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Abstract. One of the main DevOps practices is the automation of
resource provisioning and deployment of complex software. This automa-
tion is enabled by the explicit definition of Infrastructure-as-Code (IaC),
i.e., a set of scripts, often written in different modelling languages, which
defines the infrastructure and applications to be deployed.

We introduce the DevOps Modelling Language (DOML), a new Cloud
modelling language for infrastructure deployments. DOML is a modelling
approach that can be mapped into multiple IaC languages, addressing
infrastructure provisioning, application deployment and configuration at
once. The idea behind DOML is to use a single modelling paradigm which
can help to reduce the need of deep technical expertise in using different
specialised IaC languages.

We present the DOML’s principles and discuss the related work on
IaC languages. We demonstrate the DOML advantages for the end-user
in comparison with state-of-the-art IaC languages such as Ansible, Ter-
raform, and Cloudify, and show its effectiveness through an example.

Keywords: Infrastructure-as-Code · DevOps · IaC Modelling
languages · Multi-layer approach · Evaluation

1 Introduction

Employing Infrastructure-as-Code (IaC) means creating and managing an IT
infrastructure, typically composed of computational resources and multiple soft-
ware layers, by defining and executing code written in some special-purpose
programming languages [20].

Defining a whole IT infrastructure deployment through IaC introduces sev-
eral advantages in terms of repeatability of actions, reusability, and speed. How-
ever, it requires deep knowledge of multiple IaC languages and frameworks, since
each specific framework is covering a specific aspect of the whole problem [5].
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This causes a steep learning curve for non-technical users and even for expert
practitioners migrating from other technologies. Moreover, the selection of a
specific set of IaCs, given the peculiarities of each individual language, tends to
foster vendor lock-in.

In this paper, we propose a low-code approach to IaC, which makes the
creation of infrastructural code more accessible to the designers, developers and
operators. We present the DevOps Modelling Language (DOML), which hides
the specificity and technicalities of the current IaC solutions.

The DOML allows for a complete specification of a deployment from its
applications and software services to the infrastructural components and services
supporting them. DOML models are mainly structured in three layers. Specif-
ically, software components (e.g., web servers, databases, etc.) are described in
the application layer, abstracting away from the infrastructure on which they
are supposed to run. Infrastructure components are specified in the abstract
infrastructure layer, and then linked to the applications they are supposed to
host. This layer models infrastructural facilities, such as virtual machines, net-
works, containers, etc., without referring to their actual concretization in specific
technologies (e.g., AWS or OpenStack VMs, Docker containers). This aspect is
tackled by the concrete infrastructure layer, where the user specifies the infras-
tructure components offered by the Cloud Service Provider (CSP).

This modelling approach comes out from a careful analysis of related works
concerning IaC languages, as well as other Cloud modelling approaches [5] and
a critical review of the requirements for the DOML, provided by practitioners
from several companies (HP Enterprise, Ericsson and Prodevelop).

Following the idea of generating code from an abstract model that is at the
heart of Model Driven Development (MDD) [24], DOML models are turned
into actual deployments by the Infrastructural Code Generator (ICG), which
produces IaCs executable in the existing and well-supported frameworks. Our
first target IaCs are Terraform and Ansible. Nevertheless, the same ICG could
be extended to generate other IaC languages to target more applications and
CSPs.

In this paper, we present the DOML language and its advantages, and show
its effectiveness through case studies. We evaluate our approach by comparing
its usage with the direct use of IaC languages such as Terraform and Cloudify.
We show that the DOML is complete enough to model a whole deployment by
itself, while the other approaches require the simultaneous use of more than one
IaC language. Moreover, we show that DOML is generally more concise than
the competing approaches.

Paper Structure. In Sect. 2 we review some state-of-the-art IaC approaches, high-
lighting the motivation behind ours. Section 3 presents a simple case study that
will be used as running example. Section 4 outlines the principles behind the
DOML, while Sect. 5 defines its modeling abstractions; Sect. 6 presents the IaC
generation mechanism. Section 7 compares the DOML with state-of-the-art IaC
approaches, and Sect. 8 discusses this evaluation. Finally, Sect. 9 concludes the
paper.
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2 Related Work

Choosing the right approach for automating the provisioning of computational
resources and deployment of application components is not an easy task. In fact,
each of the available IaC frameworks covers different parts of the whole problem.
As a result, multiple frameworks must be combined, resulting in the need for
the DevOps teams to understand all such frameworks. IaC frameworks can be
divided into the following four categories.

