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Non-interacting particles in non-Hermitian quasi crystals display localization-delocalization and
spectral phase transitions in complex energy plane, that can be characterized by point-gap topol-
ogy. Here we investigate the spectral and dynamical features of two interacting particles in a
non-Hermitian quasi crystal, described by an effective Hubbard model in an incommensurate sinu-
soidal potential with a complex phase, and unravel some intriguing effects without any Hermitian
counterpart. Owing to the effective decrease of correlated hopping introduced by particle interac-
tion, doublon states, i.e. bound particle states, display a much lower threshold for spectral and
localization-delocalization transitions than single-particle states, leading to the emergence of mo-
bility edges. Remarkably, since doublons display longer lifetimes, two particles initially placed in
distant sites tend to bunch and stick together, forming a doublon state in the long time limit of
evolution, a phenomenon that can be dubbed non-Hermitian particle bunching.

I. INTRODUCTION

Topological phases, localization and novel phase tran-
sitions in non-Hermitian systems with periodic or ape-
riodic order have recently sparked a great interest in a
wide variety of physical systems, ranging from condensed
matter physics to cold atoms and classical systems (see
e.g. [1–13] and references therein). Non-interacting par-
ticles in crystalline systems described by an effective non-
Hermitian Hamiltonian display a variety of exotic phys-
ical effects, such as a non-trivial point-gap topology, the
non-Hermitian skin effect, the breakdown of the bulk-
boundary correspondence based on Bloch band topolog-
ical invariants, and a variety of dynamical and trans-
port signatures [14–85]. Recent experimental realiza-
tions of synthetic matter with controllable non-Hermitian
Hamiltonians using different platforms, such as photonic
systems, cold atoms in optical lattices, mechanical and
topolectrical systems, have lead to the observation of
such exotic physics.
The study of non-Hermitian physics in such systems
is being extended into several directions, unraveling a
plethora of intriguing effects which do not have any coun-
terpart in Hermitian systems. For example, in systems
with aperiodic order (quasi crystals), non-Hermiticity in-
duces phase transitions that are beyond the paradigm of
Hermitian quasi crystals [86–110]. Non-Hermitian exten-
sions of the famous Aubry-André model [111] have at-
tracted great interest recently, unraveling the rich inter-
play between disorder, non-Hermiticity and topology. In
such systems, the localization-delocalization phase tran-
sition and mobility edges in complex energy plane, sepa-
rating extended and localized states, can be rather gener-
ally characterized by point-gap topological numbers [1–
12, 88, 90–93, 95–98]. Another interesting ramification
is provided by the many-body physics of non-interacting
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non-Hermitian systems [112–122], where the construction
of many-body states involves ramified symmetry classes
leading to unique topological phases. Owing to the differ-
ent lifetimes of single particle eigenstates, non-Hermitian
many-particle systems may not attain an equilibrium
state but rather a non-equilibrium steady state at long
times.
Recently, there is a growing focus on exploring non-
Hermitian phenomena in interacting many-particle sys-
tems, aimed at understanding the interplay between non-
Hermitian skin effect, interaction, and non-Hermitian
topological phases in correlated systems [123–139].
Quantum many-body phases lead to novel manifestations
beyond single particle physics, where the collective be-
havior of a large number of constituents offers several
exotic phases of matter. Among the simplest and in-
triguing phenomena in strongly correlated quantum sys-
tems of both fermions and bosons is the formation of
doublons, i.e. pairs of bound particles occupying the
same lattice site [140–147]. Such states are readily found
within the standard Fermi-Hubbard or Bose-Hubbard
models in the two-particle sector of Hilbert space. For
sufficiently strong interactions, either attractive or re-
pulsive, isolated doublons represent stable quasiparti-
cles which undergo correlated tunneling on the lattice
[148, 149]. Doublon dynamics is experimentally acces-
sible using different platforms, such as ultracold atoms
in one-dimensional optical lattices [140, 148–151], su-
perconducting quantum metamaterials [152] and classi-
cal emulators of two- or three-particle dynamics in Fock
space based on two- or three-dimensional photonic [153]
or topolectrical [154, 155] lattices with engineered de-
fects. The current advances in experimental fabrication
and control of synthetic matter enables to extend the few-
body Hubbard model into the non-Hermitian realm [155],
thus motivating the study of correlated-particle states
and doublon dynamics in non-Hermitian models.
In this work we investigate the spectral and dynami-
cal properties of two strongly-correlated particles on a
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lattice in an incommensurate sinusoidal potential with
a complex phase [88], i.e. a non-Hermitian extension
of the interacting Aubry-André model [150], highlight-
ing distinct spectral and localization-delocalization phase
transitions for single-particle and doublon states as the
complex phase of the incommensurate potential is var-
ied. Specifically, particle interaction introduces mobility
edges which are prevented in the single-particle regime
and lowers the real-to-complex spectral phase transition
owing to the correlated hopping and slow motion of dou-
blons on the lattice. Remarkably, since doublons display
longer lifetimes than displaced particle states, two parti-
cles initially placed at distant sites of the lattice tend to
bunch and stick together, forming a doublon state in the
long time limit of evolution. This phenomenon, which
can be dubbed the non-Hermitian bunching effect, pro-
vides an interesting tool for ”quantum distillation” of in-
teracting particles [156] of purely non-Hermitian origin.

