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0 Graded algebras with cyclotomic Hilbert series

Alessio Borz̀ı, Alessio D’Al̀ı

Abstract

Let R be a positively graded algebra over a field. We say that R is

Hilbert-cyclotomic if the numerator of its reduced Hilbert series has all

of its roots on the unit circle. Such rings arise naturally in commuta-

tive algebra, numerical semigroup theory and Ehrhart theory. If R is

standard graded, we prove that, under the additional hypothesis that

R is Koszul or has an irreducible h-polynomial, Hilbert-cyclotomic al-

gebras coincide with complete intersections. In the Koszul case, this

is a consequence of some classical results about the vanishing of devi-

ations of a graded algebra.

1 Introduction

The Hilbert series of a positively graded k-algebra R is a prominent object
in commutative algebra. It encodes the information on how many forms of
degree d are contained in R for each possible d, and has been the object of
intense study since the late nineteenth century. Some simple inductive rea-
soning shows that the Hilbert series can be expressed as a rational function.
Many properties of the graded algebra are reflected into the1 numerator of
such expression. In the last few years, several authors have been investigating
the behaviour of the roots of this polynomial [7, 16, 3], often focusing on the
combinatorially interesting case when such roots are all real. For the com-
binatorial consequences of real-rootedness, we direct the interested reader to
the survey [5].

2020 Mathematics Subject Classification. Primary: 13D40; Secondary: 13A02, 16S37,

20M14, 13H10.
1In this paper, when not specified differently, we express the Hilbert series of a graded

algebra R as a rational function reduced to lowest terms ; in particular, it makes sense to

speak of the numerator.
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The focus of the present article is on those graded algebras whose Hilbert
series numerator has all of its roots on the unit circle.

Main Definition (Definition 2.1). Let R be a positively graded k-algebra.
We say that R is Hilbert-cyclotomic (or simply cyclotomic) if the numerator
of its reduced Hilbert series is Kronecker, i.e. has all of its roots on the unit
circle.

Cyclotomic graded algebras have been considered in lattice polytope the-
ory, where they are related to Ehrhart-positivity [17, 6], and numerical semi-
group theory [10, 20, 15, 4, 22]. Moreover, every graded complete intersection
is cyclotomic (see the discussion before Proposition 2.4 for a more precise
statement).

Generally speaking, the cyclotomic condition cannot be enough to char-
acterize complete intersections: for instance, Gröbner deformation preserves
the Hilbert series but not necessarily the complete intersection property.
Even under the stronger hypothesis that the given algebra is a graded Cohen–
Macaulay domain, there exist cyclotomic algebras which fail to be complete
intersections, as shown by Stanley [23, Example 3.9] (see also Example 2.5
herein). However, if we restrict our focus to numerical semigroup rings, it is
yet unknown whether cyclotomic algebras and complete intersections coin-
cide, as we now explain.

A numerical semigroup S is an additive submonoid of N with finite com-
plement N \ S. For an introduction to numerical semigroups, see [21]. The
semigroup polynomial of S is defined as PS(x) = 1+(x−1)

∑

g∈N\S x
g. It is an

easy exercise to check that the semigroup polynomial PS(x) is the numerator
of the reduced Hilbert series of the semigroup ring k[S]. Ciolan, Garćıa-
Sánchez and Moree [10] call the numerical semigroup S cyclotomic if PS(x)
has all of its roots in the unit circle, i.e. the ring k[S] is Hilbert-cyclotomic.
The original motivation for this notion comes from the following folklore
result in number theory (see for instance [20, Theorem 1]): if p and q are dis-
tinct primes and 〈p, q〉 is the numerical semigroup generated by p and q, then
P〈p,q〉(x) = Φpq(x), where Φn(x) is the n-th cyclotomic polynomial. More gen-
erally, if a and b are two coprime integers, then P〈a,b〉(x) =

∏

n|ab, n∤a, n∤b Φn(x).

As we have seen above, if k[S] is a complete intersection, then S is cyclo-
tomic. It was verified in [10] that every cyclotomic numerical semigroup with
Frobenius number up to 70 is a complete intersection (where the Frobenius
number of S is max(N \ S)). This motivates the following conjecture:
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Conjecture 1.1 (Ciolan, Garćıa-Sánchez, Moree [10]). A numerical semi-
group S is cyclotomic if and only if k[S] is a complete intersection.