– Deployment and configuration management frameworks focus on automating
the installation, setup and life cycle of software applications deployed on top
of an existing infrastructure. Examples of such tools are Chef [8], Puppet [22]
and Ansible [23]. While they have similar purposes, they are quite different
from each other in terms of the defined IaC language and of the corresponding
execution semantics.

– Infrastructure provisioning frameworks focus on describing the infrastructural
topology, defining the virtual or physical infrastructural elements and their
configurations, and providing automated means of managing their life cycles.
For example, Terraform [16] is a proprietary language with an associated
executor. It allows users to define an infrastructure configuration; it keeps
track of the actual configuration of the managed infrastructure and, when
needed, aligns it with the defined configuration. TOSCA [21], instead, is an
OASIS standard modelling language that aims at allowing users to specify
any type of IT system through powerful abstraction mechanisms, consisting
of abstract node templates that can be combined through inheritance. The
TOSCA language is adopted by a variety of executors that define its opera-
tional semantics in different ways [5,10].

– Virtualization/Containerization tools provide automation in building and
managing VM or container images. An example of such tools is Docker [11]
that has become the de-facto standard for running container-based applica-
tions on-premises, in public and private cloud providers [18]. Docker solves
issues related to application portability, as containerised applications carry on
their dependencies. It lets users define the recipe to build a container image
using a custom, domain-specific language.

– Runtime Orchestration tools automate the whole life cycle of container-based
deployments, including scaling and other management operations. An impor-
tant representative of this category is Kubernetes [9], which also provides its
own IaC language.

In general, managing a complex application, multiple of the mentioned frame-
works must be used. For instance, the infrastructure to be provisioned (VMs,
network elements, firewalls, etc.) could be modeled and then created with Ter-
raform or TOSCA plus its executors. Ansible (or Chef/Puppet) playbooks could
be executed to deploy and configure applications on top of the created infrastruc-
ture. Given that most of the application components rely on external preexisting
software layers, it is typically advisable to embed all needed elements within some
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containers. This calls for the usage of Docker or of a similar approach. Finally,
if the user wants to have a dynamic management of the application at runtime,
an orchestration framework will have to be adopted.

This scenario clearly requires the experienced users who are proficient with
multiple IaC languages and tools, and that are able to take advantage of the
ample and scattered offers. An initial approach that aims at reducing the learning
curve in adopting any DevOps-relevant platform is presented in [10]. The basic
idea is to model DevOps processes, platforms and languages and to exploit these
models within the context of low-code environments to let non-experienced users
to exploit the defined platforms and languages. Other approaches exploit model-
driven engineering in the specific context of IaC development. For example,
DICER [4] is focusing on deployment and operation of big data applications.
It consists of a UML-based Domain-Specific Language (DSL) and a generator
to derive TOSCA code from it. The limit of this approach is that it assumes
the existence of additional low level scripts (in Chef or Ansible) taking care
of the configuration of applications. Such scripts work underneath and are not
exposed to nor modifiable by the DevOps team through the DICER modelling
framework. SODALITE [25] is another framework based on TOSCA. Its aim is
to offer the support and guidance in the creation of TOSCA blueprints through
the usage of its defined DSL. Additionally, it supports the creation of Ansible
scripts for deployment and configuration, and exploits semantics reasoning to
help the users in the modelling task. Despite this, the SODALITE approach still
requires users to be proficient in both Ansible and TOSCA.

A more sophisticated approach is EDMM [30], an Essential Deployment
MetaModel. It defines the main concepts that are common to multiple deploy-
ment and configuration management frameworks and allows users to exploit
such concepts to define application models. Then, through some transformators,
EDMM supports the generation of codes in various IaC languages.

In the DOML approach proposed in this paper, we follow the EDMM idea of
targeting multiple IaC languages, but we try to extend the scope of the approach
beyond deployment and configuration. In particular, at the moment, we are also
able to handle infrastructure provisioning, and we plan to support both con-
tainerization and runtime orchestration in the next releases of the approach. We
offer a single modelling language and a smart IaC generation approach allowing
inexperienced DevOps teams to manage all aspects of deployment and opera-
tion on different types of infrastructures. So, from the same model we are able
to produce IaC code in multiple pre-existing languages.