II. NON-HERMITIAN INTERACTING
AUBRY-ANDRÉ MODEL

A. Model

We consider the Hubbard model for interacting
fermionic particles in the lowest Bloch band of a one-
dimensional tight-binding lattice [157] subjected to an
external incommensurate sinusoidal potential, which pro-
vides an extension of the Aubry-André model for inter-
acting particles [Fig.1(a)]. We indicate by J the single-
particle hopping amplitude between adjacent sites in the
lattice and by U the on-site interaction energy of fermions
with opposite spins (U > 0 for a repulsive interaction).
In the limit U = 0 and for an Hermitian potential, the
model reduces to the ordinary Aubry-André model. Non-
Hermiticity in the system is introduced by considering
a complex phase ϕ = θ + ih of the sinusoidal on-site
potential [88], while a reciprocal (Hermitian) amplitude
J is assumed for left/right hopping. This means that,
contrary to many-body non-Hermitian models considered
in several recent works [123–135, 137, 138], the present
model does not display the non-Hermitian skin effect for
single-particle states. The effective non-Hermitian Hub-
bard Hamiltonian of the system reads

Ĥ = −J
∑
l,σ

(
â†l,σâl+1,σ + H.c.

)
+
∑
l,σ

Vln̂l,σ

+ U
∑
l

n̂l,↑n̂l,↓ (1)

where âl,σ, â†l,σ are the annihilation and creation op-
erators of fermions with spin σ =↑, ↓ at lattice site l,

n̂l,σ = â†l,σâl,σ is the particle-number operator, and

Vl = V cos(2παl + ϕ)− iγ (2)

is the complex incommensurate on-site potential with
real amplitude V and complex phase

ϕ = θ + ih, (3)

the term h ≥ 0 governing the strength of non-Hermiticity
of the system. The positive constant γ provides a uniform
loss rate, which just introduces a shift of eigenenergies of
the system in the complex energy plane along the imag-
inary axis and avoids instability in a purely dissipative
system. Since the specific value of γ does not change
the dynamical behavior of the system under continuous
measurements, in the following without loss of general-
ity we will assume γ = 0. As a typical irrational α, we
assume the inverse of the golden mean, α = (

√
5− 1)/2,

which can be approximated by the sequence of rationals
α = limn→∞ qn/qn+1, where qn are the Fibonacci num-
bers (q0 = 0, q1 = 1, qn+1 = qn + qn−1 for n ≥ 1). In the
numerical analysis, we will assume a finite lattice of large
size L = qn+1 in a ring geometry with periodic boundary
conditions (âl+L,σ = âl,σ) [88].

For pure states and considering open-system dynam-
ics conditioned on measurement outcomes such that the
quantum evolution corresponds to the null-jump process,
the state vector |ψ(t)〉 of the system at time t is given by
[113–115, 124, 137, 138]

|ψ(t)〉 =
exp(−iĤt)|ψ(0)〉
‖ exp(−iĤt)|ψ(0)〉‖

≡ |Φ(t)〉
‖|Φ(t)〉‖

(4)

where we have set |Φ(t)〉 ≡ exp(−iHt)|ψ(0)〉. Basically,
at each time interval dt the state vector evolves accord-
ing to the Schrôdinger equation with an effective non-
Hermitian Hamiltonian Ĥ, followed by a normalization
of the wave function, without undergoing any quantum
jump. As mentioned above, under post selection the re-
normalization of the wave function after each time inter-
val dt makes it the dynamical evolution of |ψ(t)〉 inde-
pendent of the loss rate γ.

