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ABSTRACT 

The recent experimental and numerical studies concerning the local bond behavior of Fiber 

Reinforced Polymer (FRP) systems externally applied on curved masonry elements clearly underline 

the role of the geometric curvature on the performance of FRPs. In particular, the interaction between 

shear stresses and tension or compression normal stresses both arising at the FRP/masonry interface 

influences the bond strength and, consequently, the debonding behavior of FRPs. Then, the 

development of reliable numerical models able to predict the bond behavior of FRPs applied on 

curved masonry structures necessarily requires to consider this important feature which, on the 

contrary, is generally neglected in the case of flat substrates.  

Aim of the present paper is to numerically investigate the bond behavior of FRP strengthening 

systems externally applied on curved masonry specimens. In particular, considering the simple 

spring-model approach proposed by the authors in previous research, a new constitutive law derived 

from the work of Thorenfeld et al. (1987) is here proposed by also considering the coupled behavior 

between shear and normal forces at the reinforcement/masonry interface. Numerical analyses are 

developed with reference to case studies deduced from the literature and consisting of shear-lap bond 

tests of curved masonry specimens characterized by different values of the geometric curvature and 

different strengthening configurations. The obtained results show the ability of the proposed modeling 

approach in capturing some effects, such as the beneficial friction effect when compression normal 

stresses develop at the interface level. 
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INTRODUCTION 

The current literature underlines the important role of the debonding phenomenon in the behavior of 

fiber reinforced strengthening systems externally applied to structural supports in the form of strips 

and sheets ([1]-[12]). Experimental investigations, mainly consisting in shear lap bond tests, are 

generally used for understanding the main features of this phenomenon, together with the role of 

different factors such as the type of the strengthening system, the characteristics of the masonry 

material composing the substrate, the modalities of application of the strengthening system, etc.([13]-

[15]). The evidences emerged from these studies are generally considered for the development and 

validation of numerical and theoretical models aimed at reproducing the debonding phenomenon of 

both fiber reinforced polymers (FRP) and fiber reinforced cementitious grout (FRCM) applied to 

structural substrates ([16]-[24]). In particular, according to the experimental evidences, the majority 

of theoretical and numerical models available in the current literature are based on the main 

assumption that, during the debonding process, the damage only affects a thin layer of the material 

placed between the FRP-strengthening and the substrate (denoted interface), whilst the other 

components (substrate and FRP-strengthening) behave in the elastic stage. Moreover, the most 

common interface modeling approaches available in literature are based on the introduction of 

cohesive zones at the interface level by assuming a debonding mechanism which occurs under the 

tangential loading only or largely dominated by this failure mode (mode II). This last assumption, 

which results realistic for FRPs applied on substrates with a flat configuration, where the shear 

behavior is the predominant mechanism, could be not adequate in case of applications on curved 

substrates, where, on the contrary, the coupling between the mode II and the mode I mechanisms 

assumes a relevant role in the debonding process ([25]-[27]). 

In this context, Grande and Milani ([28]) have recently proposed a simple but effective numerical 

model for the study of the bond behavior of FRPs externally applied on curved masonry substrates 

which straightforwardly introduces at the interface level coupled cohesive laws for considering a 

mixed mode de-bonding mechanism. A similar approach was also presented in [29], where taking 



into account the important role of the coupling between shear and normal forces developing at the 

FRP/substrate interface level, the authors also introduced specific constitutive laws able to account 

for the friction effect in the de-bonding phase when compression forces arise at the 

reinforcement/substrate interface. The ability of the proposed approach was assessed by the authors 

by both considering the experimental tests reported in [27] and the numerical analyses developed in 

[30] obtained by using advanced F.E. models. 

In this paper it is presented a numerical study concerning the debonding phenomenon of curved 

masonry specimens strengthened by FRPs. In particular, considering the spring-model presented in 

[28], the authors propose the use of constitutive laws for both the tangential and the normal behavior 

of the FRP/substrate interface derived on the basis of the law proposed in [31]. The main difference 

with respect to the other similar models of literature is the use of a unique constitutive law for the 

shear behavior of the interface which allows to capture the beneficial effect of friction on the bond 

strength when compression forces develop at the FRP/masonry interface. In other words, differently 

for the model presented in [29], the approach here presented does not require to introduce specific 

conditions for the constitutive law of the interface in presence of normal stresses. 