3 Running Example

To illustrate our approach, we use a simple deployment as a case study. It consists
of a website hosted by an instance of the NGINX web server [15] deployed on a
VM. A more sophisticated example involving more components will be demon-
strated in Sect. 7. This example, though, is representative of typical deployments,
because it contains some of the most common components (see Fig. 1 for a com-
ponent diagram representation). The NGINX server instance is the execution
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Fig. 1. Component diagram of the NGINX case study.

environment for the website and runs on a VM with a GNU/ Linux-based oper-
ating system (Ubuntu 20.04). To ensure the website scalability with respect to
the number of connected users, multiple instances of the VM are spawned and
managed by an auto-scaling group. The network interface that links the VMs
to the Internet is managed by a security group, containing the security rules
that enable HTTP, HTTPS and ICMP network traffic. The standard SSH port
is enabled, enabling the direct access to the VMs, protected by an RSA key pair
for authentication.

An infrastructure like this can be implemented by relying either on a private
cloud or on public cloud providers, such as Amazon Web Services, Google Cloud
Platform, Microsoft Azure, etc. Initially, in our case study we choose to deploy
the application on OpenStack [26], which is an open source industry standard.
Further on, in Sect. 7 we show how we can change the underlying provider.

4 DOML Design Principles

In this section, we present the principles underneath the definition of DOML.

4.1 A Single Model for Multiple IaC Fragments

The DOML is defined to support the creation of models resulting in IaC codes
written in different languages and dedicated to different operations. For instance,
let us consider the system outlined in Fig. 1. The following steps must be per-
formed to deploy the modeled system:

1. A VM with the correct OS must be retrieved if preexisting, or created;
2. The VM must be set up for access through SSH;
3. The NGINX server with the website sources must be installed on the VM;
4. The autoscaling group must be set up with the VM image;
5. The network must be configured with the required security rules;
6. The deployment process must be planned and executed.

To execute the above listed steps adopting the current technologies, we would
need some Ansible playbooks or other scripts executing steps 2 and 3, together
with a Terraform or TOSCA blueprint to orchestrate all other steps. Such scripts
have their inherent complexities, and they are all written in different languages
featuring different programming models. With the DOML approach, we aim to
derive such scripts from a high-level model, and to reduce the need for the end
users to work with the low-level target languages as much as possible.
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Fig. 2. The NGINX case study represented as different DOML layers.

4.2 Multiple Modeling Layers

Another objective we target is to support separate modeling of the application-
level components from their execution environments (e.g., containers, VMs, etc.).
In fact, we argue that different users, with different skills and roles, should focus
on the specific aspects that fall within their expertise. Typically, the application
designer will focus on the application structure definition in terms of software
components and their connections, while an operations expert will oversee the
allocation of software components within proper computing nodes.

Furthermore, multiple providers and technologies offering the same IaaS
(Infrastructure-as-a-Service) and in some cases, compatible PaaS (Platform-as-a-
Service) solutions are available. Thus, we want to offer the possibility to provide
an abstract definition of the infrastructure to be used to run an application,
and then to define different concretisations, so as to support deployment and
execution of applications into multiple contexts.

Referring to the example of Fig. 1, Fig. 2 shows a distribution of components
into three layers: one describes the application, and the remaining two layers
describe the infrastructure at different levels. In particular, the same abstract
infrastructure can be implemented by two different concrete infrastructures,
respectively based on OpenStack and AWS.
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5 DOML Language

The DOML language implementation consists of two parts: the DOML meta-
model, described using Ecore from the Eclipse Modeling Framework (EMF) [13],
and the textual syntax used to create models, based on Xtext [14].

We organize all modeled entities in the following layers, which aggregate the
modeling abstractions in coherent groups:

– Application Layer (AL): concepts required to define an application, e.g., soft-
ware components, interfaces, connectors between components, services, and
specific subcategories thereof.

– Abstract Infrastructure Layer (AIL): concepts associated to the definition
of the infrastructure (e.g., computing nodes) without referencing a specific
provider.

– Concrete Infrastructure Layer (CIL): concepts associated to the definition of
infrastructure elements within a specific provider, e.g., a Docker container or
an Amazon VM.

In Sect. 5.1, we describe the components that can be defined in each layer.
We do not include the complete definition of DOML concepts, which is available
in [29,31], due to page limits, but we illustrate it in Sect. 5.2 through an example.