Now, let us go back to the more general setting where R is a positively
graded k-algebra. In the spirit of Conjecture 1.1 and of a question by Stan-
ley [23, p. 64], it is of interest to find additional hypotheses under which the
cyclotomic condition for R becomes equivalent to being a complete intersec-
tion. The main result of this paper shows that this is the case for Koszul
algebras, a class of quadratic standard graded algebras enjoying many desir-
able homological properties (for an overview, we refer the interested reader
to, e.g., [11] and [12]).

Theorem A (Theorem 3.9). If R is a Koszul algebra, then R is Hilbert-
cyclotomic if and only if it is a complete intersection.

Moreover, we prove that complete intersections and cyclotomic algebras
coincide also under the assumption that R is standard graded and its h-
polynomial is irreducible over Q. This is in line with a result in the forth-
coming article [4]: see Question 4.1 and the discussion preceding it. Recall
that the Kronecker polynomials which are irreducible over Q are precisely
the cyclotomic polynomials Φm(x).

Theorem B (Theorem 4.3). Let R be a standard graded algebra. Then
h(R, x) = Φm(x) if and only if m is prime and R is a hypersurface of degree
m.

2 Hilbert-cyclotomic algebras

In this paper, a graded algebra will always be a commutative finitely gener-
ated N-graded algebra R =

⊕

i∈N Ri with R0 = k, where k is a field. We
will write the reduced Hilbert series of R as H(R, x) = NR(x)/DR(x). If R
is generated by its degree 1 part, we will say that R is standard graded. In
this case, as is customary, we will call NR the h-polynomial of R and denote
it by h(R, x).

Definition 2.1. Let R be a graded algebra. We say that R is Hilbert-
cyclotomic (or simply cyclotomic) if the numerator of its reduced Hilbert
series is Kronecker, i.e. has all of its roots on the unit circle.
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Remark 2.2. Besides the connection to numerical semigroups highlighted in
the introduction, the cyclotomic condition has also been studied in Ehrhart
theory. Braun and Liu [17, 6] call a polytope h∗-unit-circle-rooted if its
Ehrhart ring is Hilbert-cyclotomic. Remarkably, such polytopes are Ehrhart-
positive [6, Corollary 1.4].

A degree s polynomial f(x) =
∑s

i=0 aix
i with integer coefficients is said

to be palindromic if ai = as−i for every i ∈ {0, . . . , s}, or equivalently if
f(x) = xsf(1/x). For every n > 1, one has that the cyclotomic polynomial
Φn(x) :=

∏

(j,n)=1

(

x− e2πij/n
)

is palindromic. Since a Kronecker polynomial
is a product of cyclotomic polynomials and the palindromic property is pre-
served under taking products, it follows that every Kronecker polynomial f
with f(1) 6= 0 is palindromic.

Now let R be a graded algebra of Krull dimension d. Since the order of
the pole of H(R, x) at x = 1 equals d (see for instance [1, Chapter 11]), it
follows that NR(1) 6= 0. Thus, from the above observations we infer that

Remark 2.3. If the graded algebra R is cyclotomic, then the numerator NR

of its reduced Hilbert series is palindromic.

The rest of this section is devoted to a quick exploration of how the cy-
clotomic condition relates to complete intersections and Gorenstein algebras,
as summarized by the following diagram:

complete
intersection

Gorenstein

cyclotomic

Figure 1: The single arrow holds for Cohen-Macaulay do-
mains (Proposition 2.7), whereas the dashed arrow is the sub-
ject of Conjectures 1.1 and 2.6 and holds for standard graded
algebras that are Koszul (Theorem 3.9) or have irreducible
h-polynomial (Theorem 4.3).

Let R be a (graded) complete intersection, i.e. a quotient of a positively
graded polynomial ring S = k[x1, . . . , xn] by an ideal generated by a homo-
geneous regular sequence f1, . . . , fe. Setting di := deg xi and mj := deg fj ,

4



one shows that the Hilbert series of R can be written in the (non-reduced)
form

H(R, x) =
(1− xm1) . . . (1− xme)

(1− xd1) . . . (1− xdn)
,

see for instance [23, Corollary 3.3]. Hence, it follows that

Proposition 2.4. Every graded complete intersection is cyclotomic.

The converse of Proposition 2.4 does not hold even under the hypoth-
esis that the given algebra is a Cohen–Macaulay standard graded domain,
as already observed by Stanley [23, Example 3.9]. Examples of cyclotomic
non-complete intersection Cohen–Macaulay standard graded domains can be
found in any dimension d ≥ 2: it is enough to adjoin variables to the following
example provided by Aldo Conca.

