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Abstract. Aerospace manufacturing companies, such as Thales Alenia
Space, design, develop, integrate, verify, and validate products charac-
terized by high complexity and low volume. They carefully document
all phases for each product but analyses across products are challenging
due to the heterogeneity and unstructured nature of the data in docu-
ments. In this paper, we propose a hybrid methodology that leverages
Knowledge Graphs (KGs) in conjunction with Large Language Models
(LLMs) to extract and validate data contained in these documents. We
consider a case study focused on test data related to electronic boards
for satellites. To do so, we extend the Semantic Sensor Network ontol-
ogy. We store the metadata of the reports in a KG, while the actual test
results are stored in parquet accessible via a Virtual Knowledge Graph.
The validation process is managed using an LLM-based approach. We
also conduct a benchmarking study to evaluate the performance of state-
of-the-art LLMs in executing this task. Finally, we analyze the costs and
benefits of automating preexisting processes of manual data extraction
and validation for subsequent cross-report analyses.

Keywords: Knowledge Graphs · Large Language Models · Data Ex-
traction · Space Industry

1 Introduction

Context. Companies in the aerospace industry produce complex products in
low volumes. As a result, most of the data that can boost analytics is hidden
within documents, making its extraction challenging. The experience presented
in this article focuses on Test Data related to electronic boards used in Thales
Alenia Space’s satellite systems. The production of these electronic boards is a

ar
X

iv
:2

40
8.

01
70

0v
1 

 [
cs

.A
I]

  3
 A

ug
 2

02
4



2 A. De Santis et al.

critical aspect of space technology [24]. These boards are manufactured in limited
quantities, with a satellite containing between 10 to 20 such boards. Moreover,
these components must be extremely reliable and are subject to rigorous testing
protocols due to the hostile conditions of space missions [11]. Given the near
impossibility of conducting repairs once satellites are in space, production errors
could potentially lead to the failure of an entire mission, which would result in
significant financial losses and wasted resources. In this scenario, data analytics
can play a crucial role, providing timely insights and enabling immediate ac-
tions based on the data’s flow and characteristics. For example, the analysis of
historical production data could reveal trends that can predict the likelihood of
future components failing the quality tests. Such insights can guide production
decisions, minimizing waste and resulting in significant cost savings.

Problem Statement. The effectiveness of these data-driven approaches re-
lies on the quality and organization of the data [21]. Each electronic board is
meticulously crafted and tested before receiving approval. However, the testing
procedures and the generation of Test Reports are manually executed by human
operators across multiple isolated documents (primarily in .docx and .pdf for-
mat). This leads to data that is highly fragmented, heterogeneous, unstructured,
and prone to errors and inconsistencies. Such a scenario poses a significant chal-
lenge, as it can jeopardize data analysis efforts. Considering this, the focus of
our case study is automating the extraction, validation, and integration of Test
Data. Given the high level of data heterogeneity, the process of validation is par-
ticularly challenging because a standard approach based on regular expressions
would be impractical.

Proposed Solution. To address the aforementioned challenges, we propose
a hybrid approach that utilizes Large Language Models (LLMs) in combina-
tion with Semantic Web technologies. To provide semantic knowledge to the
system and manage structural heterogeneity, we create an ontology to capture
the semantics of the data. This ontology extends the Semantic Sensor Network
(SSN) [7] ontology, a well-established ontology for representing sensor data. We
then proceed with extracting the data from Test Report documents and storing
it in tabular format. The extracted data must undergo an automatic validation
process (i.e., checking for inconsistencies in test results). For this task, we exploit
the implicit knowledge of LLMs. These models have demonstrated their capabil-
ity to process data despite structural and syntactic heterogeneity. Moreover, in
contrast with approaches based on regular expressions, LLMs have the advan-
tage of being able to scale effectively with an increasing variety and complexity
of the data. The validated data is integrated into a data storage system, ensur-
ing a structured and organized data repository. To facilitate direct data access,
we then create mappings between the data storage and the ontology, allowing
our system to understand the relationships and connections among data points.
This knowledge is stored in a Virtual Knowledge Graph (VKG) [39], also known
in the literature as Ontology-Based Data Access (OBDA) [38], and is accessed
using SPARQL queries, which are automatically translated into SQL language.
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Structure of the Work. The paper is structured as follows. Section 2 presents
a review of related work. Section 3 describes the case study in detail and Sec-
tion 4 explains the rationale behind using KGs and LLMs. Section 5 presents
our methodology, whose implementation and evaluation are detailed in Section 6.
Section 7 discusses the uptake of our work and the lessons learned, while Sec-
tion 8 concludes the paper, providing directions for future work.