5.1 Components of DOML Layers

A DOMLModel is composed of an AL, an AIL, one or more CILs, and a Con-
figuration. A Configuration is a list of one or more Deployments that consist of
the associations between ApplicationComponents (from the AL) and Infrastruc-
tureElements (from the AIL) on which they are deployed. Only one Deployment
can be active at a time. All other components derive from a base DOMLElement
class, which gives them the ability to have custom Properties encoding some of
their features.

Application Layer (AL). The ApplicationLayer is composed of many Appli-
cationComponents, which can be SoftwareComponents, SoftwareInterfaces, or
SaaS (Software-as-a-Service) components. A SaaS can be, e.g., a SaaSDBMS
if it implements a database. ApplicationComponents may expose or consume
different SoftwareInterfaces, providing or requiring services from other Appli-
cationComponents. For instance, a database SoftwareComponent can expose a
SQL-based interface, and a web application component can consume it, meaning
that the latter will communicate with the former to retrieve and write data.

Abstract Infrastructure Layer (AIL). The InfrastructureLayer is composed of
ComputingNodes, Networks, SceurityGroups, and AutoScalingGroups. A Com-
putingNode models any infrastructure element that can run software: it can be
a Container, a Physical ComputingNode or a VirtualMachine. ComputingNodes
can have multiple NetworkInterfaces that link them to a network. A Container
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can be generated from a ContainerImage, and a VirtualMachine from a VMIm-
age. A Network can have many Subnets, and its configuration is represented by
a SecurityGroup containing firewall rules.

Concrete Infrastructure Layer (CIL). This layer provides the concretizations for
the AIL, mapping the abstract infrastructure elements to the concrete ones from
the supported cloud service providers. In general, each element of the AIL has
a corresponding “concrete” version. The CIL contains one or more Runtime-
Providers, e.g., Amazon AWS, OpenStack, etc. Each RuntimeProvider contains
the concrete elements which are linked to the AIL elements via the maps asso-
ciation. For instance, an OpenStack provider could provide VirtualMachines,
Networks, Containers, etc.

5.2 DOML Model of the Running Example

To illustrate the syntax of the DOML, we show and comment the DOML model
of the case study of Sect. 3. The entire model can be found in [28].

Application Layer. In Listing 1.1 we show the AL of the DOML model for
the deployment of Fig. 1. It only contains a SoftwareComponent for the NGINX
server, with a Property indicating the website’s sources.

Listing 1.1. DOML Application Layer
application app {

software_component nginx {
properties { source_code="/.../ html/index.html"; }

}
}

Abstract Infrastructure Layer. The AIL is partially shown in Listing 1.2.
It defines the infrastructure topology that supports the execution of application
components. We define the VM that hosts the NGINX instance in the autoscaling
group that manages it. We declare its guest operating system, its credentials, and
its network interface, which is linked to a network called net1 and controlled
by a security group called sg (we do not show all components here for space
constraints, but they are defined in this layer too [28]).

The deployment configuration, at the bottom of Listing 1.2, provides the link
between the AL and AIL: it assigns the NGINX instance to the VM.

Concrete Infrastructure Layer. The last step needed to make this DOML
model functional is to assign all components in the AIL to a cloud service
provider. This is done by defining one or more CILs (only one of which will
be active at a time). To simplify the presentation, in Listing 1.3 we show only
one of such layers, and only for the VM.
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Listing 1.2. Autoscaling group in the
AIL, and deployment configuration.
infrastructure infra {

...
autoscale_group ag {

vm vm1 {
os "ubuntu -20.04.3"
iface i1 {

address "10.0.0.1"
belongs_to net1
security sg

}
credentials ssh_key

}
}

}
deployment config {

nginx -> vm1
}

Listing 1.3. Part of the concrete infras-
tructure layer.
concretizations {

concrete_infrastructure con_infra {
provider openstack {

vm concrete_vm {
properties {

vm_name = "nginx -host";
vm_flavor = "small";
vm_key_name = "user1";

}
maps vm1

}
...

}
}
...
active con_infra

}

We create a concrete infrastructure configuration called con infra. We could
assign different components of the AIL to different providers. For the sake of
space, in this section we use only OpenStack. Thus, we create a block for the
OpenStack provider containing a component for each of the abstract infrastruc-
ture elements. In Listing 1.3 we show the VM concretization. Its maps attribute
links it to the appropriate VM component in the AIL. Moreover, in the CIL
we can customize aspects that cannot be described in the AIL because they are
provider-specific. Here we choose the name and size of the VM.

