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ABSTRACT

Deep Learning (DL) models have been successfully applied
to many applications including biomedical cell segmentation
and classification in histological images. These models re-
quire large amounts of annotated data which might not al-
ways be available, especially in the medical field where an-
notations are scarce and expensive. To overcome this limi-
tation, we propose a novel pipeline for generating synthetic
datasets for cell segmentation. Given only a handful of anno-
tated images, our method generates a large dataset of images
which can be used to effectively train DL instance segmenta-
tion models. Our solution is designed to generate cells of real-
istic shapes and placement by allowing experts to incorporate
domain knowledge during the generation of the dataset.

Index Terms— Instance Segmentation, Data Generation,
Deep Learning.

1. INTRODUCTION

In the medical domain, the effectiveness of Deep Learning
(DL) methods can be hindered by data scarcity since anno-
tated data may be hard or expensive to obtain. This issue is
also accentuated by the variety of scenarios DL models have
to face in medical imaging, as specific datasets need to be
prepared to train DL models on new tissues, when image ac-
quisition techniques change, or to address different goals. In
this work, we propose a novel pipeline (Fig. 1) that enables
training instance segmentation models in the histopathologi-
cal imaging domain in very low data regimes.

Previous works have addressed the issue of data scarcity
by means of Data Augmentation (DA) techniques [1]. The
idea behind DA is to manipulate images in a realistic man-
ner to increase the amount of annotated data during training,
thus improving performance. These techniques have been ex-
tensively used for training classifiers, where supervision is at
the image level, as far as they do not change the image’s la-
bel. For tasks like histological instance segmentation, where
annotations are provided at pixel level, the very same trans-
formations often need to be applied both to the image and
to the pixel-wise Ground Truth (GT). Common DA strategies
include geometric and photometric transformations such as
rotations, crops and contrast variations. Unfortunately, they

Code available at https://github.com/rb-sl/ExpertDrivenNuclei.

can only be applied to already-existing samples resulting in
a limited increase of variability. Image generation, instead,
has the potential to obtain a large amount of diverse data, en-
abling more effective model training. On the flip side, this
also requires generating annotations (here also referred to as
blobs) that are pixel-wise consistent with generated samples.

A few efforts [2, 3] have been made towards generating
both image and GT. These rely on DL models like Generative
Adversarial Networks (GANs) [4] that, while providing good
results, do not enable to steer the image generation towards
images featuring desired properties like the cell distribution
and spacing. Other works break down the generation prob-
lem to make it more controllable, but are limited to re-using
cell masks from real data [2], or generating blobs at random
[5], yielding potentially unrealistic results. Other approaches
extract blobs from real images and place them over an empty
canvas to create the image mask [6, 7]. Lastly, works such as
[8] perform style transfer to transform a generated GT into a
realistic image in a fully-DL framework.

None of these methods guarantee that the generated blobs
and their positions are coherent with the target tissue, in par-
ticular in low-data regimes. We overcome this limitation by
proposing a modular pipeline, illustrated in Fig. 1, that can
incorporate domain knowledge into the blob generation and
placement processes. Our pipeline also allows experts to steer
them towards realistic samples even at very low data regimes.
Our method is composed of three major steps: a⃝Blob Gener-
ation, where pairs or randomly selected blobs – representing
different sections of 3D cells – are interpolated to generate
realistic contours, b⃝ Blob Placement, where each generated
blob is placed in a GT mask by a greedy algorithm that con-
strains blob density and distance to satisfy expert-driven crite-
ria, and c⃝ Image Generation via a style transfer Neural Net-
work to generate visually realistic images from the computed
GT. Experiments demonstrate that our method generates real-
istic images even starting from a single image, enabling train-
ing instance segmentation models with performance compa-
rable to models trained on larger datasets.