Example 2.5. Let R = k[s8, s6t2, s5t3, s3t5, t8] ⊆ k[s, t]. Then R is a
2-dimensional standard graded domain which is Cohen–Macaulay in every
characteristic (one checks via some characteristic-free Gröbner basis compu-
tation that the system of parameters {s8, t8} is a regular sequence for R).
Since the h-polynomial of R is (1+x)3, one has that R is cyclotomic; however,
it is not a complete intersection.

It turns out that investigating the case of one-dimensional domains (not
necessarily standard graded) is essentially equivalent to solving Conjecture
1.1. In fact, from [24, Proposition 3.1] every graded domain of Krull dimen-
sion one over an algebraically closed field k is isomorphic to the semigroup
algebra k[Γ] of some additive submonoid Γ of N. Further, every submonoid
Γ of N is isomorphic to the numerical semigroup S = Γ/ gcd(Γ) [21, Propo-
sition 2.2]. Hence, we can reformulate Conjecture 1.1 in purely algebraic
terms:

Conjecture 2.6 (Conjecture 1.1, algebraic version). Every cyclotomic graded
domain of Krull dimension one over an algebraically closed field is a complete
intersection.

We close this section by discussing the relation between the cyclotomic
condition and the Gorenstein property. A famous theorem by Stanley [23,
Theorem 4.4] states that a Cohen–Macaulay graded domain R is Gorenstein
if and only if NR(x) is palindromic. Recalling Remark 2.3, we hence obtain
the following result:
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Proposition 2.7. Let R be a Cohen–Macaulay graded domain. If R is cy-
clotomic, then R is Gorenstein.

Proposition 2.7 generalizes both [20, Theorem 5] for numerical semigroups
and [17, Corollary 2.2.9] for lattice polytopes. The converse of Proposi-
tion 2.7, however, does not hold even in these more specific settings. One
can consider for instance the semigroup rings of the numerical semigroups
Sk = 〈k, k + 1, . . . , 2k − 2〉 with k ≥ 5 [15, 22] or Ehrhart rings of Birkhoff
polytopes [17, Section 5.1.2].

3 Cyclotomic Koszul algebras

The goal of this section is to prove that, for Koszul algebras, the cyclotomic
property characterizes complete intersections. We begin by some definitions.

Definition 3.1. Let R be a standard graded k-algebra. We say that R is
Koszul if the minimal graded free resolution of k as an R-module is linear,
i.e. TorRi (k,k)j = 0 whenever i 6= j.

Definition 3.2. Let R be a graded k-algebra. The Poincaré series of k as
an R-module is P(R, x) =

∑+∞
i=0 β

R
i (k)x

i, where βR
i (k) := dim

k

TorRi (k,k).

The following remark can be found for instance in [19, Remark 1].

Remark 3.3. Given a formal series P (x) = 1+
∑+∞

i=1 aix
i with ai ∈ Z, there

exist unique integers ei ∈ Z such that

P (x) =
+∞
∏

i=1

(1− xi)ei. (1)

If P (x) is just a polynomial, then it is Kronecker if and only if ei = 0 for
i ≫ 0. For a proof of this fact, see [10, Lemma 12].

The factorization in (1) was used by Ciolan, Garćıa-Sánchez and Moree
[10] to define the cyclotomic exponent sequence of a numerical semigroup.
This notion can be generalized as follows.

Definition 3.4. Let R be a graded algebra and let NR(x) be the numerator
of its reduced Hilbert series. Since NR(0) = 1, we can factor NR as in (1).
The integers ei will be called the cyclotomic exponent sequence of R and will
be denoted by ei(R).
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A consequence of Remark 3.3 is the following equivalence.

Corollary 3.5. Let R be a graded algebra. The following conditions are
equivalent:

1. R is cyclotomic;

2. ei(R) = 0 for i ≫ 0.

Definition 3.6. Let R be a graded k-algebra and let P(R, x) be the Poincaré
series of the residue field k as an R-module. We write

P(R, x) =

+∞
∏

i=1

(1 + x2i−1)ε2i−1

+∞
∏

i=1

(1− x2i)ε2i

and call the integers (εi)i∈N so obtained the sequence of deviations of R.

An interesting feature of deviations is their ability to tell whether or not
R is a complete intersection. The strongest version of this result is Halperin’s
rigidity theorem, see for instance [2, Theorem 7.3.4]. For our aims, however,
a weaker statement originally due to Gulliksen [14] will suffice (see also [2,
Theorem 7.3.3]):

Theorem 3.7. Let R be a graded algebra. The following conditions are
equivalent:

1. R is a complete intersection;

2. εi(R) = 0 for i ≫ 0.