B. Single and two-particle states

The single-particle limit of the Hamiltonian (1), de-
scribing the hopping dynamics of a single particle on
a one-dimensional incommensurate sinusoidal potential
with a complex phase, was earlier introduced Ref.[88]. In
this case, when V < 2J a real-to-complex spectral phase
transition, corresponding to a delocalization-localization
phase transition, is demonstrated to arise as the non-
Hermitian parameter h is increased above the critical
value [88]

hc = log

(
2J

V

)
(5)

and can be traced back to the change of a winding num-
ber, i.e. to a topological phase transition. For a given
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FIG. 1. (a) Non-Hermitian Hubbard model, describing corre-
lated many-particle states in a one-dimensional lattice with a
superimposed incommensurate on-site potential (quasi crys-
tal). The reciprocal single-particle hopping rate between ad-
jacent sites is J , U is the on-site interaction energy, and
Vn = V cos(2παn+ ϕ) is the incommensurate potential with
complex phase ϕ = θ + ih. (b) The Hubbard model for two
fermions with opposite spins can be mapped onto the dynam-
ics of a single particle on a square lattice with a line defect
on the main diagonal n = m (red circles), corresponding to
the interaction energy U , and with a hopping rate J . States
bound on the main diagonal n = m in (b) correspond to
sticked two-particle states (doublons) in (a). In the strong in-
teraction regime, doublons undergo correlated hopping via a
second-order tunneling process with an effective hopping rate
Je ' 2J2/U .

base energy EB , which does not belong to the energy
spectrum, one can introduce the winding number w [88]

w =
1

2πi

∫ 2π

0

dθ
∂

∂θ
log

{
det

(
H

(
θ

L
, h

)
− EB

)}
(6)

where H = H(θ/L, h) is the single-particle L×L matrix
Hamiltonian and θ is the real phase angle term entering
in the incommensurate potential [Eq.(3)]. The winding
number w counts the number of times the complex spec-
tral trajectory encircles the base point EB when the real
phase θ of the potential varies from zero to 2π [1]. When
the energy spectrum is entirely on the real energy axis,
one clearly has w = 0. Conversely, when the energy
spectrum describes one or more closed loops in complex
plane, for a base energy EB internal to one of such loops

w takes rather generally a non-vanishing integer value,
namely one can show that w = −1 independent of EB
[88]. Experimental demonstrations of such a kind of non-
Hermitian phase transitions in quasi crystals, involving
a change of the winding number w, have been recently
reported in Refs.[109, 110].
In this work we will focus our analysis by considering
two fermions with opposite spins hopping on the one-
dimensional lattice. In this case, we can expand the state
vector |ψ(t)〉 of the system in Fock space according to

|ψ(t)〉 =
∑
n,m

ψn,m(t)â†n,↑â
†
m,↓|0〉, (7)

Note that the probability of finding the two particles at
the same site n is given by Pn(t) = |ψn,n(t)|2. After

letting ψn,m(t) = Φn,m(t)/
√∑

n,m |Φn,m(t)|2, the evo-

lution equations for the amplitudes Φn,m(t) are readily
obtained from the Schrôdinger equation of a pure state
with the effective non-Hermitian Hamiltonian Ĥ given
by Eq.(1), and read

i
dΦn,m
dt

= −J (Φn,m+1 + Φn,m−1 + Φn+1,m + Φn−1,m)

+ Uδn,mΦn,m + (Vn + Vm)Φn,m (8)

Equations (8) show that the hopping dynamics of the two
interacting fermions on a one-dimensional lattice is basi-
cally equivalent to the hopping motion of a single particle
in a two-dimensional square lattice with an incommensu-
rate on-site potential and with an additional defect line
on the main diagonal m = n, under the periodic bound-
ary conditions Φn+L,m = Φn,m+L = Φn,m [see Fig.1(b)].
Therefore, the spectral and localization properties as well
as the dynamical motion of two-particle states in the orig-
inal one-dimensional quasi crystal can be readily under-
stood by considering the single-particle states in a two-
dimensional quasi crystal with a defect line on the main
diagonal. Finally, we mention that while our analysis
considers two interacting fermions with opposite spins,
in the two-particle sector of Hilbert space the Hubbard
model Eq.(1) can also describe the dynamical evolution
of two identical bosonic particles (rather than two dis-
tinct fermions), the only additional constraint being the
symmetrization of the wave function under particle ex-
change.

III. SPECTRAL AND
LOCALIZATION-DELOCALIZATION PHASE

TRANSITIONS

Let us indicate by ψ
(β,δ)
n,m ≡ |ψ(β,δ)〉 and Eβ,δ the two-

particle eigenstates and corresponding eigenenergies of
the L2 × L2 matrix Hamiltonian corresponding to Ĥ in
the two-particle sector of Hilbert space, where β, δ =
1, 2, ..., L is a pair of indices labeling the matrix eigen-
states. Here we aim at exploring the impact of particle
interaction on the spectral and localization-delocalization
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phase transitions found in the single-particle case. For
h > 0, the energy spectrum is rather generally described
by energies in complex plane, and a transition from an
entirely real to complex spectrum can be detected by
monitoring the behavior of ε ≡ maxβ,δ |Im (Eβ,δ)| versus
the non-Hermitian complex phase h. The localization
features of the eigenstates are captured by the inverse
participation ratio (IPR), defined by

