles
v1, v2, . . . , vn, we associate to each vehicle vi its entering time
t invi and exiting time toutvi . The average time needed by the cars
in the simulation S to cross the roundabout is then computed
as

µ(S) =
1
n

n∑
i=1

( toutvi − t invi ). (5)

Note that by sampling V = {v1, v2, . . . , vn} it is possible to
estimate the average time for AVs and HVs. As a reminder,
the simulation is carried out to have a total of 1540 vehicles
passing through the roundabout over one hour as emerged
from the field measurements. Time is measured in seconds.
In Table 3 and in the right panel of Figure 3, we can see the
results when having a different amount of AVs leveraging the
learned policy.
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TABLE 3. Given a certain penetration rate of AVs (column %AVs),
we measure the average time that AVs and HVs need to cross the
roundabout as in Eq.(5). The measurements are in seconds. We observe
that as the number of AVs (column #AVs) increases, both AVs and HVs,
on average, need less time to cross the roundabout, highlighting how HVs
may also benefit from the optimization and diffusion of AVs.

At 0% AV penetration, only HVs are present. The
average time taken by HVs to cross the roundabout stands
at 17.94 seconds. As we introduce AVs into the system,
there’s a slight improvement in the average crossing times
for both types of vehicles. At 10% AV penetration, the
average crossing time for AVs is 17.15 seconds. The HVs
also experience a marginal decrease in their average time,
clocking in at 17.32 seconds. As the percentage of AVs
increases from 10% to 50%, there is a gradual and consistent
decrease in the average crossing times for both AVs and
HVs. At the midpoint, with 50% AVs and 50% HVs, AVs
take an average of 16.58 seconds, while HVs take a slightly
longer 16.99 seconds. Beyond the 50%mark, as AVs become
more dominant, their average crossing times continue to
decrease, reaching 15.31 seconds at 100% penetration.
Interestingly, the HVs also benefit from the increased AV
presence. At 90% AV penetration, when only a small fraction
of HVs remain, their average crossing time reduces to
16.41 seconds - the minimum reached value. Throughout
the progression, AVs consistently demonstrate a trend of
reduced average crossing times with their increased presence.
HVs also benefit from the introduction of AVs. The data
suggests that as the percentage of AVs in traffic increases,
the roundabout navigation becomes more efficient for both
vehicle types. This could be attributed to the predictability
and coordination of AVs, which seems to not only benefit
their kind but also aid in optimizing the flow for human
drivers.

Another evaluation metric that the policy should optimize
is fuel consumption and pollution. Both information can
be extracted from each vehicle’s property and computed by
SUMO. To give an idea of how the model is performing,
instead of using the values provided by SUMO we report
a more interpretable score normalized between 0 and 1.
To this end, for each scenarioS, we take theworst-performing
vehicle (scoremax) and the best-performing vehicle (scoremin)
as normalizing factors. We then performed a min-max
normalization, ending up with a score between 0 and 1 for
each vehicle, with 0 indicating lower emission or lower fuel

TABLE 4. Given a certain penetration rate of AVs (column %AVs),
we measure the consumption score and emission score of both AVs and
HVs, following Eq.6. Similarly to what happened with the crossing time,
we observe that as the number of AVs (column #AVs) increases, both AVs
and HVs, on average, consume less fuel and reduce their
emissions.

consumption and 1 indicating the worst performance. In
particular, the adopted formula is:

