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Abstract. We consider a Hill equation whose potential depends on the solution of a nonlinear

oscillator. The nonlinearity of the oscillator is given by a function f(x) which has polynomial

growth as x → +∞ and is asymptotically constant as x → −∞. We provide explicit conditions
on a set of 4 parameters for the stability of the Hill equation as the energy of the oscillator

approaches infinity. In the case when the ratio of the angular frequencies of the linearized system
(around the null solution) is an integer, we recover the same instability intervals as in the case in

which f was extended by symmetry to an odd function. When this ratio is not an integer, the

system is essentially unstable at high energies. Finally, we consider the case where f has different
polynomial growth orders to +∞ and to −∞, and generalize previous results of Cazenave and

Weissler concerning the stability of a nonlinear mode of the Kirchhoff string equation.

The problem and the choice of the assumptions on the function f are motivated by the
(linear) stability analysis of a coupled nonlinear system of ODEs which is a simplified model for

the interaction of flexural and torsional modes of vibration along the deck of a suspended bridge.
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1. Introduction

Let us consider the Hill equation (v̇ = dv/dt),

(1.1) v̈(t) +Q(t; q)v(t) = 0,

whose periodic potential (f ′(x) = df/dx),

(1.2) Q(t, q) = β + γf ′(u(t; q))

is given as a function of u = u(t; q) which is the periodic solution of a nonlinear oscillator equation
such as

(1.3) ü+ αu+ f(u) = 0,

with initial data parameterized by the positive number q:

(1.4) u(0) = q, u̇(0) = 0.

The numbers α, β, γ are real parameters, α, β are assumed to be positive. We assume the
following conditions on the function f : R → R:
(H1) f ∈ C1(R), f increasing, and f(0) = 0;

(H2) there exist A > 0, and ν > 1, such that lim
x→+∞

f ′(x)

ν xν−1
= A;

1
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(H3) lim
x→−∞

f(x) = −h (h ≥ 0), f ′(x) = O(1/x), x → −∞.

The problem we want to address is the stability of the null solution of the equation (1.1) when
the parameter q → +∞.

The equation (1.3) has a conserved energy,

E(q) =
u̇2(t)

2
+ J(u(t)) (t ∈ R),

where J(x) = α
x2

2
+ F (x) (F (x) =

∫ x

0
f(r)dr) is the potential energy. The assumption (H1),

implies that the potential energy is convex, so that every solution u of (1.3) is periodic.
Moreover, from the initial conditions (1.4), we get E(q) = J(q). Thanks to assumption (H2), we

have E(q) → +∞ as q → +∞, therefore the problem of the present work can be seen as the study
of the stability of the null solution of (1.1) at high energies of the solution u of the equation (1.3).

We refer to the end of this section for the applicative motivations of the problem, and for the
reasons that led us to the choice of the assumptions on the nonlinearity f , in particular for the
hypothesis (H3). Here we observe that very similar problems have been studied by Dickey [8],
Cazenave-Weissler [7], Ghisi-Gobbino [13, 14], in relation to the stability of a nonlinear single mode
of the Kirchhoff string equation at high energies; see also [4] for the stability of nonlinear modes for
the Woinowsky–Krieger beam equation. The main difference with respect to the problem we face
in the present work is that in all those papers the nonlinearity f was essentially symmetric (odd),
having the same behavior as x → ±∞. To better clarify this point, the typical nonlinearity in
the stability theory of the Kirchhoff string is f(x) = x3, whereas a simple example of nonlinearity
falling within the assumptions (H1)-(H3) is f(x) = (x+)3 ( (·)+ = positive part).

As we shall see, the results show analogies but highlight the decisive role of the ratio β/α in the
asymmetric case, while it was irrelevant in the symmetric case.

Our main result is the following theorem.

Theorem 1. Let us assume that f satisfies hypotheses (H1)-(H3), and define the following se-
quences,

(1.5) γ−
n =

1

2ν

[
(ν + 1)n2 − (ν − 1)n

]
(n ≥ 1), γ+

n =
1

2ν

[
(ν + 1)n2 + (ν − 1)n

]
(n ≥ 0).

In the case when
√
β is an integer multiple of

√
α, then there exists q0 > 0 such that, for every

q > q0, the solutions of the Hill equation (1.1) are unstable if

γ ∈ ∪∞
n=1(γ

−
n , γ+

n ) ∪ (−∞, 0),

and are stable if
γ ∈ ∪∞

n=1(γ
+
n−1, γ

−
n ).

If
√
β is not an integer multiple of

√
α, then there exists q0 > 0 such that, for every q > q0,

the solutions of the Hill equation (1.1) are unstable with at most the exception of a discrete set of
values of the parameter γ.

A few remarks are in order.
In the case when

√
β/

√
α is not an integer, the exceptional values of γ for which there is stability,

under a further condition on the nonlinearity f , are reported in Theorem 2 below.
The most relevant fact to observe is how much the ratio between the two angular frequencies√
β/

√
α affects the stability of the system, and our interpretation is the following. When this

ratio is an integer, the coupling of the two equations asymptotically behaves as if the nonlinearity



INSTABILITY RESULTS FOR A HILL EQUATION 3

was extended by symmetry to negative values of u. In other words, the transition in the region
u < 0 is synchronous with the solution of the symmetric system, as shown by comparison with the
results of [7]: assuming that f is an increasing odd function satisfying a growth condition such as
(H2) (obviously, for both x → ±∞), Theorem 4.3 of [7] introduces the same sequence of intervals
(γ−

n , γ+
n ), and shows the instability of the Hill equation 1.1, as q → ∞, if γ ∈ ∪∞

n=1(γ
−
n , γ+

n )1. On
the other hand, when the ratio

√
β/

√
α is not an integer, the transition in the region u < 0 is

asynchronous, so that an increase of the energy for (1.3) eventually yields the instability of the Hill
equation.

Another comparison can be done with our previous result in [18], where the same system is
studied under the assumptions (H1)-(H3) with ν = 1. We remark that in general the instability
results in [18] cannot be obtained as limit, as ν → 1, of the instability intervals of Theorem 1. More
precisely, if the ratio

√
β/

√
α is an integer and we set ν = 1 in Theorem 1, we obtain the same

result of [18], in the sense that the instability intervals vanish in both cases. Again, the comparison
fails in the case when

√
β/

√
α is not an integer.

The stability analysis of (1.1) is carried out by means of Floquet’s theorem, see [6, 17]. We
recall the definition of the stability discriminant ∆ = ∆(q) of the Hill equation: let V(t, s) be the
transition matrix of the equation (1.1), that is

V(t, s) =
(
v1(t, s) v2(t, s)
v̇1(t, s) v̇2(t, s)

)
in which v1(t, s), v2(t, s) are the solutions of (1.1) such that

V(s, s) =
(
1 0
0 1

)
.

the discriminant is defined as

∆(q) = v1(2Tq, 0) + v̇2(2Tq, 0),

where 2Tq the period of u.
If |∆| > 2 the non-trivial solutions of the Hill equation are unbounded, if |∆| < 2 are all bounded.