IPR(β,δ) =

∑L
n,m=1

∣∣∣ψ(β,δ)
n,m

∣∣∣4(∑L
n,m=1 |ψ

(β,δ)
n,m |2

)2 (9)

The IPR of an extended state scales as L−2, hence vanish-
ing in the L→∞ limit, while it remains finite for a local-
ized state, with IPR≤ 1 and IPR= 1 when the excitation
occupies a single site. In the following, we will indicate by
IPRmax ≡ maxβ,δIPR(β,δ) and IPRmin ≡ minβ,δIPR(β,δ)

the largest and smallest values of IPR over the eigen-
states of the Hamiltonian. For a given base energy EB
that does not belong to the energy spectrum, a wind-
ing number w can be introduced, which measures the
times the complex two-particle energy spectrum rotates
around EB when the angle θ adiabatically varies from
0 to 2π. The definition of w is basically the same as
Eq.(6), where now H(θ/L, h) is the matrix associated to

Ĥ in the two-particle sector of Hilbert space. Since the
energy spectrum in complex energy plane is described by
multiple layers of closed loops in complex energy plane
[see for example Figs.2(d), 3(d), 4(d) and 5(d) discussed
below], whose number increases with the system size L,
the winding number w is size dependent and can take
large values, i.e. not limited to w = 0,−1 [128]. For a
sufficiently large system size L and EB not too close to
any energy in the spectrum, as previously discussed in
Ref.[128] the function under the sign of the integral in
Eq.(6) is almost independent of θ, and thus, after letting

det

{
H

(
θ

L
, h

)
− EB

}
≡ R(θ) exp[iω(θ)],

one can simply calculate the winding number using the
relation

w(EB) ' dω

dθ
(10)

at any arbitrary value of the angle θ. It should be men-
tioned that, while in the single-particle case the winding
number is defined taking the L→∞ limit [88], for two-
particle states one should keep the system size L finite
since in the limit L → ∞ the number of closed loops
diverges and the energy spectrum covers an entire area
(rather than a numerable set of curves).
In the non-interacting limit U = 0, the two-particle eigen-

states ψ
(β,δ)
n,m and corresponding eigenenergies Eβ,δ are

readily obtained from the single-particle spectral proper-
ties of Ĥ, namely one has

ψ(β,δ)
n,m = ψ(β)

n ψ(δ)
m (11)

FIG. 2. Two-particle energy spectrum and IPR of eigen-
states in the non-interacting limit U = 0. Other parame-
ter values are J = 1, V = 0.15, θ = 0, α = 34/55 and
L = 55. (a) Behavior of the largest value ε (in modulus)
of the imaginary part of any eigenenergy versus the com-
plex phase h of the incommensurate potential. The vertical
dashed line corresponds to the spectral phase transition point
h = hc = log(2J/V ) ' 2.59. (b) Behavior of the largest and
smallest values of the IPR versus h. (c,d) Energy spectra
in complex energy plane for h = 1 [panel (c)] and h = 3.3
[panel (d)]. In (d) the spectrum comprises multiple layers
of closed loops in complex plane, characterized by a non-
vanishing winding number w for any base energy EB internal
to such loops. For example, for the base energies EB = 0, 1.5
and 2.5 one has w = −55, -45 and -37, respectively.

and

Eβ,δ = Eβ + Eδ (12)

where Eβ and ψ
(β)
n are the eigenenergies and correspond-

ing eigenstates of the single-particle Hamiltonian

Eβψ
(β)
n = −J

(
ψ
(β)
n+1 + ψ

(β)
n−1

)
+ V cos(2παn+ ϕ)ψ(β)

n .

(13)
In this case, for h < hc the energy spectrum remains

entirely real and all eigenstates are delocalized, whereas
for h > hc the energy spectrum becomes complex, com-
posed by multiple layers of closed loops in complex energy
plane, with simultaneous localization of all corresponding
eigenstates. As an example, Figs.2(a) and (b) show the
behavior of ε and of IPRmax,min versus h, as obtained
by numerical diagonalization of the two-particle matrix
Hamiltonian, for non-interacting two-particle states in a
lattice with parameter values α = qn/qn+1 = 34/55, lat-
tice size L = qn+1 = 55, hopping amplitude J = 1, po-
tential amplitude V = 0.15 and phase θ = 0. Clearly,
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FIG. 3. Same as Fig.2, but for U = 1. Note that the real-to-
complex spectral phase transition is observed at a lower value
h′c of the complex phase than hc. The value h′c corresponds to
the appearance of localized eigenstates, indicated by a finite
value of IPRmax. For h < h′c all eigenstates are extended,
for h′c < h < h2 with h2 ' hc localized and extended states
coexist, whereas for h > h2 all eigenstates are localized.