2 Related Work

Industrial deployment of VKGs. Semantic Web technologies have been
successfully applied in several industrial contexts [32, 12, 5] as they simplify data
access by providing an abstraction layer (i.e., an ontology) that integrates data
from semantically and physically different sources. Siemens uses an OBDA for
managing the temperature data of trains and turbines and developed a semantic
rule-based diagnostic system [18, 17, 4]. Statoil has implemented an OBDA using
the Ontop [31] framework for integrating multiple data sources [16]. This system
has enhanced the efficiency of data collection for geologists in the field of oil and
gas exploration and production. Similarly, Ontop was used to realize a semantic
information model for managing machine data [28]. Moreover, Ford Motor Com-
pany also stores knowledge about manufacturing processes in an ontology [33].
This allows their internally developed AI system to handle the planning of vehi-
cle assembly processes. They have also explored the use of federated ontologies
to identify potential risks in the supply chain [26, 19]. Bosch also has utilized
ontology-based approaches for data access. They applied knowledge graph em-
bedding [34] and ontology reshaping [41] for automatic knowledge graph (KG)
construction in a case related to welding quality monitoring.

LLMs for Data Management. In recent years, the field of language models
has experienced substantial progress due to the introduction of LLMs such as
GPT-3.5 [40] and GPT-4 [25], developed by OpenAI, Meta’s Llama 1 [35] and
Llama 2 [36], Claude 3 [2] from Anthropic, Google’s Gemini [13], and Mixtral [14],
from Mistral AI. These models have been utilized in a variety of data manage-
ment tasks [42, 43] due to their ability to extract knowledge from unstructured
data sources [1] and to understand the data without the need for explicit mod-
eling [10]. From a data validation perspective, LLMs have demonstrated close
to human-level capabilities in detecting inconsistencies in text summaries [20].
In the context of the Semantic Web, LLMs can also be used to automate KG
completion and construction [27]. For instance, GPT-4 was used for automatic
ontology and KG construction for large amounts of unstructured sustainability-
related data [37]. Moreover, LLMs have been effectively utilized to assist with
data preparation tasks required before performing business analytics [23]. More
specifically, GPT-4 was used to translate product names, assign product cate-
gories, classify customer sentiment, and extract repair requests and their causes
from customer service logs. Regarding real industry scenarios, there is currently
limited evidence, to our knowledge, of LLMs being utilized in conjunction with
semantic technologies for data validation in large manufacturing companies.
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Fig. 1. A portion of a color-coded spreadsheet that visually represents the heterogene-
ity within Test Reports, which typically contain around 23 sections. Green denotes
uniform sections, while yellow represents variable ones. White cells indicate the ab-
sence of a section. Titles are intentionally obscured to protect confidential information.

3 Case Study: Testing of Electronic Boards

In this section, we discuss our case study in greater detail and describe the
structure and characteristics of Thales Alenia Space’s Test Reports.

Electronic Boards Test Data. Our case study involves Test Data for elec-
tronic boards, primarily Printed Circuit Boards (PCBs) used in satellite systems.
Testing these products is a critical process in the space industry, ensuring that
all technological processes meet specific mission requirements and comply with
standards established by the European Space Agency (ESA) and the European
Cooperation for Space Standardization (ECSS). The tests involve measuring pa-
rameters such as voltage, resistance, or power, and comparing the results to a
predefined expected range, which represents the acceptable limits within which
the parameter should fall for the PCB to operate correctly. Test engineers con-
duct these tests, which are documented in Test Reports. These documents, which
are primarily in .docx and .pdf format, are manually filled by the engineers and
exhibit a high degree of heterogeneity. In Figure 1, we show a color-coded spread-
sheet to illustrate the heterogeneity within these documents. The actual test re-
sults in the reports are organized within manually filled tables. The “acceptance
limits” column is pre-filled and the engineers have to fill in the measured value
and a “successful” column based on the test outcome. In this study, we consider
Point-of-Load (POL) Voltage Verification, Preliminary Power Consumption, and
Isolation (both external and internal) as representative types of tests. Figure 2
provides an example of tables for these types of tests, emphasizing the unstruc-
tured and heterogeneous nature of the data which manifests in several ways:

Syntactic Heterogeneity. This is seen in the different formatting of the data. The
range of acceptance limits is represented in various ways. For instance, “[3.198,
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Fig. 2. Examples of test results tables that illustrate the challenges of syntactic (shown
in green), structural (shown in yellow), and semantic (shown in purple) heterogeneity.