In the case when ∆ = 2 there exists at least a non trivial 2Tq-periodic solution, and when ∆ = −2
there exists at least a non-trivial 4Tq-periodic solution.

The work required to obtain the main theorem consists in calculating the limit of ∆(q) as
q → +∞. From now on, we set

∆(∞) = lim
q→∞

∆(q).

Theorem 1 is simply a consequence of this, more detailed

Theorem 2. Assume that f satisfies hypotheses (H1)-(H3). Let the sequences (γ+
n )n≥0, and

(γ−
n )n≥1 be defined as in (1.5).
If

√
β is an integer multiple of

√
α, i.e

√
β = m

√
α, for some m ∈ N, then ∆(∞) is always

finite; more precisely

|∆(∞)| > 2 if and only if γ ∈ ∪∞
n=1(γ

−
n , γ+

n ) ∪ (−∞, 0),

|∆(∞)| < 2 if and only if γ ∈ ∪∞
n=1(γ

+
n−1, γ

−
n ).

1The system is similar but not exactly the same, as regards the parameters. To obtain exactly the same intervals
the parameter γ of the present work must be multiplied by ν.
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If
√
β is not an integer multiple of

√
α, and γ /∈ {γ+

n : n ≥ 0}, then we have

(1.6) |∆(∞)| = ∞, .

If γ = γ+
n , and the following condition is satisfied,

(1.7) f ′(x) = νAxν−1 + o(x
ν−1
2 ), for x → ∞.

then

(1.8) ∆(∞) = 2(−1)n cos(
√
β/απ).

The proof of Theorem 2 is very technical and requires several steps. The main difficulties arise
from the different time scales of the equation (1.3), depending on whether u is greater or less than
zero. In the former case we have a hardening spring, so that we have a fast time scale; in the latter,
the equation is asymptotically linear. In order to overcome the problem that arises at the transition
between the two different behaviors, we essentially use a trick introduced by Cazenave-Weissler in
[7] (see Section 4) which allows to reduce the limit equation in the hardening spring regime as
q → +∞ to a hypergeometric equation. Actually, unlike [7], we need the exact values of the limit
solutions at the transition time (Lemma 2.1), therefore we are forced to introduce, and use in a
tricky way, a part of the machinery related to the hypergeometric functions. This is recalled in
Appendix A.

Once the results in Theorem 1 are obtained, a natural question arises: what happens to the
instability intervals, if the growth of f(x) is super-linear both for x → +∞ and for x → −∞? In
other words, we want to address the question of a hardening spring for both u > 0 and u < 0. In
order to guarantee periodic solutions for the equation (1.3), we leave unchanged the Hypotheses
(H1) and (H2) on f(x), and substitute (H3) with the following:

(H3*) There exist Ā > 0, and ν̄, with 1 < ν̄ ≤ ν, such that lim
x→−∞

f ′(x)

ν̄ |x|ν̄−1
= Ā.

The following theorem highlights two very different behaviors of the discriminant ∆(q), depending
on whether we have an almost symmetric case, in which the growth condition on the function f(x)
is the same at ±∞, and a truly asymmetric one, in which the order at infinity is different. In the
first case, ∆(∞) is always finite, independently of the values of α, β, and γ. Furthermore, if the
two constants A and Ā are different, we observe the emergence of new instability intervals for the
parameter γ as q → ∞, which are not present when f has strictly symmetric asymptotic growth. In
the second case, i.e. when ν ̸= ν̄, ∆(∞) is always infinite, unless γ takes the values of a particular
sequence.

We note that the case addressed in [18] can be viewed, taking into account the linear terms αu,
and βv in (1.3)-(1.1), as an almost symmetric system with ν = 1. Even in that paper, ∆(∞) is
always finite.

Finally we observe that the case previously analyzed in Theorem 1 is more complex, because
both the additive parameter β and the multiplicative one γ in the periodic potential of the Hill
equation (1.2) are taken in account; in Theorem 3 only γ is relevant.

Theorem 3. Let us assume that f satisfies hypotheses (H1),(H2),(H3*).
If ν̄ = ν, then |∆(∞)| is always finite, and is greater than 2, if and only if

γ ∈ ∪∞
n=1(γ

−
n , γ+

n ) ∪∞
n=1 (µ

−
n , µ

+
n ) ∪ (−∞, 0),

where γ+
n−1 < µ−

n < µ+
n < γ−

n . The values of γ−
n , γ+

n are defined in (1.5), while the values of

µ−
n , µ

+
n depend on the ratio A/Ā; in particular, µ−

n = µ+
n , if Ā = A.

If ν̄ ̸= ν, and if γ /∈ {γ+
n (ν), γ−

n (ν̄)}, then |∆(∞)| is infinite.
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Several remarks are in order.
The end-points of the new instability intervals (µ−

n , µ
+
n ) which emerge if A ̸= Ā are implicitly

defined by the formula (3.11) in Section 3.
We point out that γ−

n , γ+
n are actually dependent not only on n but also on the exponents ν, ν̄.

Accordingly, in the second part of the Theorem 3, we made evident such dependence, when it is
needed, writing γ+

n (ν) γ−
n (ν̄).

Theorem 3 can be seen as a generalization of Theorem 4.3 in [7] whose assumptions correspond,
in our formulation, to the case ν = ν̄, A = Ā; actually, no symmetry (odd f) is needed.

A last simple remark is that Theorem 3 can be restated with ν̄ > ν exchanging the roles of the
two exponents.

1.1. Motivations. The problem and the choice of the assumptions on the function f are motivated
by the stability analysis of the coupled nonlinear system,

ÿ + αy +
1

2
[f(y + z) + f(y − z)] = 0,(1.9)

z̈ + βz +
γ

2
[f(y + z)− f(y − z)] = 0,(1.10)

which is a simplified model for the interaction of flexural and torsional modes of vibration along the
deck of a suspended bridge. In this model, y is the amplitude of a single-mode flexural deflection,
while z is the amplitude of a single-mode torsional deflection and the nonlinearity f represents the
restoring action exerted by the hangers in addition to gravity, and is applied to both extremities of
the deck. Several choices for f are possible, but typically it is assumed that the suspension cables
do not resist compression, and behave as linear or nonlinear springs if stretched. As a consequence,
any realistic assumption for the the action of the hangers is asymmetrical, as regards the growth of
f(x), as x → ±∞.

The study of the dynamics of suspension bridges, with this kind of hypotheses on the nonlinearity,
goes back to the most cited paper of Lazer, McKenna and related works [16, 22, 23] and to the
so-called fish-bone model, proposed by K.S. Moore [25], where the nonlinearity is of the type u+.
This in not the only possible choice, see [24], where is proposed an exponential-type nonlinearity.
These models are generalized and extensively studied by F. Gazzola and coworkers in a series of
papers [2, 3, 5, 9, 10, 11] and in the book [12]; see also our previous works [18, 19, 20, 21] for
more details on the derivation of the system, and for related results. The emerging problem in this
context is the following: what are the conditions on the parameters α, β, and γ so that a transfer
of energy from the flexural to the torsional mode may occur? The question can be addressed by
linearization of the system (1.9)-(1.10) around a purely flexural periodic solution, i.e. a solution
such that z is identically zero. In this way we arrive at the Hill equation (1.1) (linearized torsional
mode), coupled with the equation (1.3) (flexural mode). The instability of the Hill equation can be
interpreted as the instability of the flexural mode and, consequently, as a transfer of flexural energy
into torsional energy.