for h < hc = log(2J/V ) ' 2.59, all eigenstates are
delocalized and the energy spectrum is real, whereas
for h > hc the energy spectrum becomes complex and
all eigenstates become simultaneously localized. Figures
2(c) and (d) show typical energy spectra in the h < hc
and h > hc phases, respectively. Note that for h > hc
the energy spectrum includes multiple layers of loops in
complex plane. Such a layered structure is typical of two-
particle states, does not actually require interaction and,
as distinctive feature than single-particle states, leads to
a winding number w which is system-size dependent and
can take large values, depending on the numbers of loops
in the layer (see e.g. [128]). For example, for the case
of Fig.2(d) with L = 55 the winding number w takes the
values w = −55, -45 and -37 for a base energy EB = 0,
1.5 and 2.5, respectively.
The spectral and localization properties of the system
for increasing values of interaction energy U are shown
in Figs.3,4, and 5. The effects arising from particle inter-
action are mainly twofold. First, one clearly see a low-
ering of the threshold value h′c for the real-to-complex
spectral phase transition than the value hc predicted in
the single-particle case [Eq.(5)]. Second, when the com-
plex phase h varies in the range h′c < h < h2, with
h2 ∼ hc, extended and localized states coexist, as one
can infer from the inspection of the IPRmin, which re-
mains close to zero indicating the existence of extended
states, and IPRmax, which takes finite values correspond-

FIG. 4. Same as Fig.3, but for U = 3.

FIG. 5. Same as Fig.3, but for U = 10.

ing to localized states. Therefore, interaction leads to
the appearance of mobility edges, which are prevented
in the single-particle (non-interacting) case. Extended
and localized states correspond to real and complex en-
ergies, respectively. Interestingly, as the interaction en-
ergy U increases one loop in the cluster of Fig.2(d) de-
taches and separates with the formation of a line gap
from the other layers, as shown in Figs.3(d), 4(d) and
5(d). For h > h2, deformation of the energy loop layers
induced by energy interaction changes rather generally
the values of winding numbers w as compared to the non-
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interacting limit. For example, for the case of Fig.5(d)
one has w = −54,−43,−36 at the base energies EB = 0,
1.5 and 2.5, respectively (to be compared with the values
of w given in Fig.1).
The loop detachment observed as U increases is anal-
ogous to the formation of the Mott-Hubbard gap in
the standard (Hermitian) Hubbard model in strongly-
correlated systems. The detached loop basically de-
scribes doublon states, i.e. sticked two-particle states
which undergo correlated hopping along the lattice. In
the single-particle analogue shown in Fig.1(b), doublon
dynamics and correlated particle hopping basically corre-
spond to bound excitations near the defective line along
the main diagonal in the square lattice, which cannot
spread in the lattice bulk owing to energy conservation
constraint. The doublon dynamics can be described in
the strong-interaction limit U � J, V exp(h) by a re-
duced model obtained from a multiple time scale anal-
ysis of Eqs.(8), which is detailed in Appendix A. After
letting Φn,n(t) = An(t) exp(−iUt), one obtains the fol-
lowing evolution equations for the slowly-varying ampli-
tudes An, corresponding to the amplitude probabilities
that the two particles are found at the same lattice site
n at time t

i
dAn
dt

= Je(An+1 +An−1 + 2An) + 2VnAn (14)

where

Je ≡
2J2

U
(15)

is effective (second-order) hopping rate of the sticked two-
particle state (doublon). Basically, the hopping rate of
Je for doublons, being a second-order process, is greatly
reduced as compared to the hopping rate J of a single
particle, which corresponds to an effective increase of the
amplitude of the incommensurate non-Hermitian poten-
tial for doublons. This explains the lowering of the real-
to-complex spectral phase transition observed as the in-
teraction energy U is increased, from the single-particle
value hc to the lower value h′c, which can be estimated
in strong interaction limit using Eq.(14), yielding

h′c ' log

(
Je
V

)
= log

(
2J2

UV

)
= hc − log

(
U

J

)
. (16)

In particular, when the interaction energy U is larger
than the critical value Uc = 2J2/V , one has h′c = 0, i.e.
the energy spectrum becomes immediately complex as
soon as the potential is complex.