3.532] V” and “1.1M - 1.9MΩ” both indicate a range of acceptance. In some
cases, the measured value and the acceptance limits are indicated with different
units of measure. Additionally, in the “successful” column, the absence of a value
or the presence of a “-” both indicate a lack of success.

Structural Heterogeneity. This is evident in the inconsistent organization and
naming of the tables. For instance, some tables have a single “successful” cell
in a different part of the document and therefore lack a dedicated “successful”
column. Furthermore, a column labeled “Acceptance limits” in one table might
be labeled as “Expected Values” in another. The unit of measure can be included
in the table title as well as written with the values or even absent. Another form
of structural heterogeneity can be observed in the use of row span, which is used
to indicate that the same value applies to multiple rows.

Semantic Heterogeneity. There is an implicit hierarchical structure within the
reports as there are various representations for the concept of a “Test”, such as
“Internal Isolation”, “External Isolation” or “POL Voltage”. These test types
share many properties, but they are categorized separately due to their specific
aspects. Similarly, Internal and External Isolation fall under the category of
Isolation tests, each possessing properties specific to Isolation testing. Despite
this, they are represented differently, introducing a semantic heterogeneity. This
leads to the requirement of modeling what is a “Test” or an “Isolation test”.

The preexisting manual approach (see Figure 3) for data extraction and valida-
tion is costly, time-consuming, and allows for limited cross-report analyses, but
automating these processes isn’t straightforward. Although a human operator
can intuitively understand that, for example, “Acceptance limits” has the same
meaning as “Expected values”, this poses a challenge for an automated system.
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Fig. 3. The preexisting manual data processing workflow in which potentially anoma-
lous reports are subjected to manual extraction, cleaning, and validation.

Data Obfuscation. Data is not disclosed in its original form to protect Thales
Alenia Space’s privacy. We added noise to the values, ensuring the structure and
syntax remained intact without disclosing any confidential information.

4 Motivation

In this section, we aim to clarify our motivation by addressing two key questions:
(1) Why do we need KGs? and (2) Why integrate them with LLMs?

Motivation for Knowledge Graphs. The motivation for choosing KGs and
OBDA systems lies in their ability to handle heterogeneous and physically dis-
tributed information, a common challenge in knowledge-intensive industries such
as aerospace. KGs effectively accommodate the high diversity and low volume of
data in the space industry, which produces hundreds of PCB families (with simi-
lar but not identical designs) but only a few dozen PCBs. The industry also deals
with a diverse array of tests due to the intricate nature of PCBs, which include
passive and active electrical components, as well as digital electronics like RAM,
CPUs, and FPGAs. Leveraging and extending resources such as the SSN ontol-
ogy can facilitate the modeling process in this case. Furthermore, a graph-based
representation allows for a more explicit data repository, reducing the reliance
on tacit knowledge held by domain experts. This is crucial in aerospace where
semantic coherence is key for managing complex systems such as satellites.

Integrating LLMs with KGs. Consider the detailed RDF representation
in Listing 1.1 that includes the QUDT (Quantities, Units, Dimensions, and
Types) [9] ontology for the units of measurement. Annotating data in this way
would require a large amount of manual work at the level of the template of the
Test Report. This can be challenging and time-consuming when dealing with
complex and diverse data. Moreover, the complexity grows with the number of
different templates of Test Reports the company introduces (i.e., one per PCB
family). See once again Figure 1 to feel the degree of heterogeneity at the level
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of the sections of the reports. However, LLM’s ability in natural language un-
derstanding can determine whether a measured value falls within an expected
range, even if the syntax changes or the units of measurement differ. Therefore,
it can assist in error detection and simplify the modeling process. This leads to
a lightweight annotation of the data (see Listing 1.2) using the Unified Code for
Units of Measure (UCUM) [22], allowing data engineers to focus on the concep-
tual model and semantic meaning of the data, without having to account for
every minor syntactic heterogeneity.