The case when f is asymptotically linear for x → +∞, has been addressed in [18, 21]. The
assumptions of the present paper can be summarized by saying that it has polynomial growth as
x → +∞, and is asymptotically constant as x → −∞.

The plan of the paper is the following: in Section 2 we outline the proof of Theorem 2, in
Section 3 the proof of Theorem 3, referring to Section 4 for the computation of limit solutions at
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the transition time, and to Section 5 for most of the required technicalities. Appendix A collects
some well known useful formulas about hypergeometric functions.

2. The hardening-linear spring case: proof of Theorem 2

First, we show how it is possible to compute the discriminant ∆(q) from the values of v1, v2,
and of their derivatives, at half the period Tq. Indeed, we can refer to the formulas in [17] p. 8 for
Hill equations in the case when the potential Q(t; q) is even in the first variable. This is actually
the case, since by the initial condition (1.4), u(−t) = u(t). Precisely, we have

v1(2Tq, 0) = v̇2(2Tq, 0),

v1(2Tq, 0) = 2v1(Tq, 0)v̇2(Tq, 0)− 1 = v1(Tq, 0)v̇2(Tq, 0) + v̇1(Tq, 0)v2(Tq, 0),

so that

(2.1)
∆(q)

2
= v1(Tq, 0)v̇2(Tq, 0) + v̇1(Tq, 0)v2(Tq, 0).

We denote by τq the first zero of u. Clearly, we have

u(t) > 0 for 0 < t < τq, u(t) < 0 for τq < t < 2Tq − τq.

Then, we separate the analysis of the hardening spring regime, corresponding to the time interval
[0, τq], from that of the linear spring regime corresponding to [τq, Tq], as the time scale is different
in such intervals. In fact, we will show in the following section, that τq → 0, while Tq − τq → π

2
√
α

as q → ∞. As a consequence, the approximate computation of the transition matrix

(2.2) V(Tq, 0) = V(Tq, τq)V(τq, 0)
will be performed separately in the two intervals.

2.1. Asymptotic analysis of τq and Tq. A crucial role in our argument is played by the as-
ymptotic expansion of the two different time scales. The basic result is provided by the following
Proposition. For the moment is all we need to prove the first part of Theorem 2. A more refined
expansion is contained in the proof of Lemma 5.2, but it will be useful only to prove the last part
of the Theorem, the one concerning the exceptional values of γ, in the case when the ratio

√
β/

√
α

is not an integer.

Proposition 2.1. Under the assumptions (H1)-(H3), we have

(2.3) lim
q→∞

q(ν−1)/2 τq =
√

(ν + 1)/2ABν , where Bν =

∫ 1

0

dx√
1− xν+1

.

About the next interval [τq, Tq], there exists a constant C = C(α, h) > 0, such that

(2.4)
π

2
√
α
− C

|u(Tq)|
≤ Tq − τq ≤ π

2
√
α
.

Proof. From the energy identity, we obtain

τq =

∫ q

0

du√
2(J(q)− J(u))

= q

∫ 1

0

dx

{2(J(q)− J(xq))}1/2
,

so that

(2.5) q−1
√
2J(q) τq =

∫ 1

0

(
1− J(xq)

J(q)

)−1/2

dx.
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By Cauchy’s mean value theorem, we have

J(xq)

J(q)
=

J(xq)− J(0)

J(q)− J(0)
=

xJ ′(xq̄)

J ′(q̄)
,

for some q̄ ∈ (0, q). Being J ′(x) an increasing function due to assumption (H1), the last term is
less than x, so that the integrand in (2.5) is bounded above by (1− x)−1/2.

The asymptotic equivalence in (2.3) follows by observing that assumption (H2) yields

lim
x→+∞

F (x)

xν+1
= lim

q→+∞

J(q)

q(ν+1)
=

A

ν + 1
,

thus

q−1
√

2J(q) ∼
√
2A/(ν + 1)q(ν−1)/2 q → +∞;

finally, for x ≥ 0, by De’Hôpital rule we have

lim
q→+∞

J(xq)

J(q)
= xν+1

so that the last integral in (2.5) converges to Bν .
To prove (2.4) we simplify the notation by putting s = −u(Tq) > 0. Recalling that u(τq) = 0,

again by the energy equation, we get

Tq − τq = −
∫ −s

0

du√
2(J(−s)− J(u))

=
1√
α

∫ 1

0

dx√
1− x2 +G(x, s)

,

in which we have set

G(x, s) =
2(F (−s)− F (−sx))

αs2
.

The function G(x, s) is nonnegative, thus

Tq − τq ≤ 1√
α

∫ 1

0

dx√
1− x2

=
π

2
√
α
.

On the other hand, we have

Tq − τq =
π

2
√
α
− 1√

α

(∫ 1

0

dx√
1− x2

−
∫ 1

0

dx√
1− x2 +G(x, s)

)

≥ π

2
√
α
− 1√

α

∫ 1

0

G(x, s)

2(1− x2)
√
1− x2

dx,

in which we have used the inequality 1/
√
a− 1/

√
a+ b ≤ b/2a

√
a.

Since −h ≤ f(x)) ≤ 0, for x < 0, by the mean value theorem, it follows that

(2.6) G(x, s) =
−2f(ξ)s(1− x)

αs2
≤ 2h(1− x)

αs
.

In conclusion, we obtain the inequality (2.4) with

C =
h

α3/2

∫ 1

0

dx

(1 + x)
√
1− x2

dx.

□



8 CLELIA MARCHIONNA AND STEFANO PANIZZI

Since u̇(Tq) = 0, and J(u(Tq)) = J(q), it follows that limq→∞ u(Tq) = −∞. Thus, (2.4) yields

lim
q→∞

Tq − τq =
π

2
√
α
.

2.2. Asymptotic analysis in the case u > 0. In this case we need to stretch the time interval
[0, τq] to [0, 1] by using the rescaling,

(2.7) wq(t
′) = q−1u(τqt

′), zq(t
′) = v(τqt

′),

so that wq solves the problem

(2.8) ẅq + τ2q αwq + q−1τ2q f(qwq) = 0 (0 < t′ < 1), wq(0) = 1, ẇq(0) = 0,

and zq solves the Hill equation

(2.9) z̈q +
(
τ2q β + γτ2q f

′(qwq)
)
zq = 0 (0 < t′ < 1).

Then we take the formal limits of (2.8), (2.9) as q → ∞. From assumption (H2), and from
formula (2.3), for every x > 0, we obtain

(2.10) lim
q→∞

q−1τ2q f(xq) = Kνx
ν , lim

q→∞
τ2q f

′(xq) = νKνx
ν−1, Kν =

ν + 1

2
B2

ν .