2. PROBLEM FORMULATION

The Instance Segmentation problem is typically formulated
as follows: given an histological image I ∈ Rh×w×3, find all
objects of a particular class (typically cells or part thereof),
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Fig. 1: Our generation pipeline. Our first phase is Blob Generation a⃝, which creates a set of new blobs {B̃l}L by interpolating
existing ones. We then perform Blob Placement b⃝ to generate the GT M̃ following a prior distribution P estimated from the
few annotated images. Finally, the Image Generation c⃝ phase performs style transfer to transform M̃ into the new image Ĩ .

thus returning binary masks M̂ ∈ {0, 1}h×w×q where each
channel contains a segmentation mask for one of q objects
within the image. Instance segmentation is typically solved
by Convolutional Neural Networks (CNNs) trained on large
datasets where each image Ij is paired with its GT annota-
tion Mj . We address the problem of generating a training set
composed of a large number (N ) of synthetic images, {Ĩn}N ,
starting from a small training set of real images {(Ij ,Mj)}J .
In particular, each generated image Ĩn is associated to a gener-
ated GT M̃n, which can be used to train an instance segmen-
tation network. Training set generation can be summarized
as:

{(Ij ,Mj)}J → {(Ĩn, M̃n)}N , N ≫ J.

3. METHOD

Fig. 1 and Algorithm 1 describe the proposed generation
pipeline that is composed of three parts. First, we leverage
homotopy-based interpolation to generate blobs representing
cells in a principled way; then, we generate GT segmentation
masks by optimizing the positioning of blobs satisfying con-
straints on the blob distribution; lastly, we generate realistic
images that match the generated GTs.

3.1. Blob Generation

The first step consists in generating a new set of L synthetic
blobs {B̃l}L by interpolating pairs of cell masks randomly
selected from real ones {Bk}K (Fig. 1, a⃝):

{Bk}K → {B̃l}L, L≫ K.

The rationale behind our procedure is that blobs {Bk}K in
histopathology correspond to projections of 3D cells into an
image plane. If we assume cells are 3D convex volumes, any
pair of image projections from the same cell are homotopi-
cally equivalent, thus projections over other planes can be ob-
tained by continuously deforming one cell towards the other,
as depicted in Fig. 2a. In non-convex cases, slicing a 3D cell
may yield multiple connected components. Yet, homotopic
equivalence applies locally to each projection with the same

number of connected components. Since blobs in real im-
ages are projections of similar 3D cells, we generate the con-
tours of new realistic blobs by interpolating the contours of
randomly selected pairs of blobs. Algorithm 2 describes the
procedure to generate L blobs starting from our set of real
blobs {Bk}K extracted from the training set. We first sample
a random pair Bk1, Bk2 of real blobs, on which we identify a
number E of equally spaced points along their contours pk1
and pk2. We then perform ICP registration [9] to align and
pair the contour points of the two blobs. Then, as shown in
Fig. 2b, we interpolate between point pairs to generate the
contour of the new blob:

p̃l = {αp(i)k1 + (1− α)p
(i)
k2 ∀i ∈ [1, E]}, α ∈ [0 , 1].

Each generated blob B̃ is obtained by morphological area
closing filling in the interpolated perimeters (Figure 2c). The
whole procedure runs in O(K · L).

3.2. Blob Placement

After obtaining the set {B̃l}L of synthetic blobs, we define re-
alistic image-level GTs {M̃n}N by a greedy blob placement
procedure that enables controlling blob spacing and density
(Figure 1, b⃝). To this end, we first define a set of 2D prior
nuclei density distributions {Pn}N , Pn ∈ [0, 1]h×w. Each
Pn is a heatmap (Fig. 3a), mimicking in each point [i, j] the
likelihood of a blob covering that region. Second, the univari-
ate distribution S models the spacing between blobs in real
images. Both Pn and S can be either estimated from the real
available images or crafted by experts.