The numerical analyses presented in the paper with reference to case studies derived from the current 

literature show the reliability of the proposed modeling approach. In particular, it is underlined the 

ability of the proposed laws to capture the effect of friction due to normal stresses in compression 

arising at the interface level, without introducing additional conditions in the coupling behavior. 

SPRING-MODEL APPROACH 

Recently, some of the authors of this paper have presented a simple 1D-spring model for the study of 

the debonding behavior of curved masonry specimens strengthened by FRPs ([28], [29]). The model 

consists in a simple schematization by using linear and nonlinear spring elements (Figure 1). In 

particular, springs with a linear-elastic behavior are specifically introduced to model the masonry 

substrate and the FRP-strengthening, which are then assumed behave linear-elastically, whilst two 



types of zero-length nonlinear springs are introduced for the interface layer. Indeed, springs which 

only activate for the tangential component of the relative displacement between the strengthening and 

the substrate nodes (denoted in the following as ‘interface shear spring’) are introduced to account 

for the mode II mechanism; springs which only activate for the component of the relative 

displacement between the strengthening and the substrate nodes orthogonal to the substrate (denoted 

in the following as ‘interface normal spring’), are introduce to account for the mode I mechanism. 

On the basis of this schematization, the element stiffness matrix and then the corresponding global 

one, results dependent on both the tangential and normal relative displacements between the 

strengthening and the substrate. This represents one of the main features of the proposed modeling 

approach since it allows to account for the coupling between the tangential and normal behavior of 

the interface during the debonding process. 

CONSTITUTIVE LAWS AND COUPLED BEHAVIOR 

Different from the schematization proposed in ([28], [29]), where simple bilinear laws together with 

specific conditions based on the sign of normal stresses developing at the interface level (compression 

or tension) were introduced for the schematization of the behavior of the interface springs, the 

approach here proposed is based on the use of a unique constitutive law derived from the one proposed 

in [31]. The introduction of this law allows to directly accounts for the effect of normal stresses at the 

interface level on the tangential behavior without introducing additional conditions in the post peak 

stage ([29]). 

Then, considering the force-displacement T- law proposed in [31]: 
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where Tb is the peak force, 0 is the displacement corresponding to the peak force, n and k are two 

coefficients, the role of these coefficients on the shape of the law is preliminary investigated. In 



particular, it can be observed that, while the coefficient k influences the peak force Tb, the 

corresponding displacement 0 and the slope of the pre and post-peak branch (see Figure 2), the 

coefficient n does not affect neither the peak force Tb nor the corresponding displacement 0, but only 

the slope of the pre and post-peak branch of the curve (see Figure 3). 

On the basis of these evidences, the law proposed in [31] is here assumed for both tangential and 

normal springs composing the spring-model, respectively in terms of Tt-t and Tn-n laws, by 

assuming a unitary value for the coefficient k and a value of the coefficient n calibrated on the fracture 

energy GI, GII related to the mode I and the mode II respectively: 
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where: Tt,b and Tn,b are the peak forces of the constitutive laws of shear and normal springs 

respectively; t,0 and n,0 are the displacements corresponding to the peak force of shear and normal 

springs respectively; nt and nc are the coefficients evaluated on the facture energy of mode I and mode 

II respectively. 

In addition to the accounted constitutive laws, the influence of the forces Tn arising in the interface 

normal springs (forces in compression or tension) on the forces Tt of the corresponding interface shear 

springs, is specifically introduced in the model by considering the Mohr-Coulomb failure domain: 

, tan( )t t b nT T T = −  eqn. 4 

where  is the friction angle characterizing the yield domain. 