<http://tasi.com/pol#TASI-1234-Core1> a sosa:Observation ;

rdfs:label "TASI-1234-Core1" ;

sosa:observedProperty tasi:POLVoltage ;

sosa:hasResult [

a qudt-1-1:QuantityValue ;

qudt-1-1:numericValue "1.097"^^xsd:double ;

qudt-1-1:unit qudt-unit-1-1:Volt

] ;

tasi:hasAcceptanceLimits [

a tasi:Range ;

tasi:lowerLimit [

a qudt-1-1:QuantityValue ;

qudt-1-1:numericValue "1.076"^^xsd:double ;

qudt-1-1:unit qudt-unit-1-1:Volt

] ;

tasi:upperLimit [

a qudt-1-1:QuantityValue ;

qudt-1-1:numericValue "1.224"^^xsd:double ;

qudt-1-1:unit qudt-unit-1-1:Volt

] ;

tasi:hasTestResult "OK" ;

tasi:reportedIn "TASI-1234" ;

tasi:testReportDate "2023-06-15"^^xsd:dateTime .

Listing 1.1. Detailed representation that a machine can understand without LLMs.

<http://tasi.com/pol#TASI-1234-Core1> a sosa:Observation ;

rdfs:label "TASI-1234-Core1" ;

sosa:observedProperty tasi:POLVoltage ;

sosa:hasSimpleResult "1.097 V"^^cdt:ucum ;

tasi:hasAcceptanceLimits "[1.076, 1.224] V" ;

tasi:hasTestResult "OK" ;

tasi:reportedIn "TASI-1234" ;

tasi:testReportDate "2023-06-15"^^xsd:dateTime .

Listing 1.2. Lightweight representation that can be understood by LLMs.
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Fig. 4. A flowchart representation of the proposed methodology. The process begins
with the input of a set of potentially anomalous Test Reports, from which the data is
extracted and transformed into a machine-readable format. The documents’ metadata
is integrated into a KG, while the test results undergo LLM-based compliance checking
and anomalies are handled by an on-demand reviewer. The validated data is accessed
through a VKG, enabling access to heterogeneous data and facilitating cross-report
analyses. The whole process is guided by a one-time ontology engineering process.

5 Methodology

In this section, we describe the methodology of our approach for extraction,
validation, and integration of Test Data from unstructured Test Reports. As
depicted in Figure 4, the process is divided into several phases. The validation
process is managed using an LLM-based approach. On the other hand, data
integration is accomplished through KGs, enabling access to heterogeneous data.
More specifically, the process is structured on three levels:

– Data Extraction: Test Reports’ metadata and the test types they contain
are extracted and stored in a KG using an ontology.

– LLM-Based Compliance Checking: LLMs are used to validate that test re-
sults are consistent with their respective acceptance limits.

– Ontology-Based Data Access: A VKG is used to mediate the actual access
to the test results.

Data Extraction. The first step in our process is to extract the textual data
within the Test Reports and transform it into a machine-readable format. This
transformation is facilitated by a one-time ontology engineering process that de-
fines the concepts, categories, and relationships embedded within the data. A KG
is used for this purpose. The ontology used in this KG is an extension of the SSN
ontology (see Figure 5) and maps the information related to Test Reports and ob-
servable properties found within these reports, which refer to the property being
tested (i.e., the test type) and the related test table structure description in terms
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Fig. 5. The figure provides a visual representation of our ontology. This ontology is an
extension of the well-established SSN ontology, which is denoted by the sosa prefix and
the red color. Our additions include new classes and properties, which are identified by
the tasi prefix and the blue color. The ontology’s components used for modeling Test
report metadata are enclosed within a purple rectangle, and this metadata is stored
within a KG. The modeling of test results, represented by an orange rectangle, is stored
in a structured data repository and made accessible via a VKG.

of its columns. All tests are of type sosa:ObservableProperty with their re-
spective hierarchy. For instance, <POLVoltage> and <Isolation> are defined as
sosa:ObservableProperty. <InternalIsolation> and <ExternalIsolation>

are defined as sub-classes of <Isolation>. The RDF fragment provided in List-
ing 2 is an example of how a Test Report is modeled. An additional property
tasi:reports has been added due to the absence of a Test Report concept in the
SSN ontology. A Test Report is defined as <TestReport> and is associated with
the observable properties such as <InternalIsolation>, <ExternalIsolation>
and <POLVoltage>. The metadata of the report is modeled using additional
properties such as testReportDate, testReportLocation, testReportName,
testReportReference and testReportValidation. The latter is used to in-
dicate whether the whole Test Report is valid.