The information in this model is enough for the ICG to produce IaC scripts
that can create VMs on OpenStack, the autoscaling group and all other required
features and installs NGINX on top of such infrastructure.

6 IaC Generation Mechanism

To generate executable IaC code from DOML, we have built a tool named Infras-
tructural Code Generator (ICG). The ICG receives a DOML model as input and
generates IaC code like Terraform, Ansible, etc., as output.

The generation of code from an abstract model is one of the main advantages
of MDD [24], but the benefit is real when the generated code is complete and
executable, i.e., not just a skeleton or something that needs manual editing. Gen-
erating code from a model can be done using Template-Based Code Generation
(TBCG), a technique that transforms input data into structured text by using
templates [7]. The process is simple: our template engine uses templates that
contain code in the target language and substitutes values taken from the input
for placeholders. Each template has a static part, that is transferred as-is in the
output, and a dynamic part whose result depends on the input. Most template
engines support control structures in the dynamic part of their templates, which
allows part of the transformation logic to be embedded in the template itself.

Template engines can be classified according to the input they rely on: accord-
ing to Luhunu [17], there are model-based engines, such as Acceleo [12], that are
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Fig. 3. Infrastructural Code Generator Architecture.

based on an input metamodel, and code-based tools, such as Velocity [3], which
rely on a DSL to express the dynamic part of their templates. In our case, the
structured text generated is the IaC in languages that can be executed by the
most used IaC tools, e.g., Terraform and Ansible. The ICG is based on the
DOML metamodel but uses the code-based Jinjia2 library [27]. Jinjia2 is a sim-
ple but powerful template engine that supports plain placeholder substitution,
and also several control structures, such as loops, conditionals and functions, to
build dynamic templates (see Listing 1.4).

We implemented the ICG in Python. Its internal architecture, represented in
Fig. 3, is inspired by the classic structure of a compiler (see e.g. [1]) and consists
of separate modules for parsing the input and for generating the output, with an
Intermediate Representation (IR) in between. The parser reads the DOML model
using the PyEcore library [19] and generates an IR as a JSON document. Then,
different Code Generator plug-ins, one for each language to be generated, read
the input data from the IR and substitute values in the templates. The whole
flow is driven by the Controller, that selects the right templates and activates the
corresponding plug-in, depending on the information included in the IR itself.

The IR created by the Parser is structured as a sequence of steps, representing
the main code blocks to be generated. Each step includes general information,
such as the target language, the target cloud provider, the type of DOML object
for which code should be generated, and attributes specific to the target DOML
object, in the form of key/value pairs, to be substituted in the template for the
corresponding placeholder.

The Controller selects the template to be used depending on the information
indicated above (target language, cloud provider, and type of DOML object),
and then activates the Code Generator plug-in specific to the desired target
language. Template selection and plug-in activation are repeated for each one of
the steps in the IR. Thus, the ICG starts creating IaC code for the elements in
the CIL and navigates up in the model to find other resources for which there
is enough information for generating the related code.

When generating code for the example of Fig. 1, the ICG first learns from
the CIL of Listing 1.3 that the VM should be deployed on OpenStack. Thus, it
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Listing 1.4. ICG template for OpenStack VMs.
resource "openstack_compute_instance_v2" "{{�infra_element_name�}}" {

name = "{{�name�}}"
image_name = "{{�os�}}"
flavor_name = "{{�vm_flavor�}}"
key_pair = openstack_compute_keypair_v2 .{{ credentials }}. name
network { ... }

}

selects the template shown in Listing 1.4, and populates the fields it finds in the
CIL (e.g., name with the value of vm_name, etc.). The remaining fields (network and
key-pair) are populated by looking at the AIL.

The generated IaC code is intended to create an infrastructure in the selected
provider or to configure it in some way, in short to modify the target environment.
Our aim is to create a stateless code generator, i.e., one that does not take into
consideration the current status of the target environment. This works well when
the target language is declarative, such as Terraform, but it is not the case when
generating code for an imperative language. In this last case, the target code (its
template actually) should be idempotent, i.e., such that the status of the target
system does not change even if the code is run multiple times.