IV. CORRELATED DYNAMICS AND
NON-HERMITIAN PARTICLE BUNCHING

In the Hermitian limit of the Hubbard model consid-
ered in the previous section two fermions that are ini-
tially placed at different sites in the lattice do not tend

to bunch and stick together owing to energy repulsion.
Likewise, two fermions initially prepared in the same lat-
tice site form a doublon that undergoes correlated hop-
ping on the lattice, i.e. particle dissociation is prevented
owing to energy conservation. In the many-particle case
where lattice sites can be singly or doubly occupied, the
slow motion of doublons as compared to single particle
occupancies can be harnessed to realize ”quantum distil-
lation”, i.e. to separate doublons from singlons [156].
The particle dynamics is deeply modified when consider-
ing the non-Hermitian extension of the Hubbard model.
In fact, the correlated particle dynamics on the lattice in
the non-Hermitian regime h > h′c is greatly influenced by
the different ”lifetimes”, i.e. imaginary parts of eigenen-
ergies, of doublon states than single-particle states. Since
doublons display longer lifetimes, in the strong interac-
tion regime a rather arbitrary initial excitation of the
system, that is not exactly orthogonal to doublon eigen-
states, is attracted toward one of such eigenstates in the
long time limit, i.e. the two particles tend to bunch and
stick together as a result of the non-Hermitian dynamics,
a phenomenon that can be referred to as non-Hermitian
particle bunching. We note such a phenomenon is dis-
tinct than quantum distillation of doublons and singlons
observed in the Hermitian case and briefly mentioned
above, where single-particle states move faster than dou-
blons and can escape from the edges of the system [156].
To understand the non-Hermitian bunching effect, let us
observe that for a given initial condition the state of the
system at time t can be written as

|ψ(t)〉 =

∑
β,δ Cβ,δ|ψ(β,δ)〉 exp(−iEβ,δt)

‖
∑
β,δ Cβ,δ|ψ(β,δ)〉 exp(−iEβ,δt)‖

(17)

where the spectral amplitudes Cβ,δ are determined by
the initial state |ψ(0)〉 and are given by

Cβ,δ = 〈ψ†(β,δ)|ψ(0)〉. (18)

In the above equation, ψ†(β,δ) are the eigenfunctions of
the adjoint Hamiltonian Ĥ† in the two-particle sector
of Hilbert space, which is obtained from Ĥ by just re-
versing the sign of h, and the orthonormal conditions
〈ψ†(β,δ)|ψ(β′,δ′)〉 = δβ,β′δδ,δ′ are assumed. From Eq.(17),
it then follows that the long-time dynamics of the system
is dominated by the excited two-particle eigenstate of Ĥ
with the largest imaginary part of the eigenenergy, which
is expected to be rather generally a doublon eigenstate.
As an example, let us assume that at initial time t = 0
the two particles are initially placed at sites n1 and n2 of
the lattice, distant one another by d = |n2 − n1|, and let
us consider the symmetrized wave function as an initial
state

|ψ(0)〉 =
1√
2

(
â†n1,↑â

†
n2,↓|0〉+ â†n2,↑â

†
n1,↓|0〉

)
(19)

(symmetrization of the wave function is assumed so as to
include in the analysis the case of two bosonic particles
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FIG. 6. Temporal evolution of the two-particle probability distributions |ψn,m(t)|2 in a lattice with the same parameter values
as in Fig.5 (J = 1, U = 10, V = 0.15, L = 55, θ = 0) and for h = 0 (Hermitian limit, upper row) and h = 1 (lower row). The
system is initially prepared in a symmetrized state with one particle at site n1 = 26 and the other one at site n2 = 27.

FIG. 7. (a) Temporal evolution of the bunching probability
for the same parameter values as in Fig.6 for h = 0 (Hermitian
limit, dotted curve) and h = 1 (solid curve). (b) Same as
(a), bur for an initial separation of the two particles d = 2.
(c) Behavior of the bunching time τ0 versus initial particle
distance d for h = 1. τ0 is defined such that Pbun(τ0) = 0.8.

as well). The probability that at time t the two particles
stick together (bunching probability) is computed from
the relation

Pbun(t) =
∑
n

|ψn,n(t)|2. (20)

Figure 6 shows the numerically-computed temporal evo-
lution of the site occupation probabilities of the two par-
ticles on the lattice, initially placed at a distance d = 1
one another, for the same parameter values as in Fig.5
(J = 1, L = 55, α = 34/55, V = 0.15, θ = 0) in the Her-
mitian (h = 0, upper row) and non-Hermitian (h = 1,
lower row) regimes, clearly indicating that in the latter
case the two particles tend to stick together, while in the
former case they do not. The corresponding behavior of
the bunching probability is shown in Fig.7(a). The time
required for the two particles to bunch together is clearly
dependent on the lifetime differences between doublon
and single-particle eigenstates and on the weight |Cβ,δ|

of the overlapping of initial state onto the doublon eigen-
state with the largest growth rate, which decreases as
the particle distance d increases. Hence, the time of the
two particles to stick together increases as d is increased;
compare e.g. Figs.7(a) and 7(b), where the initial dis-
tance d of the two particles is increased from d = 1 to
d = 2. Quantitatively, we can define a bunching time
τ0 such that Pbun(τ0) reaches a target (reference) value,
for example 80%. A typical behavior of τ0 versus initial
particle separation d is shown in Fig.7(c), indicating that
τ0 increases almost linearly with d.