Using the ontology definition as a basis, we can streamline the extraction pro-
cess. The procedure begins with parsing the Test Reports to identify relevant
sections. These reports are then extracted along with their observable properties,
such as POL Voltage, using the KG test table structure definition to automati-
cally identify the purpose of each column (i.e., for the POLVoltage table, Voltage
Measurements [V] contains the test data entry, while Acceptance Limits con-
tains the entry validation range). Subsequently, this data is transformed into
RDF triples and stored in the KG. The creation of these RDF triples is guided
by the ontology, ensuring that the resulting data is both structured and machine-
readable. The actual observations, which correspond to the rows in the tables, are
extracted and temporarily stored in a data repository for subsequent validation.
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@prefix tasi: <http://www.semanticweb.org/ontologies/tasi#> .

tasi:POLVoltage a sosa:ObservableProperty ;

rdfs:label "P.O.L. Voltage"@en .

tasi:obsPropertyAccLimLocation "VALIDATED/ist/TASI-1234-ist_pol.csv" ;

tasi:obsPropertyResultsLocation "/VALIDATED/pol/pol.parquet" .

tasi:Isolation a sosa:ObservableProperty ;

rdfs:label "Isolation"@en .

tasi:InternalIsolation rdfs:subClassOf tasi:Isolation ;

rdfs:label "Internal Isolation"@en .

tasi:obsPropertyAccLimLocation "VALIDATED/ist/TASI-1234-ist_al.csv" ;

tasi:obsPropertyResultsLocation "VALIDATED/ist/ist.parquet" .

tasi:ExternalIsolation rdfs:subClassOf tasi:Isolation ;

rdfs:label "External Isolation"@en .

<http://tasi.com#TASI-1234> a tasi:TestReport ;

tasi:reports tasi:POLVoltage, tasi:InternalIsolation ;

tasi:testReportDate "2023-06-15"^^xsd:dateTime ;

tasi:testReportName "test_report_xy" ;

tasi:testReportReference "TASI-1234" ;

tasi:testReportValidation "OK" ;

tasi:testReportLocation "path/to/test_report_file.docx" .

Listing 2. An example of a Test Report modeled using an extension of the SSN ontol-
ogy that contains valid data for the POLVoltage and InternalIsolation tests.

LLM-Based Compliance Checking. The primary challenge in managing
Test Data lies in the expensive and time-consuming task of compliance checking.
This process is difficult to automate algorithmically due to the high heterogene-
ity in observed values and the wide variety of formats used for the acceptance
limits. However, compliance checking can be automated using LLMs, as these
models are capable of handling data with syntactic and structural heterogene-
ity. This ability makes the compliance checking process applicable across a broad
spectrum of testing scenarios. Consequently, data engineers can focus only on
a small subset of tests that the LLM identifies as anomalous. The validation
process is conducted row by row, rather than for the whole table at once, to
prevent disclosing confidential information. For each test result, we prompt the
LLM to determine whether the measured value is within the acceptance range.
The LLM’s response is then compared with the “successful” value. If there is a
mismatch between these two values, the test is classified as anomalous. A test is
considered valid if the measured value is within the predefined acceptance limits
and the “successful” column reads “OK”, or if the value is outside the range and
the “successful” column does not read “OK”.

The prompt strategy chosen is the Zero-shot [29] (i.e., direct prompting with-
out any examples) using a task description instead of a role-oriented approach.
For data validation tasks, this strategy was shown to be superior, especially for
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bigger models [20]. This is consistent with previous findings showing that zero-
shot prompts are best when the task involves utilizing pre-existing knowledge
embedded within the model, as opposed to learning from examples [30]. Further-
more, we designed the prompt in a way that it can be applied across all types
of tests and is robust to heterogeneity in the acceptance limits. It is structured
to ask a simple “True” or “False” zero-shot question that is framed as follows:
“Evaluate the following electrical measure observation statement. Answer with
just one “True” or “False” statement at the beginning of the answer. Is [mea-
sured value] [acceptance limits] ?”. The LLM response is parsed, and the first
“True” or “False” encountered is taken as the response, as sometimes the LLM
might continue discussing and explaining the reasoning behind its decision.