The proposed blob placement procedure is described in
Algorithm 3. First, we initialize M̃ as an empty binary mask
and A as an availability mask which is initially set to ones.
Then, we iteratively place blobs by sampling locations in
Gn = Pn · A, which is normalized to sum to 1 to mimic the
distribution of currently available locations. More specifically
we sample a point [i, j] from Gn and a value from S repre-
senting the offset z. We then select the first generated blob in
{B̃l}L that fits in at the sampled location. If no blob fits, the
algorithm terminates. Otherwise, we update A by setting to 0



(a) Homotopically equivalent blobs. (b) Interpolation lines between Bk1 and Bk2 (c) Interpolated blobs between Bk1 and Bk2

Fig. 2: Examples of interpolation between Bk1 (blue) and Bk2 (green). New blobs (in orange) are selected at equally spaced
intervals along the interpolation lines and can be seen as different views of a 3D nucleus.

all the locations that are either covered by the blob or that are
within a radius z from [i, j], enforcing a minimum spacing
between blobs. We remove the placed blob from {B̃l}L. At
the end, the synthetic mask M̃ is returned. As displayed in
Fig. 3, the proposed greedy procedure yields GTs that follow
the prior more faithfully w.r.t. a random placement weighted
according to P .

Blob placement, although efficiently parallelizable, is the
most computationally demanding component as it scales with
O(N · h·wAB

·L). The fractional term represents the number of
blobs that can fit the image given its area and an average blob
area AB .

Algorithm 1 Our generation pipeline

1: Input: Small annotated training set {(Ij ,Mj)}J
2: Output: Large synthetic training set {(Ĩn, M̃n)}N
3: D̃ ← ∅ ▷ Blobs interpolation
4: {B̃l}L ← INTERPOLATEBLOBS({Bk}K , L,E)
5: for n ∈ [1, N ] do
6: P,S ← GETPRIOR(h,w) ▷ Blobs placement
7: M̃n ← GREEDYPLACEMENT(P, {B̃l}L,S)
8: R← SAMPLE({Ij}J ) ▷ Style transfer
9: Ĩn ← ADAIN(FLATTEN(M̃n), R)

10: D̃ ← D̃ ∪ {(Ĩn, M̃n)}

Algorithm 2 Blob interpolation

1: procedure INTERPOLATEBLOBS({Bk}K , L,E)
2: for l ∈ [1, L] do
3: Bk1, Bk2 ← SAMPLE({Bk}K , 2)
4: p1 ← GETCONTOURPOINTS(Bk1, E)
5: p2 ← GETCONTOURPOINTS(Bk2, E)
6: p1 ← REGISTRATION(p1, p2)
7: α← SAMPLE([0, 1])
8: p̃← INTERPOLATE(p1, p2, α)
9: B̃l ← CLOSURE(p̃)

10: return {B̃l}L

3.3. Image Generation

After obtaining the GT masks {M̃n}N , we generate the cor-
responding images by AdaIN [10], a style transfer framework
(Figure 1, c⃝) that can modify the style (i.e., the texture and
appearance) of an image, while preserving its content. In
our case, the content is the generated mask {M̃n}N while

(a) Prior map P . (b) Random. (c) Greedy.

Fig. 3: Examples of blob placement. Given a prior map P
(a), our greedy placement (c) respects much more closely the
distribution with respect to a random weighted placement (b).

Algorithm 3 Blob placement

1: procedure GREEDYPLACEMENT(Pn, {B̃l}L,S)
2: M̃ ← 0h×w×q

3: A← 1h×w

4: while found do
5: G← NORM(A · Pn)
6: (y, x)← SAMPLE(Gn)
7: z ← SAMPLE(S)
8: for b ∈ {B̃l}L do
9: found← CANHOST(G, b, y, x)

10: if found then
11: {B̃l}L ← {B̃l}L \ {b}
12: M̃ ← ADDMASK(M̃, b, y, x)
13: A← UPDATEAVAILABLE(A, b, z)
14: break
15: return M̃

the style is represented by the collection of real images for
training {Ij}J . We therefore use AdaIN to create the tex-
ture characterizing cells over a mask M̃ , preserving the blob
support resulting in pixel-perfect annotations for training seg-
mentation networks. The content and style do not need to be
paired, thus the collection of synthetic realistic images {Ĩn}N
is obtained as follows:

{M̃n}N , {Ij}J → {(Ĩn, M̃n)}N .

In our pipeline (Algorithm 1, Line 9), we employ AdaIN
by using as content the (flattened) generated mask M̃n and as
reference style a patch R from a real image Ij . We train for
30000 epochs using as DA flips and affine transformations for
both style and content, and photometric transformations for
the style image only. The output of AdaIN is a realistic im-
age Ĩn where the displayed cells follow the input M̃n. Pairs



(a) Generated mask M̃ . (b) Reference style R. (c) Ĩ generated from M̃ .