V. CONCLUSIONS

Topological phases and phase transitions in non-
Hermitian crystalline or quasi-crystalline systems provide
a fascinating area of research with promising implica-
tions in different fields of physics, from condensed mat-
ter to cold atoms and classical systems such as photonic,
acoustic, mechanical and topolectrical settings. While
the properties of single-particle non-Hermitian models
have been the subject of extensive studies and revealed
unprecedented phenomena without any counterpart in
Hermitian systems, such as the appearance of non-trivial
point-gap and line-gap topologies, the non-Hermitian
skin effect, an extended form of the bulk-boundary cor-
respondence and a variety of dynamical and transport ef-
fects, intriguing physical phenomena are being discovered
when considering interacting many-body non-Hermitian
systems. In this work we investigated the spectral and
dynamical features of two interacting particles in a non-
Hermitian quasi crystal, described by an effective Hub-
bard model in an incommensurate sinusoidal potential
with a complex phase, and unravelled some intriguing
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effects without any Hermitian counterpart. Owing to
an effective increase of disorder strength introduced by
particle interaction, doublon states, i.e. bound parti-
cle states, display a much lower threshold for spectral
and localization-delocalization transitions than single-
particle states, leading to the formation of interaction-
induced mobility edges. Remarkably, since doublons dis-
play longer lifetimes, two particles initially placed at
distant sites in the lattice tend to bunch and stick to-
gether, forming a doublon state in the long time limit
of evolution, a phenomenon that can be dubbed non-
Hermitian particle bunching. Our results shed new light
onto the physical properties of strongly correlated par-
ticles in non-Hermitian systems, even in the few-body
case considered here, and could suggest novel possibilities
to control many-particle states harnessing non-Hermitian
physics. In the present study, the analysis has been
focused on a specific non-Hermitian interacting Aubry-
André model, where non-Hermiticity enters via a com-
plex phase h in the incommensurate on-site potential,
however different non-Hermitian versions of the interact-
ing Aubry-André model could be considered, such as the
Aubry-André model with off-diagonal incommensurate
disorder [158, 159] or the Aubry-André model with non-
reciprocal (asymmetric) hopping amplitudes [160–162]
induced by an imaginary magnetic flux η [163], which dis-
plays the non-Hermitian skin effect in the single-particle
regime [5, 7, 12]. In particular, it would be interest-
ing to investigate the interplay and competition between
complex phase h of the incommensurate potential, which
tends to localize the wave functions, and the magnetic
flux η, which tends to delocalize the wave functions and
plays the same role as h but in reciprocal (Fourier) space
[88]. Since the imaginary magnetic flux η acts in a differ-
ent way for two-particle scattered states and two-particle
bound states (doublons) [164], the non-Hermitian bunch-
ing effect is expected to be washed out by the imaginary
magnetic flux and doublon dissociation in the bulk would
be observed for a magnetic flux η large enough than the
complex phase h.
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Appendix A: Doublon dynamics: multiple-time scale
analysis

In this Appendix we derive Eqs.(14) and (15) given in
the main text, which describe the correlated hopping of

two particles in the lattice that occupy the same site at
each time (doublons). Let us introduce the normalized
time variable τ = Ut, so that Eqs.(8) take the form

i
dΦn,m
dτ

= − J
U

(Φn,m+1 + Φn,m−1 + Φn+1,m + Φn−1,m)

+ δn,mΦn,m +
Vn + Vm

U
Φn,m. (A1)

Let us now consider the strong interaction regime by
assuming J/U ≡ ε, with ε � 1. We also consider a
potential strength V and complex phase h such that
U � V exp(h), with V exp(h)/U ∼ ε2. Therefore, in
Eq.(A1) the first term on the right hand side of the equa-
tion is of order ∼ ε, the second term is of order ∼ ε0, and
the last term is of order ∼ ε2. Let us now assume that at
initial time the system is prepared in a doublonic state,
i.e. such that Φn,m(τ = 0) = 0 for n 6= m, and let us
look for a solution to Eq.(A1) as an asymptotic series

Φn,m(τ) = Φ(0)
n,m(τ) + εΦ(1)

n,m(τ) + ε2Φ(2)
n,m(τ) + ... (A2)