Ontology-Based Data Access. We utilize a VKG to facilitate data access and
manage structural heterogeneity. This VKG maps the validated Test Data stor-
age to the ontology (refer to Figure 5). The knowledge within the virtualized
semantic layer can be accessed via SPARQL queries, which are automatically
translated into SQL. Listing 1.2 shows an RDF fragment modeling a POL Volt-
age Observation, which represents a row in the test table (refer to Figure 2).
Each row is a sosa:Observation with a sosa:hasSimpleResult value. For
instance, <http://tasi.com/pol#TASI-1234-Core1> is a sosa:Observation

with a sosa:hasSimpleResult of “1.097 V”. This observation is associated with
the sosa:observedProperty <POLVoltage>. The SSN ontology has been ex-
tended with two properties to accommodate the specific needs of our case study.
The tasi:reportedIn property links the observation to the corresponding Test
Report, while the tasi:hasAcceptanceLimits property specifies the accept-
able range for the observed property. For example, tasi:hasAcceptanceLimits
"[1.076, 1.224] V" indicates that the acceptable voltage range for the POL
Voltage Observation is between 1.076V and 1.224V. The tasi:hasTestResult

property reports the “successful” value. For instance, a successful test is indi-
cated by tasi:hasTestResult "OK".

mappingId POL_Voltage_Verification

target tasi-pol:{tr_reference}-{v_cores} a sosa:Observation ;

rdfs:label "{tr_reference}-{v_cores}";

sosa:observedProperty tasi:POLVoltage;

sosa:hasSimpleResult "{voltage_mesurements} V"^^cdt:ucum;

tasi:hasAcceptanceLimits {acceptance_limits};

tasi:testReportDate {test_report_date}^^xsd:dateTime;

tasi:hasTestResult {successful};

tasi:reportedIn {tr_reference}.

source SELECT tr_reference, v_cores, voltage_mesurements

acceptance_limits, test_report_date, successful

FROM tasi.pol_voltage

Listing 3. The mapping for the POLVoltage Observation.
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To populate the ontology, we establish a series of mappings. These map-
pings create connections between the ontology and the underlying data storage,
thereby providing semantic meaning to the Test Data. An example of mapping
for a POLVoltageObservation is provided in Listing 3. The mapping is defined
with a mappingId of POL Voltage Verification, which corresponds to the
type of test being performed. The target of the mapping is a URI that rep-
resents a sosa:Observation in the ontology. The source is a SQL query that
retrieves the necessary data from the POL Voltage Verification table in the
test results storage. The variables in the source query correspond to the place-
holders in the target. Once the mapping is executed, these placeholders are
replaced with the actual values retrieved by the source query. This allows us
to virtually represent the storage as an RDF graph, integrating different data
sources into a unified view.

6 Implementation and Evaluation

In this section, we delve into the specifics of our system’s implementation and the
technologies used. Following this, we present a benchmarking study of various
state-of-the-art LLMs to evaluate their capability of performing automated com-
pliance checking. An evaluation of the whole methodology from a cost-benefit
perspective is provided in Section 7.

Implementation details. An Apache Airflow DAG (Directed Acyclic Graph)
was designed to orchestrate the entire process. Apache Airflow is a popular open-
source tool for creating, scheduling, and monitoring data pipelines. For modeling
the Test Reports and their properties, we implemented the KG using Apache
Jena Fuseki, a server that allows for querying and updating the KG using the
SPARQL query language. The test results are stored in an Apache Parquet, a free
and open-source column-oriented data storage, which allows handling large vol-
umes of data while maintaining high performance. The VKG was implemented
using OntopSpark [3], an extension developed by Politecnico di Milano of On-
top [31], an open-source OBDA system that allows for querying relational data
sources through an ontology via R2RML [8] mappings. We do not report a de-
tailed analysis of Ontop performances since it was benchmarked in several other
papers [6, 15]. We present a discussion about the effort to solve the problem with
and without our solution in Section 7.

LLMs Benchmarking. A benchmarking study was carried out to assess the
performance of state-of-the-art LLMs in automated compliance checking. The
models tested included GPT-3.5 [40], GPT-4 [25], Gemini Ultra [13], Mixtral
8x7B [14], LLama 2 70B [36], and Claude 3 Opus [2]. Performance was mea-
sured using standard metrics such as accuracy, precision, recall, and F1-score.
The positive class was considered when the measured values fell outside the ac-
ceptance limit range, which is also the less represented class. The models were
tested across three test categories: POL Voltage Verification, Internal Isolation,
and External Isolation.
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Table 1. The results of the comparative analysis on state-of-the-art LLMs for compli-
ance checking, highlighting the superior performance of GPT-4 and Gemini Ultra.