Recalling that wq(t
′) > 0 for 0 ≤ t′ < 1, we are led to the limit problem,

(2.11) ẅ +Kνw
ν = 0, w(0) = 1, ẇ(0) = 0, 0 < t′ < 1,

and the limit Hill equation,

(2.12) z̈ + γ ν Kν w
ν−1z = 0, 0 < t′ < 1.

The limits are not just formal, as shown by the following

Proposition 2.2. Let wq, w be the solution of the problems (2.8), (2.11), zq, z be the solutions of
(2.9), (2.12) respectively, corresponding to the same initial data. Then

(2.13) lim
q→∞

(
∥wq − w∥C1([0,1]) + ∥zq − z∥C1([0,1])

)
= 0.

For ease of reading, we have postponed all the technical lemmas to the Section 5. In particular,
the proof of Proposition 2.2 follows from a classic continuous dependence theorem, and from Lemma
5.1 which shows that both limits in (2.10) hold uniformly on [0, 1].

2.3. Asymptotic analysis in the case u < 0. The main result in this case is given by the
following Proposition that is crucial to prove the first part of Theorem 2. Roughly speaking, it says
that, as q → ∞, the equations (1.3) and (1.1), behave in this interval as two decoupled oscillators

ü+ αu = 0, v̈ + βv = 0;

in addiction, it provides a suitable estimate of the rate of convergence.

Proposition 2.3. Let us set

ϕ =
π

2

√
β

α
.

Under assumptions (H1)-(H3), we have that

(2.14) V(Tq, τq) =

 cosϕ
sinϕ√

β
−
√
β sinϕ cosϕ

+ o(τq).
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Proof. Let us set T = τq + π/2
√
α, and let Q(t, q) be the potential as defined in (1.2). Since

f ′(x) > 0, Lemma 5.4 can be restated by saying that

∥Q(·, q)− β∥L1([τq,T ]) ≤ Kγ ν τq/q.

Therefore, owing to a general lemma (see Lemma 5.1 in [18], or [26]), we obtain that

V(t, τq) =

 cos
√
β(t− τq)

sin
√
β(t− τq)√
β

−
√
β sin

√
β(t− τq) cos

√
β(t− τq)

+O(τq/q),

uniformly w.r.t. t ∈ [τq, T ].
Noting that

V(T, τq) =

 cosϕ
sinϕ√

β
−
√
β sinϕ cosϕ,

+O(τq/q),

the assertion is proved once we know that V(Tq, τq) = V(T, τq)+ o(τq). But this easily follows from
the estimate (2.4) in Proposition 2.1,

0 ≤ π

2
√
α
− (Tq − τq) ≤

C

|u(Tq)|
,

and Lemma 5.3, since

|u(Tq)| >
ẇ(1)

2
√
α

q

τq
,

for sufficiently large q. □

2.4. Conclusion of the proof of Theorem 2. Recalling the rescaling (2.7) in the interval [0, τq],
we get

(2.15) V(τq, 0) =
(

z1,q(1) τqz2,q(1)
ż1,q(1)/τq ż2,q(1),

)
where zi,q(t), żi,q(t), i = 1, 2 are the entries of the transition matrix Zq(t, 0) of the equation (2.9).
After some simple calculations, from (2.1), (2.2), (2.15) we get the following decomposition of the
discriminant ∆(q):

∆(q)

2
= A1(q) +A2(q) +A3(q),

where

A1(q) =
2

τq
v̇2(Tq, τq)v2(Tq, τq)ż1,q(1)ż2,q(1)(2.16)

A2(q) = (v1(Tq, τq)v̇2(Tq, τq) + v̇1(Tq, τq)v2(Tq, τq)) (z1,q(1)ż2,q(1) + ż1,q(1)z2,q(1))(2.17)

A3(q) = 2τq v1(Tq, τq)v̇1(Tq, τq)z1,q(1)z2,q(1).(2.18)

Let zi(t), żi(t) be the entries of the transition matrix Z(t, 0) of the limit Hill equation (2.12).
Owing to Proposition 2.2, and Proposition 2.3, we conclude that

A1(q) =
τ−1
q√
β

(ż1(1)ż2(1) +Rq) (sin(2ϕ) + o(τq))(2.19)

A2(q) = (z1(1)ż2(1) + ż1(1)z2(1)) cos(2ϕ) + o(1)(2.20)

A3(q) = o(1),(2.21)
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where in (2.19) we have set

(2.22) Rq = (ż1,q(1)− ż1(1))ż2(1) + (ż2,q(1)− ż2(1))ż1(1) + (ż1,q(1)− ż1(1))(ż2,q(1)− ż2(1)).

Since Rq = o(1), from the asymptotic formulas (2.19)-(2.21), it is clear that |∆(∞)| = ∞, unless
one of the following cases is satisfied:

I)
√
β = m

√
α; II) ż1(1)ż2(1) = 0 and Rq = O(τq).

In case I), we obtain limq→∞ A1(q) = 0, due to Proposition 2.3 and

∆(∞)

2
= lim

q→∞
A2(q) = (−1)m(z1(1)ż2(1) + z2(1)ż1(1)).

Thanks to the Liouville theorem, the determinant of the transition matrix Z(t, 0) is identically
equal to 1, for 0 ≤ t ≤ 1, so that we can rewrite,

(2.23)
∆(∞)

2
= (−1)m(2z1(1)ż2(1)− 1) = (−1)m(1− 2z2(1)ż1(1)).

To complete the calculation of ∆(∞), we need the explicit values of zi(1), żi(1), i = 1, 2, which
are provided by the following crucial Lemma whose proof is postponed to Section 4.

Lemma 2.1. Let us define the following numbers,

(2.24) c1 =
1

2
, a1, b1 =

1

4(ν + 1)

[
ν − 1±

√
(ν − 1)2 + 8γν(ν + 1)

]

(2.25) c2 =
3

2
, a2, b2 =

1

4(ν + 1)

[
3ν + 1±

√
(ν − 1)2 + 8γν(ν + 1)

]
Under assumptions (H1), (H2), we have that (Bν is defined in (2.3))

(2.26) z1(1) =
Γ(1/2)Γ(1/(ν + 1))

Γ(c1 − a1)Γ(c1 − b1)
, z2(1) =

2

(ν + 1)Bν

Γ(3/2)Γ(1/(ν + 1))

Γ(c2 − a2)Γ(c2 − b2)
,

(2.27) ż1(1) = (ν + 1)Bν
Γ(1/2)Γ(ν/(ν + 1))

Γ(a1)Γ(b1)
, ż2(1) = 2

Γ(3/2)Γ(ν/(ν + 1))

Γ(a2)Γ(b2)
.

Let us come back to the proof of Theorem 2.
We recall some well known properties of the Γ function:

(2.28) Γ(1/2) =
√
π, Γ(z + 1) = zΓ(z), Γ(z)Γ(1− z) =

π

sinπz
;

from which we get

Γ(3/2) =

√
π

2
, Γ(1/(ν + 1))Γ(ν/(ν + 1)) =

π

sin(π/(ν + 1))
.