Corollary 3.5 and Theorem 3.7 exhibit a formal similarity. Such a simi-
larity becomes substantial when R is a Koszul algebra, as the following result
shows.

Proposition 3.8. Let R be a Koszul algebra of Krull dimension d. Then

ei(R) =

{

−ε1(R) + d i = 1

(−1)iεi(R) i > 1.

In particular, ei(R) = 0 for i ≫ 0 ⇐⇒ εi(R) = 0 for i ≫ 0.
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Proof. Note that NR(x) = h(R, x) = (1− x)dH(R, x) because R is standard
graded. Further, since R is Koszul, from [12, Theorem 1] we have that
H(R, x)P(R,−x) = 1. Now write

+∞
∏

i=1

(1− xi)ei(R) = h(R, x) = (1− x)dH(R, x) =
(1− x)d

P(R,−x)
=

= (1− x)d

+∞
∏

j=1

(1− x2j)ε2j(R)

+∞
∏

j=1

(1− x2j−1)ε2j−1(R)

= (1− x)d
+∞
∏

i=1

(1− xi)(−1)iεi(R)

and the claim follows.

Theorem 3.9. If R is a Koszul algebra, then R is cyclotomic if and only if
it is a complete intersection.

Proof. The result follows directly from Proposition 3.8, Corollary 3.5 and
Theorem 3.7.

Remark 3.10. One may also show that, if R is Koszul and cyclotomic, then
the Betti numbers of the residue field k as an R-module “do not grow too
fast”, i.e. it holds that

curvR(k) := lim sup
n→+∞

n
√

βR
n (k) ≤ 1.

By [2, Corollary 8.2.2], this implies thatR is a complete intersection; however,
the proof of [2, Corollary 8.2.2] still relies on deviations.

4 Algebras with irreducible h-polynomial

Let R be a cyclotomic graded algebra and assume that NR is irreducible
over Q. This means that NR(x) = Φm(x) for some m ∈ N. Under this
condition, in the case when R = k[S] for some numerical semigroup S (and
hence NR equals the semigroup polynomial PS), it is proved in [4] that then
S = 〈p, q〉 for some primes p 6= q, and consequently m = pq. Since each
numerical semigroup of the form 〈p, q〉 is a complete intersection, this implies
in particular that Conjecture 1.1 holds true when PS is irreducible. This
prompts the following questions:
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Question 4.1. Let R be a graded algebra and assume that the numerator
NR of its reduced Hilbert series is irreducible. Is it true that R is cyclotomic
if and only if it is a complete intersection?

Question 4.2. Which cyclotomic graded algebras R have a Hilbert series
whose numerator is irreducible, i.e. NR(x) = Φm(x) for some m?

The aim of this section is to answer both of the above questions in the
case when R is standard graded.

Theorem 4.3. Let R be a standard graded algebra. Then h(R, x) = Φm(x)
if and only if m is prime and R is a hypersurface of degree m.

As a consequence, Question 4.1 has a positive answer when R is standard
graded. To prove Theorem 4.3, we will need some auxiliary results. First,
we recall some basic properties of cyclotomic polynomials.

Lemma 4.4.

(a) Let m > 1. Then Φm(1) =

{

p if m = pk for some prime p

1 otherwise.

(b) For any prime p and any k ≥ 2, one has that Φpk(x) = Φp(x
pk−1

).

The following lemma is a generalization of [23, Theorem 3.6].

Lemma 4.5. Let R be a standard graded k-algebra such that

H(R, x) =
1 + x+ x2 + . . .+ xs−1

(1− x)d
(2)

for some s > 1, d ≥ 0. Then R = k[x1, . . . , xd+1]/(f) for some homogeneous
polynomial f of degree s.

Proof. Write R as the quotient of a standard graded polynomial ring S =
k[x1, . . . , xn] by a homogeneous ideal I ⊆ (x1, . . . , xn)

2. Here n is the em-
bedding dimension of R, which is strictly greater than d since R is not a
polynomial ring itself. It follows from Hilbert’s syzygy theorem that the
Hilbert series of R can be written in a non-reduced way as

H(R, x) =
K(R, x)

(1− x)n
, (3)
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where K(R, x) =
∑

i,j(−1)iβS
i,j(R)xj and βS

i,j(R) := dim
k

TorSi (R,k)j is the
(i, j)-th Betti number of R as an S-module. Comparing Equations (2) and
(3), we have that

K(R, x) = (1 + x+ x2 + . . .+ xs−1)(1− x)n−d = (1− xs)(1− x)n−d−1.