The current version of the ICG can generate both Terraform and Ansible
code, depending on the specific activity that is intended to be performed. We
use Terraform for provisioning and Ansible for configuration. The aim is to have
a code generator that can be configured to produce code also for other IaC tools,
and can be extended also to support new model abstractions: this is partially
true for the current version, and will be one of the main targets for the future
versions.

7 Evaluation

We evaluate the DOML against other state-of-the-art IaC approaches to demon-
strate its capabilities and shortcomings. We provide a discussion of the evaluation
in Sect. 8. We identify the following two research questions (RQs):

– RQ1: Can a DOML model represent the information required to generate
executable IaC tackling both provisioning and configuration? Is a DOML
model more readable and easier to use than the state-of-the-art approaches?

– RQ2: Is a DOML model able to target multiple execution platforms?

We answer these questions by comparing different representations of system
larger than the NGINX example and taken from previous literature. The example
has been introduced in [6] and is described in the component diagram of Fig. 4.
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Fig. 4. Component diagram of the Wordpress application deployment from [6].

The application to be deployed is the Wordpress content management system,
which runs on a VM. Wordpress depends on a database hosted on a separate
VM. The two VMs communicate with each other as well as with the Internet
through a common network.

7.1 RQ1: Ability to Generate Executable IaC and Comparison

We answer RQ1 by writing a DOML specification of the Wordpress deployment
from Fig. 4 targeting OpenStack as the CSP and successfully running the corre-
sponding IaC code generated by the ICG.

Next, we compare the DOML specification with two equivalent specifica-
tions in state-of-the-art languages: the Terraform and Cloudify implementations
written by the authors of [6].

DOML. We do not show the whole DOML model for the Wordpress deploy-
ment due to the page limits, but it is available in [28]. Similarly to the NGINX
example, this DOML model closely resembles the diagram of Fig. 4. The model
is small enough to be represented in a single file, and its subdivision into com-
ponents is very natural: roughly, two components in the application layer for
the Wordpress and database, two corresponding VMs and one network in the
abstract infrastructure layer, etc.

An advantage brought by the DOML is that the ICG is capable of automat-
ically generating certain common components from its templates, so that they
need to be specified in the DOML only if a non-default configuration is required.
One of such components is the Security Group: in this Wordpress case study,
the ICG creates it automatically thanks to the information included in the AL,
so it is not necessary to include it in the DOML model. In fact, the Wordpress
component has to be exposed to the Internet by default, and the AL states that
it needs to be able to communicate with the database: the security group is
created accordingly.

Terraform [6]. The Terraform definition of the deployment is centered around
the provisioning of VMs. First, the provider is set, in this case AWS. This enables
the use of AWS-specific components, such as aws instance to define the VMs.
The VMs are defined in this way, with their features set as properties (e.g.,
size, image to be run, etc.); the network to which VMs are attached is defined
similarly. The applications (Wordpress and the database) need to be deployed
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Table 1. Metrics on the IaC in Sect. 7.1.

Approach #LOC # Files # Languages Available at

DOML 103 1 1 [28]

Terraform + Shell 305 3 2 [6]

Cloudify + Ansible 506 9 2 [6]

to their respective VMs. Terraform does not support application deployment
directly, but a configuration language—Bash scripts in this case—is needed. The
two bash scripts, one for Wordpress and one for the database, are stored as tem-
plates, that are instantiated, sent to the VMs through SSH, and automatically
executed during deployment.

Cloudify [6]. The Cloudify definition of the deployment starts by importing
plugins related to the targeted cloud platform. These allow to use provider-
specific node types to define the VMs and the networks. Again, the Ansible
configuration language is needed to deploy applications to the VMs.

In Table 1 we provide a summary of the objective metrics we have collected.

7.2 RQ2: Targeting Multiple Execution Platforms

DOML supports multi-platform deployment and operation. We show this by
modifying the OpenStack-based Wordpress DOML model to incorporate a new
deployment on AWS EC2 [2].