Model Test Type #Tests Accuracy Precision Recall F1-Score

GPT-3.5

POL Voltage 53 0.868 0.625 0.556 0.588
Internal Isolation 86 0.779 0.056 0.333 0.095
External Isolation 59 0.932 0.333 0.333 0.333
Overall 198 0.849 0.241 0.467 0.318

GPT-4

POL Voltage 53 0.981 1.000 0.900 0.947
Internal Isolation 86 1.000 1.000 1.000 1.000
External Isolation 59 0.983 0.750 1.000 0.857
Overall 198 0.990 0.938 0.938 0.938

Gemini Ultra

POL Voltage 53 1.000 1.000 1.000 1.000
Internal Isolation 86 1.000 1.000 1.000 1.000
External Isolation 59 0.949 0.500 1.000 0.667
Overall 198 0.985 0.833 1.000 0.909

Mixtral 8x7B

POL Voltage 53 0.925 0.875 0.700 0.778
Internal Isolation 86 0.663 0.150 0.200 0.171
External Isolation 59 0.644 0.136 0.600 0.222
Overall 198 0.727 0.260 0.433 0.325

LLama 2 70B

POL Voltage 53 0.887 0.800 0.444 0.571
Internal Isolation 86 0.733 0.091 0.400 0.148
External Isolation 59 0.712 0.111 0.667 0.191
Overall 198 0.768 0.178 0.471 0.258

Claude 3 Opus

POL Voltage 53 1.000 1.000 1.000 1.000
Internal Isolation 86 0.895 0.250 1.000 0.400
External Isolation 59 0.983 0.750 1.000 0.857
Overall 198 0.949 0.615 1.000 0.762

Table 1 presents the benchmarking results, showing a clear distinction in
performance among the tested LLMs. GPT-4 and Gemini Ultra are the top
performers across all test categories, with GPT-4 achieving the highest overall
accuracy, precision, and F1-score. Gemini Ultra, on the other hand, achieved per-
fect scores in the POL Voltage and Internal Isolation tests and had the highest
overall recall. In contrast, GPT-3.5, Mixtral 8x7B, and LLama 2 70B consistently
underperformed compared to the top models, rendering them unsuitable for our
task. Claude 3 Opus demonstrated strong performance in the POL Voltage test
but had lower precision in the Internal Isolation and External Isolation tests due
to its inability to handle cases where the test result’s unit of measure was ab-
sent, a frequent scenario in the Isolation tests. This benchmarking study provides
strong evidence supporting the effectiveness of an LLM-based approach for au-
tomated compliance checking using state-of-the-art LLMs. The performance of
GPT-4 and Gemini Ultra underscores the potential of these models in managing
complex data validation tasks.
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7 Discussion on Uptake and Lessons Learned

Benefits and Scalability. The transition from the current method to the pro-
posed solution suggests a significant reduction in the effort measured in person-
days required to complete and validate Test Reports before extracting longitudi-
nal Test Data to analyze. The existing procedure necessitates substantial manual
work for tasks such as creating Test Report templates, instantiating Test Re-
ports, filling in the test results and checking the compliance with the acceptance
limits, reviewing the Test Data and their coherence with the reported success,
looking for errors and correcting them, and extract/transform data to perform
longitudinal analysis (see Figure 3). The proposed solution, while requiring the
modeling and maintenance of an ontology that encapsulates various test types
(refer to Figure 1), and the annotation of the template with semantic tags that
define each section, is fully automated (see Figure 4). This includes the extrac-
tion of test results and acceptance limits, error isolation, requests for manual
review and correction, and data accessibility for longitudinal analysis.

Fig. 6. Comparison of effort reduction between our solution (KG+LLM) and the cur-
rent method (AS-IS). The effort depends on the number of templates (n), the number
of reports (x-axis), and the test types per report which for simplicity are set to 30.
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We developed a cost model based on the experience documented in this
paper. This model estimates the effort involved as a product of three factors: the
number of different Test Report templates, the average number of Test Reports
per template, and the number of test types (e.g., POL Voltage Verification,
Preliminary Power Consumption) per report. Comparing the effort required to
model, compile, and validate from 1 to 10 Test Report templates, each with an
average of 30 types of test per report (refer to Figure 6), we derive that as the
number of reports (on the x-axis) increases:

– For a single Test Report template (n=1), benefits start to appear after the
6th report.

– For five templates (n=5), benefits are seen after the 3rd report.
– For ten templates (n=10), the benefits are obtained at the 2nd report.