Then, considering the accounted spring laws and the structure of the algorithm at the basis of the 

spring-model, the secant stiffness Ksec including the effect of Tt-Tn coupling behavior is derived: 
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where Kt is the secant stiffness corresponding to the attainment of Tt,b: 
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and  is a coefficient which accounts for both the shape of the Tt-t law and the Tt-Tn coupling effect: 

tan( )n n

t n

t t

K

K
  


= − 


 eqn. 7 

where: 

,0

1

t

t

t n

t
t

t

n

n

 =
 

− +    

 eqn. 8 

,0

1

n

n

n n

n
n

n

n

n

 =
 

− +    

 eqn. 9 

,

,0

n b

n

n

T
K =


 eqn. 10 

The coefficient  is introduced in the element stiffness matrix without modifying the structure of the 

problem proposed in [28] and implemented in Matlab[32] throughout an iterative procedure based on 

the classic Newton-Raphson technique by selecting the displacement control approach. 

NUMERICAL APPLICATIONS 

Numerical applications are carried out by using the spring-model proposed in [28] together with the 

constitutive laws and the coupled model here proposed. In particular, case studies derived from the 

literature and consisting of curved masonry specimens strengthened by FRPs are considered. 

CASE STUDIES 

Although numerous practical applications of FRP strengthening systems involve curved masonry 

structures (arches, vaults, domes, etc.), only few studies concerning the local bond behavior of FRP 



applied on curved substrates are now available in the current literature. In the present paper, two sets 

of case studies are considered. 

The first set of specimens (see Figure 4.a-d) refers to the experimental study carried out in [27], where 

single shear-lap bond tests of masonry pillars externally strengthened by FRP strips and characterized 

by different curvature radius and strengthening configurations were developed. In particular, as 

shown in Figure 4, four types of specimen in terms of curvature radius and strengthening 

configuration compose the accounted set: 

- curved masonry specimen characterized by a radius equal to 1500 mm (denoted R150) strengthened 

at the intrados; 

- curved masonry specimen characterized by a radius equal to 1500 mm (denoted R150) strengthened 

at the extrados; 

- curved masonry specimen characterized by a radius equal to 3000 mm (denoted R300) strengthened 

at the intrados; 

- curved masonry specimen characterized by a radius equal to 3000 mm (denoted R300) strengthened 

at the extrados. 

All the masonry specimens were assembled by using five clay bricks with interposed mortar joints 

made of lime and cement as binder which main properties were experimentally derived in [27] and 

here summarized in Table 1. On the other hand, the reinforcement characterizing the specimens was 

made of a 100 mm wide unidirectional carbon fiber textile glued on the masonry prisms by means of 

a thin layer of epoxy resin (see Table 1).  

The single lap shear tests were performed in [27] by pulling the top edge of the carbon fabric left 

unbounded. The specimens were constrained by a steel plate at the upper base and by a steel wedge 

at the lower base. Both the upper plate and the lower wedge were linked by four steel bars to ensure 

the stability of the specimens during the tests. In addition, the steel wedge was equipped with an 

additional steel plate to constrain the specimen toward its rotation. Further details can be found in 

[27]. 



In addition to shear lap tests, pull-off tests on reinforced bricks in compliance with [33] were also 

performed in [27] in order to evaluate the bond strength between the CFRP reinforcement and the 

substrate evaluated by simply dividing the maximum pull-off force by the cross section area of the 

partial core: an average value equal to 1.15 MPa was obtained in [27]. 

The second set of specimens here accounted for the numerical analyses are the curved masonry 

specimens reinforced with GFRP (Figure 4.e,f) employed for an experimental investigation carried 

out at the University of Minho (Portugal), where single shear lap bond tests were performed with the 

main purpose to experimentally investigate the role of the geometry curvature on the debonding 

mechanism [26]. In this case, the specimens were made by using four Portuguese Galveias clay bricks 

jointed by three thick mortar joints constituted by conventional mortar commercially available. 