To simplify notations, let us momentarily set

(2.29) A =

√
(ν − 1)2 + 8γν(ν + 1)

4(ν + 1)
, B =

ν + 3

4(ν + 1)

so that c1 − a1 = B −A, c1 − b1 = B +A
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We observe that, from (2.24), (2.25), (c1 − a1) + a2 = 1, (c1 − b1) + b2 = 1, therefore by using
the third property in (2.28),

Γ(c1 − a1)Γ(c1 − b1)Γ(a2)Γ(b2) =
π2

sin(π(B −A)) sin(π(B +A))
.

After the obvious simplifications in the expression of z1(1)ż2(1) given by the formulas (4.2)-(2.27),
we obtain

z1(1)ż2(1) =
sin(π(B −A)) sin(π(B +A))

sin(π/(ν + 1))
.

Since,

sin(π(B −A)) sin(π(B +A)) =
1

2
cos(2πA)− 1

2
cos(2πB) = 1

2
cos(2πA) +

1

2
sin(π/(ν + 1)),

we conclude that, in case I),

(2.30)
∆(∞)

2
= (−1)m(2z1(1)ż2(1)− 1) = (−1)m

cos(2πA)

sin(π/(ν + 1))
.

Observing that,

sin

(
π

ν + 1

)
= cos

(
2π

ν − 1

4(ν + 1))

)
,

in the case when γ ≥ − (ν−1)2

8ν(ν+1) , that is when A is a nonnegative real number, the instability

condition |∆(∞)| > 2 is satisfied if and only if

(2.31) − ν − 1

4(ν + 1)
+ n < A <

ν − 1

4(ν + 1)
+ n, − ν − 1

4(ν + 1)
+

1

2
+ n < A <

ν − 1

4(ν + 1)
+

1

2
+ n

for some n = 0, 1, 2, .... The first condition in (2.31) for n = 0 is satisfied if and only if − (ν−1)2

8ν(ν+1) ≤
γ < 0. When γ ≥ 0, solving with respect to γ the set of inequalities in (2.31), we obtain

(2.32) 2
ν + 1

ν
n2 − ν − 1

ν
n < γ < 2

ν + 1

ν
n2 +

ν − 1

ν
n, n ≥ 1,

and

(2.33) 2
ν + 1

ν
n2 +

ν + 3

ν
n+

1

ν
< γ < 2

ν + 1

ν
n2 +

3ν + 1

ν
n+ 1, n ≥ 0.

Let us also consider the case γ < − (ν−1)2

8ν(ν+1) , i.e. the case when A is purely imaginary. In this case

we have cos(2πA) = cosh(2πAi) > 1, thus, directly from (2.30), we get |∆(∞)| > 2. Putting all
the information together, the first unbounded interval of instability is (−∞, 0) while the sequence
of the other instability intervals starts from (2.33) with n = 0, then alternates (2.32) and (2.33).

To conclude the proof of the first part of the theorem, we observe that γ−
2n, γ

+
2n are the endpoints

of (2.32); similarly γ−
2n+1, γ

+
2n+1 are the endpoints of (2.33). In addition, if m =

√
β/α is even, the

intervals (2.32) correspond to ∆(∞) > 2, whereas the intervals (2.33) correspond to ∆(∞) < −2.
The reverse happens if m is odd.

More information is provided by the study of the endpoints of the intervals (γ−
n , γ+

n ). Precisely,
we have |∆(∞)| = 2 if and only if one of the following quantities z1(1) ż1(1), z2(1), ż2(1) vanishes,
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that is respectively:

z1(1) = 0 ⇐⇒ (c1 − a1) = −n ⇐⇒ γ = γ−
2n+1(2.34)

ż1(1) = 0 ⇐⇒ b1 = −n ⇐⇒ γ = γ+
2n(2.35)

z2(1) = 0 ⇐⇒ (c2 − a2) = −n ⇐⇒ γ = γ−
2(n+1)(2.36)

ż2(1) = 0 ⇐⇒ b2 = −n ⇐⇒ γ = γ+
2n+1(2.37)

We prove the first two equivalences, leaving the other to the reader.
We have z1(1) = 0 if and only if the denominator in formula (4.2) is singular, that is if (c1 − a1)

takes a integer value −n ≤ 0. Solving such equation,

(c1 − a1) =
1

4(ν + 1)

[
ν + 3−

√
(ν − 1)2 + 8γν(ν + 1)

]
= −n,

we obtain

γ = 2
ν + 1

ν
n2 +

ν + 3

ν
n+

1

ν

which is the left endpoint in (2.33), and corresponds to γ−
2n+1.

We have ż1(1) = 0 if and only if b1 takes a integer value −n ≤ 0. The equation

b1 =
1

4(ν + 1)

[
ν − 1−

√
(ν − 1)2 + 8γν(ν + 1)

]
= −n,

leads to

γ = 2
ν + 1

ν
n2 +

ν − 1

ν
n,

which corresponds to γ+
2n and so on.

Now, let us consider the remaining case II): ż1(1)ż2(1) = 0. From (2.35), (2.37), it is clear that
ż1(1)ż2(1) = 0 if and only if γ = γ+

n , for some integer n ≥ 1.
Finally, we conclude the proof of the theorem: under assumption (1.7), Lemma 5.2 yields Rq =

o(τq). Therefore, from (2.20) we obtain

∆(∞)/2 = (z1(1)ż2(1) + ż1(1)z2(1)) cos(2ϕ).

If ż1(1) = 0, by using the Liouville Theorem, we get

∆(∞)/2 = z1(1)ż2(1) cos 2ϕ = cos 2ϕ,

while, if ż2(1) = 0,

∆(∞)/2 = ż1(1)z2(1) cos 2ϕ = − cos 2ϕ.

3. The hardening spring case: proof of Theorem 3

Proof. The argument follows the lines of the proof of Theorem 2, the main difference being that
the approximate computation of V(Tq, τq) provided by Proposition 2.14 for the linear spring regime
is no longer valid. Therefore, we need a new expression V(Tq, τq) which takes into account that
the hardening spring regime holds also for u < 0. The argument is based on an adaptation of the
previous Proposition 2.1.

As in the proof of Proposition 2.1, let us set u(Tq) = −s, and consider the transition time for
negative values of u in the half cycle [0, Tq]:

τs = Tq − τq.
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Since J(−s) = J(q), we get s → +∞ as q → +∞. More precisely, since J(x) ∼ Ā
ν̄+1 |x|

ν̄+1, as
x → −∞, we have

qν+1

sν̄+1
=

J(−s)

sν̄+1

qν+1

J(q)
∼ Ā(ν + 1)

A(ν̄ + 1)
, q → +∞,

which yields

s ∼
(
A(ν̄ + 1)

Ā(ν + 1)

)1/(ν̄+1)

q(ν+1)/(ν̄+1), q → +∞.