Now, if n−d−1 > 0, it follows that the coefficient of x in K(R, x) is nonzero,
which is impossible since I does not contain any linear form. Hence, n = d+1
and K(R, x) = 1 − xs. It is left as an exercise to the reader to check that
I must then be minimally generated by a single homogeneous polynomial of
degree s.

Lemma 4.6. Let R be a standard graded k-algebra of Krull dimension d. If
the h-polynomial of R is palindromic of even degree s, then h(R, 1) > 1.

Proof. The integer h(R, 1) is the multiplicity of R [8, Definition 4.1.5, Corol-
lary 4.1.9], and as such it is positive. Suppose by contradiction that h(R, 1)
equals 1, and write R as k[x1, . . . , xn]/I for some homogeneous ideal I. Since
the Hilbert series stays the same when passing to the initial ideal, we can
assume without loss of generality that I is a monomial ideal. Moreover,
since polarization preserves the h-polynomial, we can further assume that I
is a squarefree monomial ideal; hence, I is the Stanley–Reisner ideal of some
simplicial complex ∆.

Let D − 1 be the dimension of ∆, and set h(R, x) =
∑s

i=0 hix
i. By

construction, the h-vector of ∆ is (h0, h1, . . . , hD), where hi = 0 if i > s.
Knowing the h-vector of ∆ gives us access to its f -vector (f−1, f0, . . . , fD−1),
where fi is the number of i-dimensional faces of ∆. As shown for instance in
[18, Corollary 1.15], the transformation is given by

D
∑

i=0

fi−1(x− 1)D−i =

D
∑

i=0

hix
D−i. (4)

In particular, fD−1 =
∑D

i=0 hi =
∑s

i=0 hi = h(R, 1) = 1. Since ∆ contains
a (D − 1)-dimensional face, there should be at least D (D − 2)-dimensional
faces, that is fD−2 ≥ D. Substituting x−1 by y inside Equation (4), we find

10



that fD−2 is the coefficient of y in
∑D

i=0 hi(y + 1)D−i. Hence,

fD−2 = Dh0 + (D − 1)h1 + . . .+ (D − s)hs

= (D − s)

s
∑

i=0

hi + sh0 + (s− 1)h1 + . . .+ hs−1

= (D − s) +
s

2

s
∑

i=0

hi = D −
s

2
< D,

where the third equality comes from the fact that h(R, x) is palindromic of
even degree.

Proof of Theorem 4.3. The “if” part is clear. Let us prove the “only if”.
Suppose that R = k[x1, . . . , xn]/I for some homogeneous ideal I contained
in (x1, . . . , xn)

2. By hypothesis we have that

H(R, x) =
Φm(x)

(1− x)d
(5)

for some m > 1 and d = dimR ≥ 0. Since Φm(x) is palindromic of even
degree, applying Lemma 4.6 yields that Φm(1) 6= 1. It follows from part
(a) of Lemma 4.4 that m = pk for some prime p and k ≥ 1. Now assume
that k > 1 and let q = pk−1. By part (b) of Lemma 4.4, one has that
Φm(x) = Φp(x

q) = 1 + xq + x2q + . . . + x(p−1)q. Expanding Equation (5) at
x = 0, we get that the standard graded algebra R contains d forms of degree
1 and

(

d+q−1
q

)

+1 forms of degree q, which is impossible. Hence, m = p. Now
apply Lemma 4.5.
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[21] J. C. Rosales and P. A. Garćıa-Sánchez. Numerical semigroups, vol-
ume 20 of Developments in Mathematics. Springer, New York, 2009.

[22] M. Sawhney and D. Stoner. On symmetric but not cyclotomic numerical
semigroups. SIAM J. Discrete Math., 32(2):1296–1304, 2018.

[23] R. P. Stanley. Hilbert functions of graded algebras. Advances in Math.,
28(1):57–83, 1978.

13

http://www.math.uiuc.edu/Macaulay2/


[24] R. P. Stanley. On the Hilbert function of a graded Cohen-Macaulay
domain. J. Pure Appl. Algebra, 73(3):307–314, 1991.

Alessio Borz̀ı Alessio.Borzi@warwick.ac.uk

Mathematics Institute, University of Warwick, Coventry CV4

7AL, United Kingdom.

Alessio D’Al̀ı Alessio.D-Ali@warwick.ac.uk

Mathematics Institute, University of Warwick, Coventry CV4

7AL, United Kingdom.

14


	1 Introduction
	2 Hilbert-cyclotomic algebras
	3 Cyclotomic Koszul algebras
	4 Algebras with irreducible h-polynomial