Specimens characterized by flat external surfaces, exception made for the strengthened surface, which 

has a constant curvature of radius R0=760 mm were obtained (Figure 4). The obtained overall size of 

the samples was about 235x130x90 mm3 with a strengthening system characterized by GFRP strips 

with a bond length equal to 150 mm. Moreover, during the tests, two geometries with the same radius 

of the curvature were considered: one convex and the other concave. The tests were conducted 

through an ad-hoc delamination test setup with experimental tests conducted under displacement 

control (0.1 mm/min prescribed 7stroke speed). In addition, the specimens were instrumented with 

LVDTs applied directly on the fiber. During the tests, the imposed incremental displacement was 

applied at the free end of the strip considering an unbonded length equal to 110 mm. The main 

characteristics of masonry and strengthening materials are summarized in Table 1. 

PARAMETERS SETTING 

Regarding the parameters characterizing the numerical models, they are summarized in Table 2. In 

particular, the following parameters setting procedure has been considered in the present paper: 

- the peak forces Tt,b and Tn,b of the shear and normal springs have been obtained by directly 

considering the values of the bond strength 0 and tensile strength ft used in [28] and [30]: they have 



been multiplied by the corresponding cross section area of the shear and normal spring for obtaining 

Tt,b and Tn,b respectively; 

- the displacements at the peak t,0 and n,0 of the Tt-t and Tn-n laws have been assumed equal to 

the corresponding displacements t,0 and n,0 of the bi-linear laws used in [28] and [30];  

- an ultimate value of the displacement of shear springs t,f equal to the displacement corresponding 

to the end of the descending branch characterizing the bi-linear laws used in [28] and [30], has been 

considered in order to identifying the beginning of the detachment phenomenon of the reinforcement;  

- the parameters nt and nc have been obtained by considering the fracture energy values characterizing 

the bi-linear laws used in [28] and [30]. 

The comparison between the bi-linear law and the corresponding Thorenfeldt’s law for the shear 

behavior of the interface is presented in Figure 5 for the two accounted series of specimens. From the 

plots it is important to observe that, differently from bilinear laws (dotted lines), where a null residual 

strength is commonly assumed due to a sudden release of energy, the proposed laws are characterized 

by a residual post-peak strength. This feature of the proposed law is strictly related to the parameters 

setting procedure where the same fracture energy is imposed in order to guarantee the same level of 

energy dissipation. Moreover, although the residual bond strength, which in the case of flat substrates 

is mainly due to the interlocking phenomenon inside the masonry composing the interface, is 

generally neglected, it can have a relevant role in case of curved substrates because of the activation 

of the friction due to the presence of compression normal stresses. 

RESULTS 

The results obtained from the numerical analyses are reported in Figure 6 in terms of force-

displacement curves. In each plot of the figure are compared the curves obtained from the 

experimental tests (thin black lines) and those deduced from the numerical analyses (thick red lines). 

Form the figure it is possible to observe that the numerical force-displacement curves of both the sets 

of the accounted specimens show a good fitting performance of the global response of specimens. 



Indeed, it is evident the ability of the proposed model to capture the influence of both the curvature 

of the masonry substrate (first set of specimens) and the configuration of the strengthening (first and 

second set of specimens) on the bond behavior of specimens. Indeed, as expected, greater values of 

the peak load emerge in the case of strengthening applied at the extrados respect to the application at 

the intrados, and this effect is influenced by the radius of curvature.  

Moreover, in the case of the first set of specimens it is particular evident that the post-peak behavior 

of specimens strengthened at the extrados is characterized by a more remarkable hardening effect 

respect to the ones strengthened at the intrados (effect emerged from experimental tests and also from 

the numerical analyses). As observed in [28] and [29], this effect is mainly due to the value of the 

residual bond strength which depends on the friction phenomenon activated by compression normal 

stresses developing at the FRP/substrate interface. Indeed, in [29] the authors specifically introduced 

a three-linear law where the last horizontal branch simulates this effect. In this paper, the use of the 

Thorenfeldt’s law, together with the Mohr-Coulomb coupled model, automatically allows to account 

for this effect without introducing in the model additional instructions about the evolution of the post-

peak branch of shear stress-slip constitutive law. 