Again, by the same technique used in Proposition 2.1, we obtain

(3.1) lim
s→∞

s(ν̄−1)/2 τs =
√
(ν̄ + 1)/2ĀBν̄ .

Using again (2.3), and (3.1), we obtain the following asymptotics for the ratio τs/τq, which will
be useful in the next steps of the proof,

(3.2)
τs
τq

∼ Bν̄

Bν

(
A(ν̄ + 1)

Ā(ν + 1)

) 1
ν̄+1

q
ν−ν̄
ν+1 = cq

ν−ν̄
ν+1 .

In order to compute the new expression for V(Tq, τq), we reverse the time in the equations (1.3),
(1.1) during the interval [τq, Tq], by setting

(3.3) ū(t′) = −u(Tq − t′), v̄(t′) = v(Tq − t′) 0 ≤ t′ ≤ τs.

We get a new couple of equations on the interval (0, τs),

(3.4) ¨̄u+ αū+ f̄(ū) = 0, ū(0) = s, ˙̄u(0) = 0.

(3.5) ¨̄v + (β + γν̄f̄ ′(ū))v̄ = 0,

in which the function f̄(x) is defined by f̄(x) = −f(−x), for x > 0.
Owing to assumption (H3*), f̄(x) satisfies the condition (H2) with Ā, ν̄ in place of A, ν. With

an obvious change in notations, formula (2.15) and Proposition 2.2 apply to the equations (3.4),
(3.5). It follows that the transition matrix V̄(τs, 0) for the equation (3.5) is, as in (2.15),

(3.6) V̄(τs, 0) =
(

z̄1,s(1) τsz̄2,s(1)
˙̄z1,s(1)/τs ˙̄z2,s(1)

)
.

Now, we can recover the entries of V(Tq, τq). First of all, from (3.3), we get

V(Tq, τq) =

(
v̄1(0, τs) −v̄2(0, τs)
− ˙̄v1(0, τs) ˙̄v2(0, τs)

)
;

then, since V̄(0, τs) = V̄(τs, 0)−1, we obtain (recall that det(V̄(τs, 0)) = 1),

V̄(0, τs) =
(

˙̄z2,s(1) −τsz̄2,s(1)
− ˙̄z1,s(1)/τs z̄1,s(1)

)
.

We conclude that

V(Tq, τq) =

(
˙̄z2,s(1) τsz̄2,s(1)

˙̄z1,s(1)/τs z̄1,s(1)

)
.

The next step consists in computing ∆(q)/2 = A1(q) + A2(q) + A3(q), with Ai(q) are de-
fined as in (2.16), (2.17), (2.18). Substituting the new expression of the entries of V(Tq, τq) into
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(2.16),(2.17),(2.18), and recalling that from Proposition 2.2, we have ∥z̄s−z̄∥C1([0,1]) → 0 if q → +∞,
we obtain

A1(q) = 2
τs
τq

(z̄1(1)z̄2(1) + o(1)) (ż1(1)ż2(1) + o(1))(3.7)

A2(q) = (z̄1(1) ˙̄z2(1) + ˙̄z1(1)z̄2(1) + o(1)) (z1(1)ż2(1) + ż1(1)z2(1) + o(1))(3.8)

A3(q) = 2
τq
τs

( ˙̄z1(1) ˙̄z2(1) + o(1)) (z1(1)z2(1) + o(1)) .(3.9)

in which z̄1 , z̄2 are the fundamental solutions of the limit equation for (3.5).

Let us consider the first part of the Theorem, whose assumption is ν̄ = ν. From (3.2), we obtain

lim
q→∞

τs
τq

=

(
A

Ā

) 1
ν+1

= c > 0.

Moreover, since the limit equations do not depend on the values A, Ā, we have that z̄1(1) = z1(1)
and so on. It follows that ∆(∞) simplifies to

∆(∞)

2
= 2

(
c+

1

c

)
(z1(1)z2(1)ż1(1)ż2(1)) + (z1(1)ż2(1) + ż1(1)z2(1))

2
.

Keeping in mind that ż1(1)z2(1) = z1(1)ż2(1) − 1 , and defining x = z1(1)ż2(1), we get the
simpler expression

∆(∞)

2
=

[
1 +

1

2

(
c+

1

c

)]
(2x− 1)2 − 1

2

(
c+

1

c

)
.

As is easily seen, ∆(∞) > 2 corresponds to |2x − 1| > 1, and this leads exactly to the same
calculation following (2.30) in Theorem 2, where the instability intervals correspond to the implicit
relation

(3.10) | cos(2πA)| >
∣∣∣∣cos(2π ν − 1

4(ν + 1))

)∣∣∣∣ ,
in which A defined in (2.29). Such inequality is solved explicitly, and leads to the intervals (γ−

n , γ+
n ).

The case ∆(∞) < −2 corresponds to |2x− 1| < H, where H = H(A/Ā) is defined by,

H =

√(
c+ 1

c

)
− 2(

c+ 1
c

)
+ 2

≥ 0.

If A = Ā, then c = 1 and H = 0, it follows that there are no other solutions of |∆(∞)| > 2; if
A ̸= Ā, then 0 < H < 1, and we obtain another sequence of intervals (µ−

n , µ
+
n ) implicitly defined by

(3.11) | cos(2πA)| < H

∣∣∣∣cos(2π ν − 1

4(ν + 1))

)∣∣∣∣ .
We are not able to explicitly solve (3.11), but comparing (3.10) and (3.11) it is clear that the

intervals (µ−
n , µ

+
n ) are intercalated with the intervals (γ−

n , γ+
n ).

Let us come to the second part of the theorem. Under the hypothesis ν̄ < ν, by (3.2), we have
that the ratio τs/τq goes to infinity. From formula (3.7), it is clear that also ∆(q) goes to infinity,
unless z̄1(1)z̄2(1)ż1(1)ż2(1) = 0. We already know (see (2.35) and (2.37)) that

ż1(1) = 0 ⇐⇒ γ = γ+
2n(ν), ż2(1) = 0 ⇐⇒ γ = γ+

2n+1(ν).
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Using (2.34), we have that z̄1(1) = 0 ⇐⇒ (c1 − a1) = −n, where a1, c1 are defined in (2.24)
with ν̄ instead of ν, that leads to γ = γ−

2n+1(ν̄). Similarly (2.36) shows that z̄2(1) = 0 if and only

if γ = γ−
2n(ν̄). □

From the proof of the theorem, we obtain that if γ = γ+
k (ν), or γ = γ−

k (ν̄), for some positive
integer k, the limit ∆(∞) could assume a finite value. It is possible to get more precise results,
in the spirit of Lemma 5.2, by giving sufficient growth conditions on f in order to guarantee that
the limit of the discriminant of instability is finite, and get the value of such limit. We omit this
part, but observe that is possible to find examples of functions f such that |∆(∞)| can be finite
and either greater than or less than 2, for those particular values of γ.