The differences in modelling the deployment on AWS EC2 only occur in
the CIL and concern the definitions of the VM and the network. In the CIL,
the VM image name is specified by the Amazon Machine Images (AMI) format,
e.g., name ="ami-xxx", which provides the information required to launch a VM
instance. In the VM block, we specify other vendor-specific settings, such as the
location information (e.g., region = "eu-central-1") and the instance type.
These parameters are optional, and the ICG chooses default values if they are
not specified. Another issue caused by switching to AWS concerns the network.
Amazon provides Virtual Private Cloud (VPC) for controlling the virtual net-
working environment, which requires defining a subnet into any network. If no
subnet has been defined in the AIL, the ICG creates a default one. This way, a
user not familiar with AWS requirements can still create a working deployment.

Listing 1.5 shows the new CIL, while everything else is unchanged. Providers
can be switched by just changing the active one.
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Listing 1.5. VM definition in the concrete
infrastructure layer.
concrete_infrastructure

↪→ con_aws_infra {
provider aws {

properties { }
vm concrete_vm1 {

properties {
maps vm2

}
net concrete_net {

properties {}
maps net1

vm_flavor = "t2.micro";
}
maps vm1

}
vm concrete_vm2 {

properties {
vm_flavor = "t2.micro";

}

}
}
active con_aws_infra

}

8 Discussion

The experiments in Sect. 7 show that DOML and the other languages have a few
important differences in their modelling approach.

Firstly, in Terraform and Cloudify everything depends on the chosen cloud
provider. Each provider brings in a custom set of resources that define differ-
ent pieces of the infrastructure, but there is no way of abstracting over them.
Thus, when changing the provider, the user must learn the components offered
by the target provider and its features, and rewrite most of the deployment
configuration. Conversely, in DOML the infrastructure description is completely
decoupled from providers, and users need not be familiar with what a specific
provider offers. The ICG gathers the information needed to deploy an infras-
tructure configuration on a specific provider, still allowing for customization in
the CIL. This also improves reusability of infrastructure components.

Moreover, Terraform and Cloudify are centered around infrastructure compo-
nents, while in DOML applications have a central role. In languages other than
DOML, the fact that Wordpress is deployed on the VM can only be inferred by
reading an Ansible or shell script. In DOML, Wordpress is a first-class compo-
nent, and it is up to the ICG to ensure that it is correctly deployed on a VM,
instead of the user. This makes the whole deployment more robust.

Table 1 shows the size of the considered deployment specifications. The one
in DOML is significantly more compact in terms of number of lines of code and
files. All other approaches require the use of two languages, one for infrastructure
definition and one for configuration management. The DOML, on the contrary,
can handle both.

Finally, in Sect. 7.2 we show that the abstraction mechanisms offered by the
DOML allow for changing the target cloud platform by just adding and activating
a new concrete infrastructure. In Terraform and Cloudify all components are
defined in a different way based on the target cloud provider, so changing it
requires rewriting most of the specification.

Limitations and Threats to Validity. The experimental evaluation we con-
ducted still has some limitations that will be addressed through further research.
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In particular, we compared the DOML definition of the Wordpress deploy-
ment with some specific definitions. The main conclusion we inferred from the
evaluation is that such definitions are more concise than the DOML-based one.
This represents a threat to internal validity, because the analysis of a few specifi-
cations does not allow us to exclude the possibility of making more concise ones.
Nonetheless, such specifications were written by experts, and we argue that it is
unlikely that such a large conciseness gap can be recovered.

Another threat to internal validity is that we only compare metrics concern-
ing code size as a proxy of both ease of writing and maintaining code. However,
a proper evaluation of such features would require an empirical study.

The main threat to external validity is that the evaluation is performed on a
single application deployment, so the claims we make could not be generalized
to the other more complex cloud applications. One of our next research steps
will be the evaluation on a larger benchmark suite.

9 Conclusion

We have presented the DOML, a novel approach to cloud deployment modelling.
We have shown that the approach works for relatively simple but complete sys-
tems with practical significance.

Our next challenge is to check whether the approach is usable and works with
more complex case studies, including applications with multiple components that
rely on different computational resources and middleware layers.

Our ultimate aim is to be able to write the DOML model only once and then
use it to deploy the same complex system on different cloud service providers
or physical machines. This has resulted in the definition of the DOML as a
multi-layer modelling language, where the application and abstract infrastruc-
ture layers include a platform-independent specification of the application and
its underlying infrastructure, while the concrete infrastructure layer specifies the
details associated to the actual deployment on a specific platform.

The DOML has been developed keeping in mind the need for extensibility,
and includes an extension mechanism called DOML-E, which will be analysed
in detail in a future work.
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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