To ensure that the expansion (A2) is uniformly valid as
τ grows, multiple time scales

T0 = τ , T1 = ετ , T2 = ε2τ , ... (A3)

have to be introduced to avoid the occurrence of secular
growing terms in the asymptotic expansion. Using the
derivative rule

d

dτ
=

d

dT0
+ ε

d

dT1
+ ε2

d

dT2
+ ... (A4)

substitution of Eqs. (A2) and (A4) into Eq. (A1), and
after equating terms of the same power in ε, a hierarchy of
equations for successive corrections to Φn,m is obtained.
At leading order ∼ ε0 one simply obtains

i
∂Φ

(0)
n,m

∂T0
= δn,mΦ(0)

n,m (A5)

which can be readily solved by letting

Φ(0)
n,m = Anδn,m exp(−iT0) (A6)

where the amplitudes An can vary on the slow time scales
T1, T2,..., i.e. An = An(T1, T2, ...). At order ∼ ε one has

i
∂Φ

(1)
n,m

∂T0
= −

(
Φ

(0)
n+1,m + Φ

(0)
n−1,m + Φ

(0)
n,m+1 + Φ

(0)
n,m−1

)
(A7)

for n 6= m, and

i
∂Φ

(1)
n,n

∂T0
− Φ(1)

n,n = −i∂An
∂T1

exp(−iT0). (A8)

The solvability condition for Eq.(A8) yields

∂An
∂T1

= 0 , Φ(1)
n,n = 0, (A9)
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whereas Eq.(A7) can be solved for Φ
(1)
n,m (n 6= m), yield-

ing

Φ(1)
n,m = − (An+1δm,n+1 +An−1δm,n−1 (A10)

+ Anδm,n+1 +Anδm,n−1) exp(−iT0)

Finally, at order ∼ ε2 for n = m one obtains

i
∂Φ

(2)
n,n

∂T0
− Φ(2)

n,n = exp(−iT0)

{
−i∂An

∂T2
+

2Vn
ε2U

An

+ 2 (An+1 +An−1 + 2An)} . (A11)

The solvability condition to Eq.(A11) yields

i
∂An
∂T2

=
2Vn
ε2U

An −+2 (An+1 +An−1 + 2An) . (A12)

If we stop the asymptotic analysis at order ∼ ε2, after
reintroduction of the original variables from Eqs. (A2),

(A4), (A6), (A9) and (A12) one finally obtains

Φn,n(t) = An(t) exp(−iUt) +O(ε2)

Φn,m(t) = O(ε) (m = n± 1) (A13)

Φn,m(t) = o(ε) (|m− n| ≥ 2)

where the slowly-varying amplitudes An evolve according
to the following equations

i
dAn
dt

=
2J2

U
(An+1 +An−1 + 2An) + 2VnAn (A14)

which correspond to Eqs.(14) and (15) given in the main
text, with Je ≡ 2J2/U . Note that Je corresponds to an
effective hopping rate of two-particle states, which is a
second-order process (as it arises at order ∼ ε2 in the
asymptotic analysis).
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12

off-diagonal modulations, Phys. Rev. B 106, 214207
(2022).

[107] W. Han and L. Zhou, Dimerization-induced mobility
edges and multiple reentrant localization transitions in
non- Hermitian quasicrystals, Phys. Rev. B 105, 054204
(2022).

[108] Q. Lin, T. Li, L. Xiao, K. Wang, W. Yi, and P. Xue,
Observation of non-Hermitian topological Anderson in-
sulator in quantum dynamics, Nat. Commun. 13, 3229
(2022).

[109] S. Weidemann, M. Kremer, S. Longhi, and A. Szameit,
Topological triple phase transition in non-Hermitian
Floquet quasicrystals, Nature 601, 354 (2022).

[110] Q. Lin, T. Li, L. Xiao, K. Wang, W. Yi, and P. Xue,
Topological Phase Transitions and Mobility Edges in
Non-Hermitian Quasicrystals, Phys. Rev. Lett. 129,
113601 (2022).
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rberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M.
D. Lukin, and I. Bloch, Time-resolved Observation and
Control of Superexchange Interactions with Ultracold
Atoms in Optical Lattices, Science 319, 295 (2008).

[149] Y.-A. Chen, S. Nascimbene, M. Aidelsburger, M. Atala,
S. Trotzky, and I. Bloch, Controlling Correlated Tun-
neling and Superexchange Interactions with AC-Driven
Optical Lattices, Phys. Rev. Lett. 107, 210405 (2011).

[150] M. Schreiber, S.S. Hodgman, P. Bordia, H.P. Lüschen,
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