µ(S) =
1
n

n∑
i=1

( score(vi) − scoremin

scoremax − scoremin

)
. (6)

where n is the number of vehicles in simulation S and the
term score(vi) in the formula can indicate both the emission
or the consumption level of the i-th vehicle vi. The results
can be seen in Table 4 and in the left -emissions- and center
-consuption- panel of Figure 3.
When noAVs are present (0%AV penetration), the average

fuel consumption score for HVs stands at 0.74, with an emis-
sions score at 0.69. As AVs are introduced into the system
at 10% penetration, their fuel consumption and emissions
are recorded at 0.67 and 0.59, respectively. Interestingly,
even with a modest AV penetration, there’s an observable
improvement in HV metrics as well. The consumption for
HVs drops to 0.69, and their emissions decrease to 0.63.
As the percentage of AVs in the system grows from 10% to
50%, there’s a consistent improvement in both consumption
and emissions for both vehicle types. At 50%AV penetration,
AVs record consumption and emission values of 0.53 and
0.46, respectively, while HVs show values of 0.56 and
0.51. Beyond 50% AV penetration, the trend of decreasing
consumption and emissions continues for AVs, reaching their
lowest at 0.43 and 0.36, respectively at 100%AV penetration.
HVs also see continuous improvement. Throughout the
entire range, AVs exhibit lower consumption and emission
values compared to HVs. The difference becomes more
pronounced as the percentage of AVs increases, highlighting
the efficiency of autonomous driving systems. In conclusion,
not only do AVs demonstrate better fuel efficiency and
lower emissions, but their presence also seems to positively
influence the performance of human-driven vehicles, similar
to travel time reduction. This could be attributed to smoother
and more predictable traffic flow, leading to less stop-and-
go traffic and more consistent driving speeds learned by the
policy.
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FIGURE 3. Concerning the quantitative analysis, we measured the impact of AV penetration rate on emissions, fuel consumption and average
time to cross the scenario. On the left, we have the results related to emissions. In the middle, we show the results for fuel consumption while on
the right we have the average crossing time. As we can observe, the best results are obtained for the scenario with 100% of AVs. However, having
some AVs (e.g., 10% to 90% penetration rate already provides some benefits. Interestingly enough, also HV benefits from the penetration rate of
AVs.

B. QUALITATIVE EVALUATION
As previously mentioned, tests have been conducted at the
DriSMi Laboratory of the Polytechnic University of Milan4

to qualitatively evaluate indicators of the passengers’ comfort
in the described driving scenario, considering different AV
penetration levels. The laboratory has a high-fidelity, last-
generation driving simulator as described in Section II-D. The
integration between SUMO, VI-WorldSim and the simulator
itself allows us to evaluate, to the best of our knowledge for
the first time, traffic smoothness and safety perception of
passengers as qualitative metrics to analyze the passengers’
comfort. To collect the necessary information for our study,
a panel of ten participants has been selected for the prelim-
inary tests. The participants were chosen from individuals
without previous experience with driving simulators. The
panel consists of 5 females and 5 males, aged between 22 and
33 years, with driving experience ranging from 1 to 15 years.
Before the test, each participant was given instructions on
how to operate the driving simulator and signed an informed
consent form. Additionally, each participant spent about ten
minutes driving in a simple motorway scenario to become
familiar with the driving simulator before the actual test.
Individuals were exposed in simulation to experiences in
two driving scenarios, characterized by the 20% and 80%
of AV penetration rate, respectively. Following the simulated
ride, the participants were asked to fill out a quick survey,
consisting of three close-ended questions:

• Regarding traffic smoothness, which of the following
statements do you agree with the most?

• Regarding safety perception, which of the following
statements do you agree with the most?

• Globally, which of the two scenarios did you prefer?
Per each question, the interviewed individuals were asked
to select one among five possible alternatives, summarized
in the following three tables (Table 5, 6 and 7 associated

4https://www.drismi.polimi.it/drismi/

TABLE 5. A summary of the answers to the first question of the survey.
As we can see, most of the voters say that the scenario with 80% of AVs
was smoother with respect to the one with 20% of AVs. One participant
did not perceive differences between the two scenarios and 40% of
participants preferred the scenario with 20% of AVs, although the
majority of them only partially.

with the first, second, and third question, respectively). In
total we collect feedback from 10 individuals. While the
sample size is limited, a few tentative conclusions can be
drawn. In Table 5, most of the respondents (5 out of 10)
felt that the traffic was smoother in the scenario with 80%
AVs, to varying degrees. A smaller segment (4 out of 10)
felt the opposite, indicating that the 20% AV scenario was
smoother. Just 1 out of 10 respondents did not perceive any
significant difference in traffic smoothness between the two
scenarios. Results suggest that as AV penetration increases,
the perceived smoothness of traffic might improve. However,
divergent opinions underscore the complexity of human
perceptions and the subjective nature of such assessments.