4. Computation of zi(1), and żi(1), i = 1, 2

In this section we prove Lemma 2.1. To proceed with the calculations of zi(t) for t ∈ (0, 1), we
exploit the idea of [7]: quite surprisingly, the solution of the Hill equation (2.12) can be written as
a local function of w, and ẇ. To do this, we introduce

(4.1) x(t) = 1− w(t)ν+1 (0 ≤ t ≤ 1),

then we assume the following ansatz :

z1(t) = P (x(t)), z2(t) = ẇ(t)R(x(t)),

where R and P are functions to be determined. Note that, by the initial condition in(2.11), we
have x(0) = 0, and x(1) = 1, therefore the initial conditions for z1, z2, are satisfied provided that

P (0) = 1, R(0) = − 1

Kν
,

where Kν is defined in (2.10).
It turns out that both P (x), and R(x) satisfy a hypergeometric differential equation, see (A.1):

x(1− x)P ′′(x) +

[
1

2
−
(
1 +

ν − 1

2(ν + 1)

)
x

]
P ′(x)− −γν

2(ν + 1)
P (x) = 0,

x(1− x)R′′(x) +

[
3

2
−
(
1 +

3ν + 1

2(ν + 1)

)
x

]
R′(x)− (1− γ)ν

2(ν + 1)
R(x) = 0.

The verification is straightforward but long and tedious, so we have decided to skip it. By
comparison with the hypergeometric equation (A.1), we obtain

(4.2) z1(t) = F (a1, b1; c1;x(t)) , z2(t) = − 1

Kν
ẇ(t)F (a2, b2; c2;x(t)) (0 ≤ t ≤ 1),

where the numbers ai, bi, ci are defined in (2.24), (2.25).
Note that, in both cases i = 1, 2, the coefficient of the hypergeometric function satisfy the

relation,

(4.3) ci − ai − bi =
1

ν + 1
.

The computation for z1(1) follows directly from (4.2), (A.4), and x(1) = 1. As for z2(1), we
proceed in the same way, just observe that, by the energy identity,

ẇ(t)2

2
+Kν

w(t)ν+1

ν + 1
=

Kν

ν + 1
(0 < t < 1),
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and the definition of Kν , we get ẇ(1) = −Bν .
As for the derivatives, by the definition (4.1) of x(t), we have for 0 ≤ t < 1,

ż1(t) = −(ν+1)ẇ(t)w(t)ν
d

dx
F (a1, b1; c1;x(t)) = −(ν+1)ẇ(t)(1−x(t))ν/(ν+1) d

dx
F (a1, b1; c1;x(t)).

Now we can use formula (A.6), (note that ai + bi − ci +1 = ν/(ν +1)), to get the value at t = 1:

ż1(1) = −(ν + 1)ẇ(1) lim
x→1

(1− x)ν/(ν+1) d

dx
F (a1, b1; c1;x) = (ν + 1)Bν

Γ(1/2)Γ(ν/(ν + 1))

Γ(a1)Γ(b1)
.

We conclude with the computation of ż2(1). We have

ż2(t) = − 1

Kν
ẅ(t)F (a2, b2; c2;x(t)) +

ν + 1

Kν
ẇ(t)2w(t)ν

d

dx
F (a2, b2; c2;x(t)).

= w(t)ν
[
F (a2, b2; c2;x(t)) +

ν + 1

Kν
ẇ(t)2

d

dx
F (a2, b2; c2;x(t))

]
= (1− x(t))ν/(ν+1)

[
F (a2, b2; c2;x(t)) +

ν + 1

Kν
ẇ(t)2

d

dx
F (a2, b2; c2;x(t))

]
.

Thus, since ẇ(1)2 = 2Kν/(ν + 1),

ż2(1) = lim
x→1

(1− x)ν/(ν+1)

[
F (a2, b2; c2;x) + 2

d

dx
F (a2, b2; c2;x)

]
.

By using formula (A.3), we have

lim
x→1

(1− x)ν/(ν+1)F (a2, b2; c2;x) = 0

while, by (A.6),

2 lim
x→1

(1− x)ν/(ν+1) d

dx
F (a2, b2; c2;x) = 2

Γ(3/2)Γ(ν/(ν + 1))

Γ(a2)Γ(b2)
,

which provides the desired value of ż2(1).

5. Technical Lemmas preliminary to Theorem 2

In this section we have included all the technical Lemmas necessary for the proof of Propositions
2.2 and 2.3. The following Lemma is mainly used in the proof of Proposition 2.2, but also serves
for a refined asymptotic expansion of τq under assumption (1.7), see Lemma 5.2.

Lemma 5.1. Let be g ∈ C0([0,+∞)), g(x) ≥ 0, a > 0 and lim
x→+∞

g(x)

xa
= B finite. Then

lim
q→+∞

g(xq)

qa
= Bxa uniformly w.r.t. x ∈ [0, 1], .

Proof. First we define the function
G(r) = max

0≤s≤r
g(s).

Clearly, G(r) is a increasing function, and 0 ≤ g(r) ≤ G(r), for every r ≥ 0. We claim that there
exists a constant M such that

G(r)

ra
≤ M, ∀r ≥ 1.
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In order to prove it, we observe that there exist a constant M ′ such that g(r)
ra ≤ M ′ for every

r ≥ 1. Thus we have G(r) ≤ max0≤s≤1 g(s) +M ′ra for every r ≥ 0, so that

G(r)

ra
≤ max

0≤s≤1
g(s) +M ′ = M, ∀r ≥ 1.

Let us fix δ ∈ (0, 1). Since limr→+∞
g(r)
ra = B, then there exist h such that∣∣∣∣g(r)ra

−B

∣∣∣∣ ≤ (M +B) δa, ∀r ≥ h.

If 0 ≤ x ≤ δ, we have∣∣∣∣g(xq)qa
−Bxa

∣∣∣∣ ≤ G(xq)

qa
+Bxa ≤ G(δq)

(δq)a
δa +Bδa ≤ (M +B)δa, if q ≥ 1/δ,

while, for δ ≤ x ≤ 1,∣∣∣∣g(xq)qa
−Bxa

∣∣∣∣ = ∣∣∣∣xag(xq)

(xq)a
−Bxa

∣∣∣∣ ≤ ∣∣∣∣g(xq)(xq)a
−B

∣∣∣∣ ≤ (M +B) δa if q ≥ h/δ.

□

In order to prove the part II) of Theorem 2 we need a more accurate estimate of the rate of
convergence of zq to z.

Lemma 5.2. Let Rq be defined as in (2.22). If condition (1.7) holds, then Rq = o(τq), q → ∞.

Proof. As a matter of fact, we shall prove that

(5.1) ∥wq − w∥C1([0,1]) + ∥zq − z∥C1([0,1]) = o(τq),

which, of course, yields the assertion.
First we need a better asymptotic expansion of τq. For doing so, we mimic the proof in Propo-

sition 2.1. From our assumption (1.7), we may set

J(x) =
A

ν + 1
(xν+1 +H(x)), with H ′(x) = o(x(ν+1)/2).