Fig. 4: Example of style transfer.

of generated image and mask can be used as annotated sam-
ples to augment the small annotated training set {(Ij ,Mj)}J .
Fig. 4 shows an example of this phase starting from a gener-
ated mask M̃ and using as reference style an image R.

4. EXPERIMENTS

We validate the effectiveness of our pipeline by training HoV-
erNet [11], a state-of-the-art instance segmentation NN, on
our generated dataset. We start by generating training sets
from small subsets of fluorescence microscopy images from
the Broad Institute Repository (BBBC) [12]. We then assess
the instance segmentation performance on real images from
the NucleusSegData dataset [13]. As a baseline, we com-
pare the performance of the same network trained on the full
BBBC dataset (Full dataset) and on the few annotated im-
ages used for generation (Training real dataset) leveraging
standard augmentations. We adopt as metrics those used in
HoVerNet, i.e., DICE, DICE2, AJI and AJI+.

During the Blob Placement phase, we model Pn as re-
alizations of Perlin noise [14] as its complex 2D structures
resemble a coarse view of the distribution of nuclei in histo-
logical images. We estimate the parameters of Perlin noise
to maximize the similarity with blurred masks from training
data. Then, we perform a preliminary analysis on the distri-
butions of generated GTs to assess how close they are to real
ones. In particular, we consider the distributions of area (A)
and aspect ratio (ar), reporting close results in both the me-
dian (A: 155px vs. 153px, ar: 1.31 vs. 1.41) and in the
Inter-Quartile Range (A: 32px vs. 39px, ar: 0.21 vs. 0.23).

For the image generation phase, we train AdaIN using a
tiled version of real images. Then, for each generated mask
M̃n, we select as reference image the tile having the closest
number of blobs to M̃n. This choice improves the style trans-
fer procedure, since AdaIN generates images having average
value similar to the reference. When the style has too many
blobs, artefacts may appear in the image, and when it has too
few, the nuclei may be fainter than in real images.

Results shown in Table 1 and in Figure 5 indicate that
HoVerNet trained on the full dataset (815 annotated images,
≈ 50 000 blobs) achieves an impressive 0.94 DICE score and
0.81 AJI score. These values need to be considered as an
ideal standard and are displayed with a dashed line in Figure

Table 1: Results on our test set.

J K DICE DICE2 AJI AJI+
Full dataset

815 46016 0.94 0.70 0.81 0.81
Training on real images

2 52 0.42 0.53 0.22 0.22
5 321 0.89 0.58 0.58 0.58

10 952 0.91 0.67 0.70 0.72
Training on our generated images

2 52 0.89 0.48 0.49 0.49
5 321 0.89 0.70 0.73 0.74

10 952 0.92 0.69 0.75 0.76
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Fig. 5: Our results by metric per number of nuclei instances
in the real training set.

5. When trained from a generated dataset starting from only
two real images (52 blobs), HoVerNet achieves 0.89 DICE
score and 0.49 AJI score, compared to 0.42 and 0.22 when
the same architecture is trained only on the same two real
images. When increasing the number of real images this gap
decreases, and the advantages of image generation are lost
starting from 10 real images (≈ 1 000 blobs). Nonetheless,
these results show that our pipeline enables to train models
effectively even in very low data regimes.

5. CONCLUSIONS AND FUTURE WORK

We presented a novel pipeline for generating synthetic and
realistic images, paired with their annotation for training in-
stance segmentation networks. Our approach generates real-
istic blobs by interpolation and enables experts to control the
density and spacing of blob placement in GTs. We demon-
strated that our data generation pipeline helps in training a
NN in low-data regimes.

Our future work consists in assessing the potential of our
method to counteract domain shift with very scarce annota-
tions. We will also explore GANs conditioned on mask ge-
ometric properties to promote diversity in the nuclei shapes.
Additionally, we will analyze how different priors can influ-
ence the placement phase, and employ advanced optimization
techniques capable of accounting for small overlaps as well.
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