Table 6 shows that a combined total of 8 respondents
felt that the scenario with 80% AVs was safer to some
degree compared to the 20% AV scenario. On the contrary,
only 2 out of 10 respondents felt that the 20% AV scenario
was safer in any capacity. All the participants perceived
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TABLE 6. A summary of the answers to the second question of the
survey. According to 80% of the participants, the scenario with 80% of
AVs is perceived safer than the scenario with 20% of AVs. Zero
participants did not perceive differences between the two scenarios and
20% of participants partially preferred the scenario with 20% of AVs.

TABLE 7. A summary of the answers to the third question of the survey.
From a general perspective, 70% of participants preferred the scenario
with 80% of AVs while 30% preferred the scenario with 20% of AVs,
although only partially.

a difference in safety between the two scenarios. These
results suggest an inclination towards perceiving higher AV
penetration as safer. Analogously towhat was observedwhile
commenting the perception of smoothness in traffic, even
when it comes to safety the diversity in opinions highlights
that safety perceptions can be subjective and can vary among
individuals.

Finally, Table 7 shows that, overall, these results hint at
a leaning towards the 80% AV scenario (as shown by the
7 over 10 individuals preferring it either definitely or partially,
versus only 3 just partially preferring the 20% AV scenario),
suggesting that most participants might perceive benefits in
scenarios with higher AV penetration. Naturally, even in this
case the variety of responses also emphasizes the subjective
nature of such preferences, and individual perceptions can
vary based on personal experiences or beliefs. Further
research could delve deeper into the reasons behind these
preferences, providing a more comprehensive understanding
of public sentiment toward AV integration, possibly by
benefiting of a larger sample of collected feedback from
individuals.

VI. CONCLUSION
This research has brought to light significant insights
into how human drivers may perceive in terms of safety
and comfort the integration of AVs in complex urban

traffic scenarios, specifically examining a roundabout in
Milan, Italy. Our approach leveraged state-of-the-art traffic
simulation tools like SUMO, VI-WorldSim, well-established
RL methods and a high-fidelity cockpit to understand the
dynamics of AVs penetrations alongside HVs.

The findings of our study underscore the substantial bene-
fits that AVs offer in mitigating common urban challenges
such as pollution and traffic congestion. By employing
established RL techniques, notably the PPO algorithm,
we were able to model and analyze the behavior of AVs in
realistic traffic settings. The simulation results are promising,
showing that AVs enhance their operational efficiency and
positively influence the overall traffic flow, benefiting HVs
in the process.

Our primary objective included conducting qualitative
assessments with human participants. These assessments
revealed a notable preference for environments where
autonomous vehicles (AVs) are more prevalent, attributing
this preference to enhanced safety and smoother traffic flow.
Conducting such evaluations is crucial, as AVs and human-
operated vehicles (HVs) will increasingly share roads in the
future. Notably, previous research has not explored human
drivers’ perceptions of AVs and HVs coexisting in a realistic,
comprehensive manner, as our proposed framework does.
Our findings are in line with quantitative data, indicating
a future where AVs and HVs can coexist more seamlessly,
leading to safer and more efficient urban environments.

While our study has made strides in understanding the
potential of AVs in urban settings, it also opens avenues
for future research. Further exploration into alternative
reinforcement learning algorithms could provide deeper
insights into the optimization of AV behavior. Additionally,
expanding the scope of human-in-the-loop evaluations with a
larger and more diverse participant pool would be invaluable
in enriching our understanding of public perception and
acceptance of AVs. Such studies could also explore other
aspects of urbanmobility impacted byAV integration, includ-
ing pedestrian safety and public transportation systems.
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