Then, from (2.5), we get√
2A

ν + 1
q

ν−1
2 τq =

∫ 1

0

dx

{1− xν+1 + (H(q)−H(xq))/qν+1)}1/2
.

From the above formula and recalling the meaning of Bν , we obtain

(5.2)

√
2A

ν + 1
q

ν−1
2 τq −Bν =

∫ 1

0

1√
1− xν+1

(
1√

1 +G(x; q)
− 1

)
dx

where

G(x; q) =
H(q)−H(xq)

1− xν+1
q−(ν+1).

Due to the mean value Theorem, we have

G(x; q) =
q(1− x)H ′(ξq)

1− xν+1
q−(ν+1),



18 CLELIA MARCHIONNA AND STEFANO PANIZZI

for some 0 < ξ < 1, thus |G(x; q)| ≤ |H ′(ξq)|q−ν . From assumption (1.7), and thanks to Lemma 5.1,
with B = 0, it follows that limq→∞ sup0≤ξ≤1 |H ′(ξq)|q−(ν+1)/2 = 0. Therefore sup0≤x≤1 |G(x; q)| =
o(q−(ν+1)/2), so that we can conclude that

(5.3) q
ν−1
2 τq =

√
ν + 1

2A
(Bν + o(q−(ν+1)/2)).

On the other hand, using (1.7) ad Lemma 5.1, with B = 0, we have that

f ′(xq)− νA(xq)ν−1

q(ν−1)/2
→ 0

uniformly w.r.t. x ∈ [0, 1], so that

(5.4) sup
x∈[0,1]

∣∣f ′(xq)− νA(xq)ν−1
∣∣ = o(q(ν−1)/2).

Putting together (5.3) and (5.4), we obtain

sup
x∈[0,1]

∣∣τ2q f ′(xq)− νKνx
ν−1
∣∣ = o(q−(ν−1)/2) = o(τq).

An analogous calculation yields

sup
x∈[0,1]

∣∣q−1τ2q f(xq)−Kνx
ν
∣∣ = o(τq).

Owing to a classical continuous dependence theorem (see [15, Thm 3, ch. XV]) we get the desired
estimate (5.1). □

The following 2 lemmas are used in the analysis of the linear spring regime, and are necessary
for the proof of Proposition 2.3.

Lemma 5.3. Let w be the solution of problem (2.11), u the solution of (1.3) with the given initial
data. For τq ≤ t ≤ 2Tq − τq, let us set

ũq(t) =
q

τq

sin
√
α(t− τq)√
α

ẇ(1).

Then, we have

∥u− ũq∥C1([τq,2Tq−τq ]) = o(q/τq).

Proof. Let us set y(t) = q−1τqu(t) for τq ≤ t ≤ 2Tq − τq. Then y solves the problem

ÿ + αy + q−1τqf(u) = 0, y(τq) = 0, ẏ(τq) = ẇq(1).

Owing to Proposition 2.2, we have that

ẏ(τq) = ẇ(1) + o(1).

On the other hand, since u(t) ≤ 0 in the interval [τq, 2Tq − τq], by the assumptions (H1), (H3),
we get the estimate

|q−1τqf(u(t))| ≤ q−1τq h → 0, as q → ∞.

From the continuous dependence theorem, we obtain that

y(t) =
sin

√
α(t− τq)√
α

ẇ(1) + o(1)
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in the C1([τq, 2Tq − τq])-norm. Thus, by definition of y(t) and ũq(t), we get

u(t)− ũq(t) = q/τq

(
y(t)− sin

√
α(t− τq)√
α

)
= o(q/τq)

in the C1([τq, 2Tq − τq])-norm. □

Lemma 5.4. Let us set T = τq +
π

2
√
α
. Then, there exists a constant K such that

(5.5)

∫ T

τq

f ′(u(s)) ds ≤ K τq/q.

Proof. Let us fix a time t1, such that τq < t1 < Tq, for instance t1 = τq + π/6
√
α. We split the

integral into the sum
∫ t1
τq

f ′(u(s)) ds+
∫ T

t1
f ′(u(s)) ds.

Let us start with the estimate of the first integral, which is not trivial given that u(τq) = 0.
Since u′(s) < 0 for τq ≤ s < Tq, and f(u(τq)) = 0, by integration by parts we obtain∫ t1

τq

f ′(u(s))ds =

∫ t1

τq

f ′(u(s))
u̇(s)

u̇(s)
ds =

f(u(t1))

u̇(t1)
+

∫ t1

τq

f(u(s))
ü(s)

u̇(s)2
ds.

Since ü(s) = −αu(s)− f(u(s)) > 0, for τq ≤ s < Tq, we conclude that

(5.6)

∫ t1

τq

f ′(u(s))ds <
f(u(t1))

u̇(t1)
.

Owing to Lemma (5.3), we have that

u̇(t1) =
q

τq
cos(

√
α(t1 − τq)ẇ(1) + o(q/τq),

therefore we get

|u̇(t1)| ≥
q

4τq
, for sufficiently big q.

From the inequality (5.6), and by assumption (H3), it follows that∫ t1

τq

f ′(u(s))ds ≤ 4hq−1τq.

The estimate for the second integral follows by the assumption (H3), and again by Lemma
5.3. □

Appendix A. Hypergeometric function toolbox

The formulas in this section can be retrieved e.g. in [1].
By F (a, b; c;x) we denote the hypergeometric function which is defined for |x| < 1 by the power

series

F (a, b; c;x) = 1 +
ab

c
x+

a(a+ 1)b(b+ 1)

c(c+ 1)

x2

2!
+ ...

The hypergeometric differential equation satisfied by F (a, b; c;x) is

(A.1) x(1− x)
d2y

dx2
+ [c− (a+ b+ 1)x]

dy

dx
− aby = 0.
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Throughout the article we use a couple of classical formulas on the hypergeometric function: the
differential formula,

(A.2)
d

dx
F (a, b; c;x) =

ab

c
F (a+ 1, b+ 1; c+ 1;x);

and the connection formula,

F (a, b; c;x) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
F (a, b; a+ b+ 1− c; 1− x)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− x)c−a−bF (c− a, c− b; 1 + c− a− b; 1− x).(A.3)

In particular, in the case when
c− a− b > 0,

we obtain two formulas which are very useful for our purposes. Directly from (A.3), we have

(A.4) F (a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
.

Combining (A.2), and (A.3), we get (we use Γ(z + 1) = zΓ(z))

d

dx
F (a, b; c;x) = ab

Γ(c)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)
F (a+ 1, b+ 1; a+ b+ 2− c; 1− x)

+
Γ(c)Γ(a+ b+ 1− c)

Γ(a)Γ(b)
(1− x)c−a−b−1F (c− a, c− b; c− a− b; 1− x).(A.5)

From this last formula, we see that d
dxF (a, b; c;x) is singular at x = 1 in the case

c− a− b < 1,

nevertheless (A.5) yields

(A.6) (1− x)a+b−c+1 d

dx
F (a, b; c;x) =

Γ(c)Γ(a+ b− c+ 1)

Γ(a)Γ(b)
+ o(1), as x → 1.
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