Nevertheless, although the above considerations have a general validity, it is important to observe 

that the global bond behavior of specimens is particularly influenced by both their configuration and, 

also, by the characteristics of the substrate and strengthening materials. Indeed, the second set of 

specimens (i.e. the ones accounted in [26]), characterized by a greater radius with respect to the first 

set, but by a lower bond length of strips, showed a global response characterized by a suddenly 

strength decrease in both convex and concave specimens (behavior also underlined by the numerical 

analyses). 

Indeed, using the proposed model, it is possible to observe that in the case of the convex specimen of 

the second set (Figure 4.e), the attainment of the peak load corresponds to a condition where the 

majority of the interface shear springs are in the post-peak stage with a tangential displacement 



,0 ,t t t f      (Figure 7). This is mainly due to the reduced value of the bond length which leads to a 

rapid degradation of the bond force.  

Finally, the comparison between the experimental and numerical curves shows displacement values 

corresponding to the attainment of the peak load of the numerical curves lower than the one 

corresponding to the experimental curves. This outcome is probably due to the simplifications of the 

proposed model which does not consider the presence of mortar joints, their possible damage and, in 

particular, does not account for three-dimensional effects which generally contribute to mitigate stress 

concentrations at the FRP/substrate interface [34]. 

CONCLUSIONS 

Although several applications of FRPs just involve curved structures (arches, vaults, domes, etc.), the 

debonding phenomenon of FRPs applied on curved masonry substrates is a topic still scarcely 

investigated. The few experimental and theoretical studies available in the recent literature underline 

differences with respect to the debonding occurring in case of FRPs applied on flat substrates and, at 

the same time, the common theoretical/numerical models are in some case not adequate because of 

assumptions only valid in the case of flat substrates.  

The study presented in this paper is in the continuation of a research activity aimed at developing 

simple models based on the interface concept for the study of the debonding phenomenon of curved 

masonry specimens strengthened with FRPs. Here, in particular, the attention is focused on the use 

of constitutive laws opportunely derived from studies available in literature, able to capture specific 

features, such as the beneficial friction effect due to compression normal stresses arising at the 

interface level. 

The numerical analyses presented in the paper have been developed by combining the proposed laws 

with the spring-model proposed in [28] and considering some case studies selected from literature. 

Before presenting the obtained results, it has been outlined the phase of parameters setting. In 

particular, it has been underlined that the parameters characterizing the proposed law correspond to 



the outcomes generally obtained from common shear lap tests of specimens with flat surfaces used 

for deriving the peak shear force Tt,b and the fracture energy of the mode II, and pullout tests for 

evaluating the normal strength used for deriving the the peak normal force Tn,b and the fracture energy 

of the mode I. This allows a practical use of the proposed law. 

The obtained results, mainly presented in terms of global response of specimens, have emphasized 

the ability of the proposed approach to predict the debonding phenomenon of curved masonry 

specimens strengthened by FRPs. In particular, the model is able to capture effects strictly related to 

the geometry of specimens (curvature radius) and also to the strengthening configuration (FRP 

applied at the intrados or extrados). In particular, the effect of normal stresses arising at the interface 

level is well captured in the post-peak stage of the global response. 

These results are in agreement with the ones reported in [29]: they indeed underline the role of the 

coupling behavior between shear and normal stresses, and the effect of compressive stresses 

developing at the FRP/masonry interface in increasing the bond strength and the global bond 

resistance of specimens. On the other hand, differently from [29], where an horizontal post-peak 

branch of the force-displacement curves is observed in the specimens when normal stresses in tension 

arise at the FRP/masonry interface (this outcome is strictly related to the assumption of a null value 

of the residual shear strength), the accounted residual strength of the law proposed in this paper, 

which of course decreases in the presence of normal forces in tension, leads to a global response 

characterized by a sloping post-peak branch with a lower slope with respect to the case of normal 

stresses in compression. 
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Table 1. Characteristics of materials composing the specimens accounted for the numerical analyses. 