As the number of Test Report templates (n) increases, the number of Test
Reports (on the x-axis) needed to see the benefits of using KG and LLMs is
significantly reduced, with potential time savings of more than 50%. The right
part of Figure 6 illustrates the break-even points for an increasing number of
Test Reports in detail.

Next Steps for Large Scale Deployment. The proof-of-concept of the pro-
posed solution was well received by Thales Alenia Space, but additional efforts
are needed for the transition to a large-scale deployment. We are currently en-
gaged in a feasibility study to port the solution to the other five nations in
which Thales Alenia Space operates (France, Belgium, Spain, Switzerland, and
the UK). Since the scenarios can vary significantly in these different divisions,
this can potentially broaden adoption across the aerospace industry through
further development and demonstration of value in diverse operational environ-
ments. Furthermore, despite the proposed solution focusing on a specialized case
study, the principle of data validation via LLMs, to simplify the conceptual mod-
eling process and reduce manual work, could potentially be extended to other
scenarios such as mechanical and electrical qualification, given the ability of KGs
and LLMs to adapt to different tasks and data types. However, it’s true that
to apply this approach in different contexts, slight reconfigurations would be
necessary. Furthermore, it would be essential to establish benchmarks for each
specific use case to evaluate the applicability in a new scenario. Given the signifi-
cant savings, Thales Alenia Space expresses its intention to continue prototyping
for other types of tests on PCBs, extend to the other product lines, and eventu-
ally deploy to all product lines. Preliminary experiments in this direction have
already produced some promising results.

Lessons Learned. The development of the proposed solution revealed sev-
eral key lessons. Firstly, the success of the implementation heavily relied on a
well-structured ontology and clean mappings. The initial investment in mod-
eling proved beneficial, as it minimized downstream efforts. Additionally, the
integration of LLMs streamlined data validation, drastically reducing the need
for manual intervention. Identified best practices include the necessity for itera-
tive development and validation of the ontology and its corresponding mappings.
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This ensures accurate modeling of test template reports. Moreover, it is crucial
to conduct a comparative evaluation of alternative LLMs to stay updated with
the evolving heterogeneities in Test Data, acceptance limits, and report require-
ments. Collaboration with stakeholders and domain experts was also essential
for fine-tuning the KG and LLM prompts for optimal performance, and ensur-
ing that confidentiality requirements were met while incorporating closed-source
LLMs in the pipeline. As we move forward, these insights will guide our efforts
to extend the solution to other product lines and further enhance the system’s
performance and reliability.

8 Conclusion and Future Work

In this paper, we demonstrated a successful application of Semantic Web tech-
nologies combined with LLMs for integrating and validating heterogeneous and
unstructured industrial data through a use case related to Test Reports of elec-
tronic boards used in Thales Alenia Space’s satellite systems. Our benchmarking
study revealed that GPT-4 and Google Gemini possess remarkable abilities in
automating the process of compliance checking. Considering that LLMs are still
in the early stages of their development, it’s reasonable to expect their perfor-
mance to improve further, enabling them to handle even more complex data
validation tasks in the near future. Overall, the proposed solution demonstrates
a clear cost-benefit advantage over the existing document-centric solution. The
potential efficiency gains underscore the value of investing in advanced AI-driven
automation for such data-intensive tasks.

As future work, we intend to investigate whether the use of LLMs can be
extended to perform automatic ontology construction, utilizing document tags,
and also data homogenization. This would involve parsing the test results and
the acceptance limits through an LLM-based approach. Additionally, we aim to
further enhance data access by employing LLMs to convert natural language
into SPARQL queries, thereby enabling Thales Alenia Space engineers to access
knowledge directly using natural language.

Supplemental Material Statement: The obfuscated dataset and the code used
to benchmark the Large Language Models are made available for enhancing the
reproducibility of the study and potential reuse for future research. However,
please note that the code and data related to other steps of the methodology
are not provided as they comprise confidential information belonging to Thales
Alenia Space. The available resources can be accessed in our GitHub Repository
at https://github.com/Antonio-Dee/tasi-testdata.
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mantic Web – ISWC 2022. pp. 770–790. Springer International Publishing, Cham
(2022)

42. Zhou, X., Sun, Z., Li, G.: Db-gpt: Large language model meets database. Data
Science and Engineering pp. 1–10 (01 2024). https://doi.org/10.1007/s41019-023-
00235-6

43. Zhou, X., Zhao, X., Li, G.: Llm-enhanced data management (2024)