(Rotunno et al., 2018) 

bricks 

average compressive strength fbc [MPa] 20.1 

average tensile strength fbt[MPa] 2.5 

average Young’s modulus Eb [MPa] 8712 

mortar 
average compressive strength fmc [MPa] 20.1 

average tensile strength (bending) fmt [MPa] 2.5 

strengthening 

nominal thickness tf [mm] 0.165 

tensile elastic modulus Ef[MPa] 250000 

ultimate tensile strain f [%] 1.3 

characteristic tensile strength fft [MPa] 3200 

(Basilio, 2017) 

bricks 
average compressive strength fbc [MPa] 8.2 

average Young’s modulus Eb [MPa] 3280 

mortar 
average compressive strength fmc [MPa] 7.3 

average tensile strength (bending) fmt [MPa] 1800 

strengthening 

nominal thickness tf[mm] 0.149 

tensile elastic modulus Ef[MPa] 65000 

ultimate tensile strain f [%] 4.3 

characteristic tensile strength fft[MPa] 3000 

 

  



 

Table 2. Parameters characterizing the interface springs. 

parameters used for the specimens of Rotunno et al. (2018) – [ref. Bertolesi et al., 2018] 

interface shear behavior 

bond shear strength 0 [MPa] 1.1915 

fracture energy ft [N/mm] 0.2383 

coefficient of the Thorenfeldt’s law nt 1.4 

slip at the end of the ascending branch t,0 [mm] 0.011 

slip at the end of the descending branch t,f [mm] 0.4 

interfacenormalbehaviour tensile strength ft [N/mm2] 1.15 

coefficient of the Thorenfeldt’s law nc 2.4 

slip at the end of the ascending branch n,0 [mm] 0.0015 

slip at the end of the ascending branch n,f [mm] 0.015 

parameters used for the specimens of Basilio (2017) – [ref. Grande and Milani, 2016] 

interfaceshearbehavior 

bond shear strength 0 [MPa] 1.23 

fracture energy ft [N/mm] 1.52 

coefficient of the Thorenfeldt’s law nt 1.28 

slip at the end of the ascending branch t,0 [mm] 0.030 

slip at the end of the descending branch t,f [mm] 2.48 

interfacenormalbehaviour tensile strength ft [N/mm2] 0.87 

coefficient of the Thorenfeldt’s law nc 2.4 

slip at the end of the ascending branch n,0 [mm] 0.0078 

slip at the end of the ascending branch n,f [mm] 0.042 

 

  



 

 

Figure 1. Schematization of the spring model. 
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Figure 2. Influence of the coefficient k on the law proposed by Thorenfeldt et al. (1987). Accounted parameters: Tb=1 

N; 0=1mm; n=1.5. 

  

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

dispacement  [mm]

fo
rc

e
 T

 [
N

]

 

 

k=1

k=1.5

k=2



 

 

Figure 3. Influence of the coefficient n on the law proposed by Thorenfeldt et al. (1987). Accounted parameters: Tb=1 

N; 0=1mm; k=1. 
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                                          a)                                                    b) 

 

                                          c)                                                    d) 

 

                                     e)                                                 f) 

Figure 4. Specimen configurations used for numerical analyses: a) INTRADOS-R150 [Rotunno et al., 2018]; b) 

EXTRADOS-R150 [Rotunno et al., 2018]; c) INTRADOS-R300 [Rotunno et al., 2018]; d) EXTRADOS-R300 

[Rotunno et al., 2018]; e) convex case [Basilio, 2007]; f) concave case [Basilio, 2007]. 
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Figure 5. Bi-linear law (doted line) and Thorenfeldt’s law (red line) accounted for the shear behavior of interfaces of (a) 

the specimens derived from Rotunno et al., 2018 and (b) the specimens derived from Basilio, 2007. 
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Figure 6. Results in terms of Force-displacement curves: comparison between experimental (thin black lines) and 

numerical results (thick red lines).  
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INTRADOS - R150 [Rotunno et al., 2018]
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Figure 7. Shear stresses at the interface at the peak load (line with circular symbols) and shear stress 

level corresponding to the attainment of the ultimate displacement tf of shear springs (dotted line). 
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